| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "media/base/vector_math.h" |
| #include "media/base/vector_math_testing.h" |
| |
| #include <algorithm> |
| |
| #include "base/check_op.h" |
| #include "base/memory/aligned_memory.h" |
| #include "build/build_config.h" |
| |
| // NaCl does not allow intrinsics. |
| #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) |
| #include <xmmintrin.h> |
| // Don't use custom SSE versions where the auto-vectorized C version performs |
| // better, which is anywhere clang is used. |
| // TODO(pcc): Linux currently uses ThinLTO which has broken auto-vectorization |
| // in clang, so use our intrinsic version for now. http://crbug.com/738085 |
| #if !defined(__clang__) || defined(OS_LINUX) || defined(OS_CHROMEOS) |
| #define FMAC_FUNC FMAC_SSE |
| #define FMUL_FUNC FMUL_SSE |
| #else |
| #define FMAC_FUNC FMAC_C |
| #define FMUL_FUNC FMUL_C |
| #endif |
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE |
| #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) |
| #include <arm_neon.h> |
| #define FMAC_FUNC FMAC_NEON |
| #define FMUL_FUNC FMUL_NEON |
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON |
| #else |
| #define FMAC_FUNC FMAC_C |
| #define FMUL_FUNC FMUL_C |
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C |
| #endif |
| |
| namespace media { |
| namespace vector_math { |
| |
| void FMAC(const float src[], float scale, int len, float dest[]) { |
| DCHECK(base::IsAligned(src, kRequiredAlignment)); |
| DCHECK(base::IsAligned(dest, kRequiredAlignment)); |
| return FMAC_FUNC(src, scale, len, dest); |
| } |
| |
| void FMAC_C(const float src[], float scale, int len, float dest[]) { |
| for (int i = 0; i < len; ++i) |
| dest[i] += src[i] * scale; |
| } |
| |
| void FMUL(const float src[], float scale, int len, float dest[]) { |
| DCHECK(base::IsAligned(src, kRequiredAlignment)); |
| DCHECK(base::IsAligned(dest, kRequiredAlignment)); |
| return FMUL_FUNC(src, scale, len, dest); |
| } |
| |
| void FMUL_C(const float src[], float scale, int len, float dest[]) { |
| for (int i = 0; i < len; ++i) |
| dest[i] = src[i] * scale; |
| } |
| |
| std::pair<float, float> EWMAAndMaxPower( |
| float initial_value, const float src[], int len, float smoothing_factor) { |
| DCHECK(base::IsAligned(src, kRequiredAlignment)); |
| return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor); |
| } |
| |
| std::pair<float, float> EWMAAndMaxPower_C( |
| float initial_value, const float src[], int len, float smoothing_factor) { |
| std::pair<float, float> result(initial_value, 0.0f); |
| const float weight_prev = 1.0f - smoothing_factor; |
| for (int i = 0; i < len; ++i) { |
| result.first *= weight_prev; |
| const float sample = src[i]; |
| const float sample_squared = sample * sample; |
| result.first += sample_squared * smoothing_factor; |
| result.second = std::max(result.second, sample_squared); |
| } |
| return result; |
| } |
| |
| #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) |
| void FMUL_SSE(const float src[], float scale, int len, float dest[]) { |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| __m128 m_scale = _mm_set_ps1(scale); |
| for (int i = 0; i < last_index; i += 4) |
| _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale)); |
| |
| // Handle any remaining values that wouldn't fit in an SSE pass. |
| for (int i = last_index; i < len; ++i) |
| dest[i] = src[i] * scale; |
| } |
| |
| void FMAC_SSE(const float src[], float scale, int len, float dest[]) { |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| __m128 m_scale = _mm_set_ps1(scale); |
| for (int i = 0; i < last_index; i += 4) { |
| _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i), |
| _mm_mul_ps(_mm_load_ps(src + i), m_scale))); |
| } |
| |
| // Handle any remaining values that wouldn't fit in an SSE pass. |
| for (int i = last_index; i < len; ++i) |
| dest[i] += src[i] * scale; |
| } |
| |
| // Convenience macro to extract float 0 through 3 from the vector |a|. This is |
| // needed because compilers other than clang don't support access via |
| // operator[](). |
| #define EXTRACT_FLOAT(a, i) \ |
| (i == 0 ? \ |
| _mm_cvtss_f32(a) : \ |
| _mm_cvtss_f32(_mm_shuffle_ps(a, a, i))) |
| |
| std::pair<float, float> EWMAAndMaxPower_SSE( |
| float initial_value, const float src[], int len, float smoothing_factor) { |
| // When the recurrence is unrolled, we see that we can split it into 4 |
| // separate lanes of evaluation: |
| // |
| // y[n] = a(S[n]^2) + (1-a)(y[n-1]) |
| // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ... |
| // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) |
| // |
| // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ... |
| // |
| // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in |
| // each of the 4 lanes, and then combine them to give y[n]. |
| |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| |
| const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor); |
| const float weight_prev = 1.0f - smoothing_factor; |
| const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev); |
| const __m128 weight_prev_squared_x4 = |
| _mm_mul_ps(weight_prev_x4, weight_prev_x4); |
| const __m128 weight_prev_4th_x4 = |
| _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4); |
| |
| // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and |
| // 0, respectively. |
| __m128 max_x4 = _mm_setzero_ps(); |
| __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value); |
| int i; |
| for (i = 0; i < last_index; i += 4) { |
| ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4); |
| const __m128 sample_x4 = _mm_load_ps(src + i); |
| const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4); |
| max_x4 = _mm_max_ps(max_x4, sample_squared_x4); |
| // Note: The compiler optimizes this to a single multiply-and-accumulate |
| // instruction: |
| ewma_x4 = _mm_add_ps(ewma_x4, |
| _mm_mul_ps(sample_squared_x4, smoothing_factor_x4)); |
| } |
| |
| // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) |
| float ewma = EXTRACT_FLOAT(ewma_x4, 3); |
| ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4); |
| ewma += EXTRACT_FLOAT(ewma_x4, 2); |
| ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4); |
| ewma += EXTRACT_FLOAT(ewma_x4, 1); |
| ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4); |
| ewma += EXTRACT_FLOAT(ewma_x4, 0); |
| |
| // Fold the maximums together to get the overall maximum. |
| max_x4 = _mm_max_ps(max_x4, |
| _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1))); |
| max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2)); |
| |
| std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0)); |
| |
| // Handle remaining values at the end of |src|. |
| for (; i < len; ++i) { |
| result.first *= weight_prev; |
| const float sample = src[i]; |
| const float sample_squared = sample * sample; |
| result.first += sample_squared * smoothing_factor; |
| result.second = std::max(result.second, sample_squared); |
| } |
| |
| return result; |
| } |
| #endif |
| |
| #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) |
| void FMAC_NEON(const float src[], float scale, int len, float dest[]) { |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| float32x4_t m_scale = vmovq_n_f32(scale); |
| for (int i = 0; i < last_index; i += 4) { |
| vst1q_f32(dest + i, vmlaq_f32( |
| vld1q_f32(dest + i), vld1q_f32(src + i), m_scale)); |
| } |
| |
| // Handle any remaining values that wouldn't fit in an NEON pass. |
| for (int i = last_index; i < len; ++i) |
| dest[i] += src[i] * scale; |
| } |
| |
| void FMUL_NEON(const float src[], float scale, int len, float dest[]) { |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| float32x4_t m_scale = vmovq_n_f32(scale); |
| for (int i = 0; i < last_index; i += 4) |
| vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale)); |
| |
| // Handle any remaining values that wouldn't fit in an NEON pass. |
| for (int i = last_index; i < len; ++i) |
| dest[i] = src[i] * scale; |
| } |
| |
| std::pair<float, float> EWMAAndMaxPower_NEON( |
| float initial_value, const float src[], int len, float smoothing_factor) { |
| // When the recurrence is unrolled, we see that we can split it into 4 |
| // separate lanes of evaluation: |
| // |
| // y[n] = a(S[n]^2) + (1-a)(y[n-1]) |
| // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ... |
| // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) |
| // |
| // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ... |
| // |
| // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in |
| // each of the 4 lanes, and then combine them to give y[n]. |
| |
| const int rem = len % 4; |
| const int last_index = len - rem; |
| |
| const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor); |
| const float weight_prev = 1.0f - smoothing_factor; |
| const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev); |
| const float32x4_t weight_prev_squared_x4 = |
| vmulq_f32(weight_prev_x4, weight_prev_x4); |
| const float32x4_t weight_prev_4th_x4 = |
| vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4); |
| |
| // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and |
| // 0, respectively. |
| float32x4_t max_x4 = vdupq_n_f32(0.0f); |
| float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3); |
| int i; |
| for (i = 0; i < last_index; i += 4) { |
| ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4); |
| const float32x4_t sample_x4 = vld1q_f32(src + i); |
| const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4); |
| max_x4 = vmaxq_f32(max_x4, sample_squared_x4); |
| ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4); |
| } |
| |
| // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) |
| float ewma = vgetq_lane_f32(ewma_x4, 3); |
| ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); |
| ewma += vgetq_lane_f32(ewma_x4, 2); |
| ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); |
| ewma += vgetq_lane_f32(ewma_x4, 1); |
| ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); |
| ewma += vgetq_lane_f32(ewma_x4, 0); |
| |
| // Fold the maximums together to get the overall maximum. |
| float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4)); |
| max_x2 = vpmax_f32(max_x2, max_x2); |
| |
| std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0)); |
| |
| // Handle remaining values at the end of |src|. |
| for (; i < len; ++i) { |
| result.first *= weight_prev; |
| const float sample = src[i]; |
| const float sample_squared = sample * sample; |
| result.first += sample_squared * smoothing_factor; |
| result.second = std::max(result.second, sample_squared); |
| } |
| |
| return result; |
| } |
| #endif |
| |
| } // namespace vector_math |
| } // namespace media |