| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/message_pump_win.h" |
| |
| #include <math.h> |
| |
| #include "base/debug/trace_event.h" |
| #include "base/message_loop.h" |
| #include "base/metrics/histogram.h" |
| #include "base/process_util.h" |
| #include "base/win/wrapped_window_proc.h" |
| |
| namespace { |
| |
| enum MessageLoopProblems { |
| MESSAGE_POST_ERROR, |
| COMPLETION_POST_ERROR, |
| SET_TIMER_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX, |
| }; |
| |
| } // namespace |
| |
| namespace base { |
| |
| static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow"; |
| |
| // Message sent to get an additional time slice for pumping (processing) another |
| // task (a series of such messages creates a continuous task pump). |
| static const int kMsgHaveWork = WM_USER + 1; |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpWin public: |
| |
| void MessagePumpWin::AddObserver(MessagePumpObserver* observer) { |
| observers_.AddObserver(observer); |
| } |
| |
| void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) { |
| observers_.RemoveObserver(observer); |
| } |
| |
| void MessagePumpWin::WillProcessMessage(const MSG& msg) { |
| FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg)); |
| } |
| |
| void MessagePumpWin::DidProcessMessage(const MSG& msg) { |
| FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg)); |
| } |
| |
| void MessagePumpWin::RunWithDispatcher( |
| Delegate* delegate, MessagePumpDispatcher* dispatcher) { |
| RunState s; |
| s.delegate = delegate; |
| s.dispatcher = dispatcher; |
| s.should_quit = false; |
| s.run_depth = state_ ? state_->run_depth + 1 : 1; |
| |
| RunState* previous_state = state_; |
| state_ = &s; |
| |
| DoRunLoop(); |
| |
| state_ = previous_state; |
| } |
| |
| void MessagePumpWin::Quit() { |
| DCHECK(state_); |
| state_->should_quit = true; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpWin protected: |
| |
| int MessagePumpWin::GetCurrentDelay() const { |
| if (delayed_work_time_.is_null()) |
| return -1; |
| |
| // Be careful here. TimeDelta has a precision of microseconds, but we want a |
| // value in milliseconds. If there are 5.5ms left, should the delay be 5 or |
| // 6? It should be 6 to avoid executing delayed work too early. |
| double timeout = |
| ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); |
| |
| // If this value is negative, then we need to run delayed work soon. |
| int delay = static_cast<int>(timeout); |
| if (delay < 0) |
| delay = 0; |
| |
| return delay; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForUI public: |
| |
| MessagePumpForUI::MessagePumpForUI() |
| : instance_(NULL), |
| message_filter_(new MessageFilter) { |
| InitMessageWnd(); |
| } |
| |
| MessagePumpForUI::~MessagePumpForUI() { |
| DestroyWindow(message_hwnd_); |
| UnregisterClass(kWndClass, instance_); |
| } |
| |
| void MessagePumpForUI::ScheduleWork() { |
| if (InterlockedExchange(&have_work_, 1)) |
| return; // Someone else continued the pumping. |
| |
| // Make sure the MessagePump does some work for us. |
| BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork, |
| reinterpret_cast<WPARAM>(this), 0); |
| if (ret) |
| return; // There was room in the Window Message queue. |
| |
| // We have failed to insert a have-work message, so there is a chance that we |
| // will starve tasks/timers while sitting in a nested message loop. Nested |
| // loops only look at Windows Message queues, and don't look at *our* task |
| // queues, etc., so we might not get a time slice in such. :-( |
| // We could abort here, but the fear is that this failure mode is plausibly |
| // common (queue is full, of about 2000 messages), so we'll do a near-graceful |
| // recovery. Nested loops are pretty transient (we think), so this will |
| // probably be recoverable. |
| InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert. |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| |
| void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
| // |
| // We would *like* to provide high resolution timers. Windows timers using |
| // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup |
| // mechanism because the application can enter modal windows loops where it |
| // is not running our MessageLoop; the only way to have our timers fire in |
| // these cases is to post messages there. |
| // |
| // To provide sub-10ms timers, we process timers directly from our run loop. |
| // For the common case, timers will be processed there as the run loop does |
| // its normal work. However, we *also* set the system timer so that WM_TIMER |
| // events fire. This mops up the case of timers not being able to work in |
| // modal message loops. It is possible for the SetTimer to pop and have no |
| // pending timers, because they could have already been processed by the |
| // run loop itself. |
| // |
| // We use a single SetTimer corresponding to the timer that will expire |
| // soonest. As new timers are created and destroyed, we update SetTimer. |
| // Getting a spurrious SetTimer event firing is benign, as we'll just be |
| // processing an empty timer queue. |
| // |
| delayed_work_time_ = delayed_work_time; |
| |
| int delay_msec = GetCurrentDelay(); |
| DCHECK_GE(delay_msec, 0); |
| if (delay_msec < USER_TIMER_MINIMUM) |
| delay_msec = USER_TIMER_MINIMUM; |
| |
| // Create a WM_TIMER event that will wake us up to check for any pending |
| // timers (in case we are running within a nested, external sub-pump). |
| BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), |
| delay_msec, NULL); |
| if (ret) |
| return; |
| // If we can't set timers, we are in big trouble... but cross our fingers for |
| // now. |
| // TODO(jar): If we don't see this error, use a CHECK() here instead. |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| |
| void MessagePumpForUI::PumpOutPendingPaintMessages() { |
| // If we are being called outside of the context of Run, then don't try to do |
| // any work. |
| if (!state_) |
| return; |
| |
| // Create a mini-message-pump to force immediate processing of only Windows |
| // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking |
| // to get the job done. Actual common max is 4 peeks, but we'll be a little |
| // safe here. |
| const int kMaxPeekCount = 20; |
| int peek_count; |
| for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { |
| MSG msg; |
| if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) |
| break; |
| ProcessMessageHelper(msg); |
| if (state_->should_quit) // Handle WM_QUIT. |
| break; |
| } |
| // Histogram what was really being used, to help to adjust kMaxPeekCount. |
| DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForUI private: |
| |
| // static |
| LRESULT CALLBACK MessagePumpForUI::WndProcThunk( |
| HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { |
| switch (message) { |
| case kMsgHaveWork: |
| reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); |
| break; |
| case WM_TIMER: |
| reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); |
| break; |
| } |
| return DefWindowProc(hwnd, message, wparam, lparam); |
| } |
| |
| void MessagePumpForUI::DoRunLoop() { |
| // IF this was just a simple PeekMessage() loop (servicing all possible work |
| // queues), then Windows would try to achieve the following order according |
| // to MSDN documentation about PeekMessage with no filter): |
| // * Sent messages |
| // * Posted messages |
| // * Sent messages (again) |
| // * WM_PAINT messages |
| // * WM_TIMER messages |
| // |
| // Summary: none of the above classes is starved, and sent messages has twice |
| // the chance of being processed (i.e., reduced service time). |
| |
| for (;;) { |
| // If we do any work, we may create more messages etc., and more work may |
| // possibly be waiting in another task group. When we (for example) |
| // ProcessNextWindowsMessage(), there is a good chance there are still more |
| // messages waiting. On the other hand, when any of these methods return |
| // having done no work, then it is pretty unlikely that calling them again |
| // quickly will find any work to do. Finally, if they all say they had no |
| // work, then it is a good time to consider sleeping (waiting) for more |
| // work. |
| |
| bool more_work_is_plausible = ProcessNextWindowsMessage(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= state_->delegate->DoWork(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| // If we did not process any delayed work, then we can assume that our |
| // existing WM_TIMER if any will fire when delayed work should run. We |
| // don't want to disturb that timer if it is already in flight. However, |
| // if we did do all remaining delayed work, then lets kill the WM_TIMER. |
| if (more_work_is_plausible && delayed_work_time_.is_null()) |
| KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| more_work_is_plausible = state_->delegate->DoIdleWork(); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| WaitForWork(); // Wait (sleep) until we have work to do again. |
| } |
| } |
| |
| void MessagePumpForUI::InitMessageWnd() { |
| WNDCLASSEX wc = {0}; |
| wc.cbSize = sizeof(wc); |
| wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>; |
| wc.hInstance = base::GetModuleFromAddress(wc.lpfnWndProc); |
| wc.lpszClassName = kWndClass; |
| instance_ = wc.hInstance; |
| RegisterClassEx(&wc); |
| |
| message_hwnd_ = |
| CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, instance_, 0); |
| DCHECK(message_hwnd_); |
| } |
| |
| void MessagePumpForUI::WaitForWork() { |
| // Wait until a message is available, up to the time needed by the timer |
| // manager to fire the next set of timers. |
| int delay = GetCurrentDelay(); |
| if (delay < 0) // Negative value means no timers waiting. |
| delay = INFINITE; |
| |
| DWORD result; |
| result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, |
| MWMO_INPUTAVAILABLE); |
| |
| if (WAIT_OBJECT_0 == result) { |
| // A WM_* message is available. |
| // If a parent child relationship exists between windows across threads |
| // then their thread inputs are implicitly attached. |
| // This causes the MsgWaitForMultipleObjectsEx API to return indicating |
| // that messages are ready for processing (Specifically, mouse messages |
| // intended for the child window may appear if the child window has |
| // capture). |
| // The subsequent PeekMessages call may fail to return any messages thus |
| // causing us to enter a tight loop at times. |
| // The WaitMessage call below is a workaround to give the child window |
| // some time to process its input messages. |
| MSG msg = {0}; |
| DWORD queue_status = GetQueueStatus(QS_MOUSE); |
| if (HIWORD(queue_status) & QS_MOUSE && |
| !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { |
| WaitMessage(); |
| } |
| return; |
| } |
| |
| DCHECK_NE(WAIT_FAILED, result) << GetLastError(); |
| } |
| |
| void MessagePumpForUI::HandleWorkMessage() { |
| // If we are being called outside of the context of Run, then don't try to do |
| // any work. This could correspond to a MessageBox call or something of that |
| // sort. |
| if (!state_) { |
| // Since we handled a kMsgHaveWork message, we must still update this flag. |
| InterlockedExchange(&have_work_, 0); |
| return; |
| } |
| |
| // Let whatever would have run had we not been putting messages in the queue |
| // run now. This is an attempt to make our dummy message not starve other |
| // messages that may be in the Windows message queue. |
| ProcessPumpReplacementMessage(); |
| |
| // Now give the delegate a chance to do some work. He'll let us know if he |
| // needs to do more work. |
| if (state_->delegate->DoWork()) |
| ScheduleWork(); |
| } |
| |
| void MessagePumpForUI::HandleTimerMessage() { |
| KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); |
| |
| // If we are being called outside of the context of Run, then don't do |
| // anything. This could correspond to a MessageBox call or something of |
| // that sort. |
| if (!state_) |
| return; |
| |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| if (!delayed_work_time_.is_null()) { |
| // A bit gratuitous to set delayed_work_time_ again, but oh well. |
| ScheduleDelayedWork(delayed_work_time_); |
| } |
| } |
| |
| bool MessagePumpForUI::ProcessNextWindowsMessage() { |
| // If there are sent messages in the queue then PeekMessage internally |
| // dispatches the message and returns false. We return true in this |
| // case to ensure that the message loop peeks again instead of calling |
| // MsgWaitForMultipleObjectsEx again. |
| bool sent_messages_in_queue = false; |
| DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); |
| if (HIWORD(queue_status) & QS_SENDMESSAGE) |
| sent_messages_in_queue = true; |
| |
| MSG msg; |
| if (message_filter_->DoPeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) |
| return ProcessMessageHelper(msg); |
| |
| return sent_messages_in_queue; |
| } |
| |
| bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { |
| TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper", |
| "message", msg.message); |
| if (WM_QUIT == msg.message) { |
| // Repost the QUIT message so that it will be retrieved by the primary |
| // GetMessage() loop. |
| state_->should_quit = true; |
| PostQuitMessage(static_cast<int>(msg.wParam)); |
| return false; |
| } |
| |
| // While running our main message pump, we discard kMsgHaveWork messages. |
| if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) |
| return ProcessPumpReplacementMessage(); |
| |
| if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode)) |
| return true; |
| |
| WillProcessMessage(msg); |
| |
| if (!message_filter_->ProcessMessage(msg)) { |
| if (state_->dispatcher) { |
| if (!state_->dispatcher->Dispatch(msg)) |
| state_->should_quit = true; |
| } else { |
| TranslateMessage(&msg); |
| DispatchMessage(&msg); |
| } |
| } |
| |
| DidProcessMessage(msg); |
| return true; |
| } |
| |
| bool MessagePumpForUI::ProcessPumpReplacementMessage() { |
| // When we encounter a kMsgHaveWork message, this method is called to peek |
| // and process a replacement message, such as a WM_PAINT or WM_TIMER. The |
| // goal is to make the kMsgHaveWork as non-intrusive as possible, even though |
| // a continuous stream of such messages are posted. This method carefully |
| // peeks a message while there is no chance for a kMsgHaveWork to be pending, |
| // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to |
| // possibly be posted), and finally dispatches that peeked replacement. Note |
| // that the re-post of kMsgHaveWork may be asynchronous to this thread!! |
| |
| bool have_message = false; |
| MSG msg; |
| // We should not process all window messages if we are in the context of an |
| // OS modal loop, i.e. in the context of a windows API call like MessageBox. |
| // This is to ensure that these messages are peeked out by the OS modal loop. |
| if (MessageLoop::current()->os_modal_loop()) { |
| // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. |
| have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || |
| PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); |
| } else { |
| have_message = !!message_filter_->DoPeekMessage(&msg, NULL, 0, 0, |
| PM_REMOVE); |
| } |
| |
| DCHECK(!have_message || kMsgHaveWork != msg.message || |
| msg.hwnd != message_hwnd_); |
| |
| // Since we discarded a kMsgHaveWork message, we must update the flag. |
| int old_have_work = InterlockedExchange(&have_work_, 0); |
| DCHECK(old_have_work); |
| |
| // We don't need a special time slice if we didn't have_message to process. |
| if (!have_message) |
| return false; |
| |
| // Guarantee we'll get another time slice in the case where we go into native |
| // windows code. This ScheduleWork() may hurt performance a tiny bit when |
| // tasks appear very infrequently, but when the event queue is busy, the |
| // kMsgHaveWork events get (percentage wise) rarer and rarer. |
| ScheduleWork(); |
| return ProcessMessageHelper(msg); |
| } |
| |
| void MessagePumpForUI::SetMessageFilter( |
| scoped_ptr<MessageFilter> message_filter) { |
| message_filter_ = message_filter.Pass(); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForIO public: |
| |
| MessagePumpForIO::MessagePumpForIO() { |
| port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); |
| DCHECK(port_.IsValid()); |
| } |
| |
| void MessagePumpForIO::ScheduleWork() { |
| if (InterlockedExchange(&have_work_, 1)) |
| return; // Someone else continued the pumping. |
| |
| // Make sure the MessagePump does some work for us. |
| BOOL ret = PostQueuedCompletionStatus(port_, 0, |
| reinterpret_cast<ULONG_PTR>(this), |
| reinterpret_cast<OVERLAPPED*>(this)); |
| if (ret) |
| return; // Post worked perfectly. |
| |
| // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. |
| InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed. |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| |
| void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
| // We know that we can't be blocked right now since this method can only be |
| // called on the same thread as Run, so we only need to update our record of |
| // how long to sleep when we do sleep. |
| delayed_work_time_ = delayed_work_time; |
| } |
| |
| void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, |
| IOHandler* handler) { |
| ULONG_PTR key = HandlerToKey(handler, true); |
| HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); |
| DPCHECK(port); |
| } |
| |
| bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, |
| IOHandler* handler) { |
| // Job object notifications use the OVERLAPPED pointer to carry the message |
| // data. Mark the completion key correspondingly, so we will not try to |
| // convert OVERLAPPED* to IOContext*. |
| ULONG_PTR key = HandlerToKey(handler, false); |
| JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; |
| info.CompletionKey = reinterpret_cast<void*>(key); |
| info.CompletionPort = port_; |
| return SetInformationJobObject(job_handle, |
| JobObjectAssociateCompletionPortInformation, |
| &info, |
| sizeof(info)) != FALSE; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForIO private: |
| |
| void MessagePumpForIO::DoRunLoop() { |
| for (;;) { |
| // If we do any work, we may create more messages etc., and more work may |
| // possibly be waiting in another task group. When we (for example) |
| // WaitForIOCompletion(), there is a good chance there are still more |
| // messages waiting. On the other hand, when any of these methods return |
| // having done no work, then it is pretty unlikely that calling them |
| // again quickly will find any work to do. Finally, if they all say they |
| // had no work, then it is a good time to consider sleeping (waiting) for |
| // more work. |
| |
| bool more_work_is_plausible = state_->delegate->DoWork(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= WaitForIOCompletion(0, NULL); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| more_work_is_plausible = state_->delegate->DoIdleWork(); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| WaitForWork(); // Wait (sleep) until we have work to do again. |
| } |
| } |
| |
| // Wait until IO completes, up to the time needed by the timer manager to fire |
| // the next set of timers. |
| void MessagePumpForIO::WaitForWork() { |
| // We do not support nested IO message loops. This is to avoid messy |
| // recursion problems. |
| DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; |
| |
| int timeout = GetCurrentDelay(); |
| if (timeout < 0) // Negative value means no timers waiting. |
| timeout = INFINITE; |
| |
| WaitForIOCompletion(timeout, NULL); |
| } |
| |
| bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { |
| IOItem item; |
| if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { |
| // We have to ask the system for another IO completion. |
| if (!GetIOItem(timeout, &item)) |
| return false; |
| |
| if (ProcessInternalIOItem(item)) |
| return true; |
| } |
| |
| // If |item.has_valid_io_context| is false then |item.context| does not point |
| // to a context structure, and so should not be dereferenced, although it may |
| // still hold valid non-pointer data. |
| if (!item.has_valid_io_context || item.context->handler) { |
| if (filter && item.handler != filter) { |
| // Save this item for later |
| completed_io_.push_back(item); |
| } else { |
| DCHECK(!item.has_valid_io_context || |
| (item.context->handler == item.handler)); |
| WillProcessIOEvent(); |
| item.handler->OnIOCompleted(item.context, item.bytes_transfered, |
| item.error); |
| DidProcessIOEvent(); |
| } |
| } else { |
| // The handler must be gone by now, just cleanup the mess. |
| delete item.context; |
| } |
| return true; |
| } |
| |
| // Asks the OS for another IO completion result. |
| bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { |
| memset(item, 0, sizeof(*item)); |
| ULONG_PTR key = NULL; |
| OVERLAPPED* overlapped = NULL; |
| if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, |
| &overlapped, timeout)) { |
| if (!overlapped) |
| return false; // Nothing in the queue. |
| item->error = GetLastError(); |
| item->bytes_transfered = 0; |
| } |
| |
| item->handler = KeyToHandler(key, &item->has_valid_io_context); |
| item->context = reinterpret_cast<IOContext*>(overlapped); |
| return true; |
| } |
| |
| bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { |
| if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && |
| this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { |
| // This is our internal completion. |
| DCHECK(!item.bytes_transfered); |
| InterlockedExchange(&have_work_, 0); |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns a completion item that was previously received. |
| bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { |
| DCHECK(!completed_io_.empty()); |
| for (std::list<IOItem>::iterator it = completed_io_.begin(); |
| it != completed_io_.end(); ++it) { |
| if (!filter || it->handler == filter) { |
| *item = *it; |
| completed_io_.erase(it); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void MessagePumpForIO::AddIOObserver(IOObserver *obs) { |
| io_observers_.AddObserver(obs); |
| } |
| |
| void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { |
| io_observers_.RemoveObserver(obs); |
| } |
| |
| void MessagePumpForIO::WillProcessIOEvent() { |
| FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); |
| } |
| |
| void MessagePumpForIO::DidProcessIOEvent() { |
| FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); |
| } |
| |
| // static |
| ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler, |
| bool has_valid_io_context) { |
| ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); |
| |
| // |IOHandler| is at least pointer-size aligned, so the lowest two bits are |
| // always cleared. We use the lowest bit to distinguish completion keys with |
| // and without the associated |IOContext|. |
| DCHECK((key & 1) == 0); |
| |
| // Mark the completion key as context-less. |
| if (!has_valid_io_context) |
| key = key | 1; |
| return key; |
| } |
| |
| // static |
| MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler( |
| ULONG_PTR key, |
| bool* has_valid_io_context) { |
| *has_valid_io_context = ((key & 1) == 0); |
| return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1)); |
| } |
| |
| } // namespace base |