blob: 3f01883e7484cb8d8682876d2e6d7be13ce1d473 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/vector_math.h"
#include "media/base/vector_math_testing.h"
#include <algorithm>
#include "base/check_op.h"
#include "base/memory/aligned_memory.h"
#include "build/build_config.h"
// NaCl does not allow intrinsics.
#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
#include <xmmintrin.h>
// Don't use custom SSE versions where the auto-vectorized C version performs
// better, which is anywhere clang is used.
// TODO(pcc): Linux currently uses ThinLTO which has broken auto-vectorization
// in clang, so use our intrinsic version for now. http://crbug.com/738085
#if !defined(__clang__) || defined(OS_LINUX) || defined(OS_CHROMEOS)
#define FMAC_FUNC FMAC_SSE
#define FMUL_FUNC FMUL_SSE
#else
#define FMAC_FUNC FMAC_C
#define FMUL_FUNC FMUL_C
#endif
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
#define FMAC_FUNC FMAC_NEON
#define FMUL_FUNC FMUL_NEON
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
#else
#define FMAC_FUNC FMAC_C
#define FMUL_FUNC FMUL_C
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
#endif
namespace media {
namespace vector_math {
void FMAC(const float src[], float scale, int len, float dest[]) {
DCHECK(base::IsAligned(src, kRequiredAlignment));
DCHECK(base::IsAligned(dest, kRequiredAlignment));
return FMAC_FUNC(src, scale, len, dest);
}
void FMAC_C(const float src[], float scale, int len, float dest[]) {
for (int i = 0; i < len; ++i)
dest[i] += src[i] * scale;
}
void FMUL(const float src[], float scale, int len, float dest[]) {
DCHECK(base::IsAligned(src, kRequiredAlignment));
DCHECK(base::IsAligned(dest, kRequiredAlignment));
return FMUL_FUNC(src, scale, len, dest);
}
void FMUL_C(const float src[], float scale, int len, float dest[]) {
for (int i = 0; i < len; ++i)
dest[i] = src[i] * scale;
}
std::pair<float, float> EWMAAndMaxPower(
float initial_value, const float src[], int len, float smoothing_factor) {
DCHECK(base::IsAligned(src, kRequiredAlignment));
return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor);
}
std::pair<float, float> EWMAAndMaxPower_C(
float initial_value, const float src[], int len, float smoothing_factor) {
std::pair<float, float> result(initial_value, 0.0f);
const float weight_prev = 1.0f - smoothing_factor;
for (int i = 0; i < len; ++i) {
result.first *= weight_prev;
const float sample = src[i];
const float sample_squared = sample * sample;
result.first += sample_squared * smoothing_factor;
result.second = std::max(result.second, sample_squared);
}
return result;
}
#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
__m128 m_scale = _mm_set_ps1(scale);
for (int i = 0; i < last_index; i += 4)
_mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
// Handle any remaining values that wouldn't fit in an SSE pass.
for (int i = last_index; i < len; ++i)
dest[i] = src[i] * scale;
}
void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
__m128 m_scale = _mm_set_ps1(scale);
for (int i = 0; i < last_index; i += 4) {
_mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
_mm_mul_ps(_mm_load_ps(src + i), m_scale)));
}
// Handle any remaining values that wouldn't fit in an SSE pass.
for (int i = last_index; i < len; ++i)
dest[i] += src[i] * scale;
}
// Convenience macro to extract float 0 through 3 from the vector |a|. This is
// needed because compilers other than clang don't support access via
// operator[]().
#define EXTRACT_FLOAT(a, i) \
(i == 0 ? \
_mm_cvtss_f32(a) : \
_mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
std::pair<float, float> EWMAAndMaxPower_SSE(
float initial_value, const float src[], int len, float smoothing_factor) {
// When the recurrence is unrolled, we see that we can split it into 4
// separate lanes of evaluation:
//
// y[n] = a(S[n]^2) + (1-a)(y[n-1])
// = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
// = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
//
// where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
//
// Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
// each of the 4 lanes, and then combine them to give y[n].
const int rem = len % 4;
const int last_index = len - rem;
const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
const float weight_prev = 1.0f - smoothing_factor;
const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
const __m128 weight_prev_squared_x4 =
_mm_mul_ps(weight_prev_x4, weight_prev_x4);
const __m128 weight_prev_4th_x4 =
_mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
// Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
// 0, respectively.
__m128 max_x4 = _mm_setzero_ps();
__m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
int i;
for (i = 0; i < last_index; i += 4) {
ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
const __m128 sample_x4 = _mm_load_ps(src + i);
const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
// Note: The compiler optimizes this to a single multiply-and-accumulate
// instruction:
ewma_x4 = _mm_add_ps(ewma_x4,
_mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
}
// y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
float ewma = EXTRACT_FLOAT(ewma_x4, 3);
ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
ewma += EXTRACT_FLOAT(ewma_x4, 2);
ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
ewma += EXTRACT_FLOAT(ewma_x4, 1);
ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
ewma += EXTRACT_FLOAT(ewma_x4, 0);
// Fold the maximums together to get the overall maximum.
max_x4 = _mm_max_ps(max_x4,
_mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
// Handle remaining values at the end of |src|.
for (; i < len; ++i) {
result.first *= weight_prev;
const float sample = src[i];
const float sample_squared = sample * sample;
result.first += sample_squared * smoothing_factor;
result.second = std::max(result.second, sample_squared);
}
return result;
}
#endif
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
float32x4_t m_scale = vmovq_n_f32(scale);
for (int i = 0; i < last_index; i += 4) {
vst1q_f32(dest + i, vmlaq_f32(
vld1q_f32(dest + i), vld1q_f32(src + i), m_scale));
}
// Handle any remaining values that wouldn't fit in an NEON pass.
for (int i = last_index; i < len; ++i)
dest[i] += src[i] * scale;
}
void FMUL_NEON(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
float32x4_t m_scale = vmovq_n_f32(scale);
for (int i = 0; i < last_index; i += 4)
vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale));
// Handle any remaining values that wouldn't fit in an NEON pass.
for (int i = last_index; i < len; ++i)
dest[i] = src[i] * scale;
}
std::pair<float, float> EWMAAndMaxPower_NEON(
float initial_value, const float src[], int len, float smoothing_factor) {
// When the recurrence is unrolled, we see that we can split it into 4
// separate lanes of evaluation:
//
// y[n] = a(S[n]^2) + (1-a)(y[n-1])
// = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
// = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
//
// where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
//
// Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
// each of the 4 lanes, and then combine them to give y[n].
const int rem = len % 4;
const int last_index = len - rem;
const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor);
const float weight_prev = 1.0f - smoothing_factor;
const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev);
const float32x4_t weight_prev_squared_x4 =
vmulq_f32(weight_prev_x4, weight_prev_x4);
const float32x4_t weight_prev_4th_x4 =
vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4);
// Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
// 0, respectively.
float32x4_t max_x4 = vdupq_n_f32(0.0f);
float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3);
int i;
for (i = 0; i < last_index; i += 4) {
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4);
const float32x4_t sample_x4 = vld1q_f32(src + i);
const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4);
max_x4 = vmaxq_f32(max_x4, sample_squared_x4);
ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4);
}
// y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
float ewma = vgetq_lane_f32(ewma_x4, 3);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 2);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 1);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 0);
// Fold the maximums together to get the overall maximum.
float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4));
max_x2 = vpmax_f32(max_x2, max_x2);
std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0));
// Handle remaining values at the end of |src|.
for (; i < len; ++i) {
result.first *= weight_prev;
const float sample = src[i];
const float sample_squared = sample * sample;
result.first += sample_squared * smoothing_factor;
result.second = std::max(result.second, sample_squared);
}
return result;
}
#endif
} // namespace vector_math
} // namespace media