| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/process_util.h" |
| |
| #import <Cocoa/Cocoa.h> |
| #include <crt_externs.h> |
| #include <dlfcn.h> |
| #include <errno.h> |
| #include <mach/mach.h> |
| #include <mach/mach_init.h> |
| #include <mach/mach_vm.h> |
| #include <mach/shared_region.h> |
| #include <mach/task.h> |
| #include <mach-o/nlist.h> |
| #include <malloc/malloc.h> |
| #import <objc/runtime.h> |
| #include <signal.h> |
| #include <spawn.h> |
| #include <sys/event.h> |
| #include <sys/mman.h> |
| #include <sys/sysctl.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| |
| #include <new> |
| #include <string> |
| |
| #include "base/debug/debugger.h" |
| #include "base/file_util.h" |
| #include "base/hash_tables.h" |
| #include "base/lazy_instance.h" |
| #include "base/logging.h" |
| #include "base/mac/mac_util.h" |
| #include "base/mac/scoped_mach_port.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "base/string_util.h" |
| #include "base/sys_info.h" |
| #include "base/threading/thread_local.h" |
| #include "third_party/apple_apsl/CFBase.h" |
| #include "third_party/apple_apsl/malloc.h" |
| #include "third_party/mach_override/mach_override.h" |
| |
| namespace base { |
| |
| void RestoreDefaultExceptionHandler() { |
| // This function is tailored to remove the Breakpad exception handler. |
| // exception_mask matches s_exception_mask in |
| // breakpad/src/client/mac/handler/exception_handler.cc |
| const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS | |
| EXC_MASK_BAD_INSTRUCTION | |
| EXC_MASK_ARITHMETIC | |
| EXC_MASK_BREAKPOINT; |
| |
| // Setting the exception port to MACH_PORT_NULL may not be entirely |
| // kosher to restore the default exception handler, but in practice, |
| // it results in the exception port being set to Apple Crash Reporter, |
| // the desired behavior. |
| task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL, |
| EXCEPTION_DEFAULT, THREAD_STATE_NONE); |
| } |
| |
| ProcessIterator::ProcessIterator(const ProcessFilter* filter) |
| : index_of_kinfo_proc_(0), |
| filter_(filter) { |
| // Get a snapshot of all of my processes (yes, as we loop it can go stale, but |
| // but trying to find where we were in a constantly changing list is basically |
| // impossible. |
| |
| int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() }; |
| |
| // Since more processes could start between when we get the size and when |
| // we get the list, we do a loop to keep trying until we get it. |
| bool done = false; |
| int try_num = 1; |
| const int max_tries = 10; |
| do { |
| // Get the size of the buffer |
| size_t len = 0; |
| if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) { |
| DLOG(ERROR) << "failed to get the size needed for the process list"; |
| kinfo_procs_.resize(0); |
| done = true; |
| } else { |
| size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); |
| // Leave some spare room for process table growth (more could show up |
| // between when we check and now) |
| num_of_kinfo_proc += 16; |
| kinfo_procs_.resize(num_of_kinfo_proc); |
| len = num_of_kinfo_proc * sizeof(struct kinfo_proc); |
| // Load the list of processes |
| if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) { |
| // If we get a mem error, it just means we need a bigger buffer, so |
| // loop around again. Anything else is a real error and give up. |
| if (errno != ENOMEM) { |
| DLOG(ERROR) << "failed to get the process list"; |
| kinfo_procs_.resize(0); |
| done = true; |
| } |
| } else { |
| // Got the list, just make sure we're sized exactly right |
| size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc); |
| kinfo_procs_.resize(num_of_kinfo_proc); |
| done = true; |
| } |
| } |
| } while (!done && (try_num++ < max_tries)); |
| |
| if (!done) { |
| DLOG(ERROR) << "failed to collect the process list in a few tries"; |
| kinfo_procs_.resize(0); |
| } |
| } |
| |
| ProcessIterator::~ProcessIterator() { |
| } |
| |
| bool ProcessIterator::CheckForNextProcess() { |
| std::string data; |
| for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) { |
| kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_]; |
| |
| // Skip processes just awaiting collection |
| if ((kinfo.kp_proc.p_pid > 0) && (kinfo.kp_proc.p_stat == SZOMB)) |
| continue; |
| |
| int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo.kp_proc.p_pid }; |
| |
| // Find out what size buffer we need. |
| size_t data_len = 0; |
| if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) { |
| DVPLOG(1) << "failed to figure out the buffer size for a commandline"; |
| continue; |
| } |
| |
| data.resize(data_len); |
| if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) { |
| DVPLOG(1) << "failed to fetch a commandline"; |
| continue; |
| } |
| |
| // |data| contains all the command line parameters of the process, separated |
| // by blocks of one or more null characters. We tokenize |data| into a |
| // vector of strings using '\0' as a delimiter and populate |
| // |entry_.cmd_line_args_|. |
| std::string delimiters; |
| delimiters.push_back('\0'); |
| Tokenize(data, delimiters, &entry_.cmd_line_args_); |
| |
| // |data| starts with the full executable path followed by a null character. |
| // We search for the first instance of '\0' and extract everything before it |
| // to populate |entry_.exe_file_|. |
| size_t exec_name_end = data.find('\0'); |
| if (exec_name_end == std::string::npos) { |
| DLOG(ERROR) << "command line data didn't match expected format"; |
| continue; |
| } |
| |
| entry_.pid_ = kinfo.kp_proc.p_pid; |
| entry_.ppid_ = kinfo.kp_eproc.e_ppid; |
| entry_.gid_ = kinfo.kp_eproc.e_pgid; |
| size_t last_slash = data.rfind('/', exec_name_end); |
| if (last_slash == std::string::npos) |
| entry_.exe_file_.assign(data, 0, exec_name_end); |
| else |
| entry_.exe_file_.assign(data, last_slash + 1, |
| exec_name_end - last_slash - 1); |
| // Start w/ the next entry next time through |
| ++index_of_kinfo_proc_; |
| // Done |
| return true; |
| } |
| return false; |
| } |
| |
| bool NamedProcessIterator::IncludeEntry() { |
| return (executable_name_ == entry().exe_file() && |
| ProcessIterator::IncludeEntry()); |
| } |
| |
| |
| // ------------------------------------------------------------------------ |
| // NOTE: about ProcessMetrics |
| // |
| // Getting a mach task from a pid for another process requires permissions in |
| // general, so there doesn't really seem to be a way to do these (and spinning |
| // up ps to fetch each stats seems dangerous to put in a base api for anyone to |
| // call). Child processes ipc their port, so return something if available, |
| // otherwise return 0. |
| // |
| |
| ProcessMetrics::ProcessMetrics(ProcessHandle process, |
| ProcessMetrics::PortProvider* port_provider) |
| : process_(process), |
| last_time_(0), |
| last_system_time_(0), |
| port_provider_(port_provider) { |
| processor_count_ = SysInfo::NumberOfProcessors(); |
| } |
| |
| // static |
| ProcessMetrics* ProcessMetrics::CreateProcessMetrics( |
| ProcessHandle process, |
| ProcessMetrics::PortProvider* port_provider) { |
| return new ProcessMetrics(process, port_provider); |
| } |
| |
| bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { |
| return false; |
| } |
| |
| static bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) { |
| if (task == MACH_PORT_NULL) |
| return false; |
| mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT; |
| kern_return_t kr = task_info(task, |
| TASK_BASIC_INFO_64, |
| reinterpret_cast<task_info_t>(task_info_data), |
| &count); |
| // Most likely cause for failure: |task| is a zombie. |
| return kr == KERN_SUCCESS; |
| } |
| |
| size_t ProcessMetrics::GetPagefileUsage() const { |
| task_basic_info_64 task_info_data; |
| if (!GetTaskInfo(TaskForPid(process_), &task_info_data)) |
| return 0; |
| return task_info_data.virtual_size; |
| } |
| |
| size_t ProcessMetrics::GetPeakPagefileUsage() const { |
| return 0; |
| } |
| |
| size_t ProcessMetrics::GetWorkingSetSize() const { |
| task_basic_info_64 task_info_data; |
| if (!GetTaskInfo(TaskForPid(process_), &task_info_data)) |
| return 0; |
| return task_info_data.resident_size; |
| } |
| |
| size_t ProcessMetrics::GetPeakWorkingSetSize() const { |
| return 0; |
| } |
| |
| static bool GetCPUTypeForProcess(pid_t pid, cpu_type_t* cpu_type) { |
| size_t len = sizeof(*cpu_type); |
| int result = sysctlbyname("sysctl.proc_cputype", |
| cpu_type, |
| &len, |
| NULL, |
| 0); |
| if (result != 0) { |
| DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) { |
| if (type == CPU_TYPE_I386) |
| return addr >= SHARED_REGION_BASE_I386 && |
| addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386); |
| else if (type == CPU_TYPE_X86_64) |
| return addr >= SHARED_REGION_BASE_X86_64 && |
| addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64); |
| else |
| return false; |
| } |
| |
| // This is a rough approximation of the algorithm that libtop uses. |
| // private_bytes is the size of private resident memory. |
| // shared_bytes is the size of shared resident memory. |
| bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes, |
| size_t* shared_bytes) { |
| kern_return_t kr; |
| size_t private_pages_count = 0; |
| size_t shared_pages_count = 0; |
| |
| if (!private_bytes && !shared_bytes) |
| return true; |
| |
| mach_port_t task = TaskForPid(process_); |
| if (task == MACH_PORT_NULL) { |
| DLOG(ERROR) << "Invalid process"; |
| return false; |
| } |
| |
| cpu_type_t cpu_type; |
| if (!GetCPUTypeForProcess(process_, &cpu_type)) |
| return false; |
| |
| // The same region can be referenced multiple times. To avoid double counting |
| // we need to keep track of which regions we've already counted. |
| base::hash_set<int> seen_objects; |
| |
| // We iterate through each VM region in the task's address map. For shared |
| // memory we add up all the pages that are marked as shared. Like libtop we |
| // try to avoid counting pages that are also referenced by other tasks. Since |
| // we don't have access to the VM regions of other tasks the only hint we have |
| // is if the address is in the shared region area. |
| // |
| // Private memory is much simpler. We simply count the pages that are marked |
| // as private or copy on write (COW). |
| // |
| // See libtop_update_vm_regions in |
| // http://www.opensource.apple.com/source/top/top-67/libtop.c |
| mach_vm_size_t size = 0; |
| for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) { |
| vm_region_top_info_data_t info; |
| mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT; |
| mach_port_t object_name; |
| kr = mach_vm_region(task, |
| &address, |
| &size, |
| VM_REGION_TOP_INFO, |
| (vm_region_info_t)&info, |
| &info_count, |
| &object_name); |
| if (kr == KERN_INVALID_ADDRESS) { |
| // We're at the end of the address space. |
| break; |
| } else if (kr != KERN_SUCCESS) { |
| DLOG(ERROR) << "Calling mach_vm_region failed with error: " |
| << mach_error_string(kr); |
| return false; |
| } |
| |
| if (IsAddressInSharedRegion(address, cpu_type) && |
| info.share_mode != SM_PRIVATE) |
| continue; |
| |
| if (info.share_mode == SM_COW && info.ref_count == 1) |
| info.share_mode = SM_PRIVATE; |
| |
| switch (info.share_mode) { |
| case SM_PRIVATE: |
| private_pages_count += info.private_pages_resident; |
| private_pages_count += info.shared_pages_resident; |
| break; |
| case SM_COW: |
| private_pages_count += info.private_pages_resident; |
| // Fall through |
| case SM_SHARED: |
| if (seen_objects.count(info.obj_id) == 0) { |
| // Only count the first reference to this region. |
| seen_objects.insert(info.obj_id); |
| shared_pages_count += info.shared_pages_resident; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| vm_size_t page_size; |
| kr = host_page_size(task, &page_size); |
| if (kr != KERN_SUCCESS) { |
| DLOG(ERROR) << "Failed to fetch host page size, error: " |
| << mach_error_string(kr); |
| return false; |
| } |
| |
| if (private_bytes) |
| *private_bytes = private_pages_count * page_size; |
| if (shared_bytes) |
| *shared_bytes = shared_pages_count * page_size; |
| |
| return true; |
| } |
| |
| void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const { |
| } |
| |
| bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { |
| size_t priv = GetWorkingSetSize(); |
| if (!priv) |
| return false; |
| ws_usage->priv = priv / 1024; |
| ws_usage->shareable = 0; |
| ws_usage->shared = 0; |
| return true; |
| } |
| |
| #define TIME_VALUE_TO_TIMEVAL(a, r) do { \ |
| (r)->tv_sec = (a)->seconds; \ |
| (r)->tv_usec = (a)->microseconds; \ |
| } while (0) |
| |
| double ProcessMetrics::GetCPUUsage() { |
| mach_port_t task = TaskForPid(process_); |
| if (task == MACH_PORT_NULL) |
| return 0; |
| |
| kern_return_t kr; |
| |
| // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage() |
| // in libtop.c), but this is more concise and gives the same results: |
| task_thread_times_info thread_info_data; |
| mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT; |
| kr = task_info(task, |
| TASK_THREAD_TIMES_INFO, |
| reinterpret_cast<task_info_t>(&thread_info_data), |
| &thread_info_count); |
| if (kr != KERN_SUCCESS) { |
| // Most likely cause: |task| is a zombie. |
| return 0; |
| } |
| |
| task_basic_info_64 task_info_data; |
| if (!GetTaskInfo(task, &task_info_data)) |
| return 0; |
| |
| /* Set total_time. */ |
| // thread info contains live time... |
| struct timeval user_timeval, system_timeval, task_timeval; |
| TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval); |
| TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval); |
| timeradd(&user_timeval, &system_timeval, &task_timeval); |
| |
| // ... task info contains terminated time. |
| TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval); |
| TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval); |
| timeradd(&user_timeval, &task_timeval, &task_timeval); |
| timeradd(&system_timeval, &task_timeval, &task_timeval); |
| |
| struct timeval now; |
| int retval = gettimeofday(&now, NULL); |
| if (retval) |
| return 0; |
| |
| int64 time = TimeValToMicroseconds(now); |
| int64 task_time = TimeValToMicroseconds(task_timeval); |
| |
| if ((last_system_time_ == 0) || (last_time_ == 0)) { |
| // First call, just set the last values. |
| last_system_time_ = task_time; |
| last_time_ = time; |
| return 0; |
| } |
| |
| int64 system_time_delta = task_time - last_system_time_; |
| int64 time_delta = time - last_time_; |
| DCHECK_NE(0U, time_delta); |
| if (time_delta == 0) |
| return 0; |
| |
| // We add time_delta / 2 so the result is rounded. |
| double cpu = static_cast<double>((system_time_delta * 100.0) / time_delta); |
| |
| last_system_time_ = task_time; |
| last_time_ = time; |
| |
| return cpu; |
| } |
| |
| mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const { |
| mach_port_t task = MACH_PORT_NULL; |
| if (port_provider_) |
| task = port_provider_->TaskForPid(process_); |
| if (task == MACH_PORT_NULL && process_ == getpid()) |
| task = mach_task_self(); |
| return task; |
| } |
| |
| // ------------------------------------------------------------------------ |
| |
| // Bytes committed by the system. |
| size_t GetSystemCommitCharge() { |
| base::mac::ScopedMachPort host(mach_host_self()); |
| mach_msg_type_number_t count = HOST_VM_INFO_COUNT; |
| vm_statistics_data_t data; |
| kern_return_t kr = host_statistics(host, HOST_VM_INFO, |
| reinterpret_cast<host_info_t>(&data), |
| &count); |
| if (kr) { |
| DLOG(WARNING) << "Failed to fetch host statistics."; |
| return 0; |
| } |
| |
| vm_size_t page_size; |
| kr = host_page_size(host, &page_size); |
| if (kr) { |
| DLOG(ERROR) << "Failed to fetch host page size."; |
| return 0; |
| } |
| |
| return (data.active_count * page_size) / 1024; |
| } |
| |
| namespace { |
| |
| // Finds the library path for malloc() and thus the libC part of libSystem, |
| // which in Lion is in a separate image. |
| const char* LookUpLibCPath() { |
| const void* addr = reinterpret_cast<void*>(&malloc); |
| |
| Dl_info info; |
| if (dladdr(addr, &info)) |
| return info.dli_fname; |
| |
| DLOG(WARNING) << "Could not find image path for malloc()"; |
| return NULL; |
| } |
| |
| typedef void(*malloc_error_break_t)(void); |
| malloc_error_break_t g_original_malloc_error_break = NULL; |
| |
| // Returns the function pointer for malloc_error_break. This symbol is declared |
| // as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to |
| // get it. |
| malloc_error_break_t LookUpMallocErrorBreak() { |
| #if ARCH_CPU_32_BITS |
| const char* lib_c_path = LookUpLibCPath(); |
| if (!lib_c_path) |
| return NULL; |
| |
| // Only need to look up two symbols, but nlist() requires a NULL-terminated |
| // array and takes no count. |
| struct nlist nl[3]; |
| bzero(&nl, sizeof(nl)); |
| |
| // The symbol to find. |
| nl[0].n_un.n_name = const_cast<char*>("_malloc_error_break"); |
| |
| // A reference symbol by which the address of the desired symbol will be |
| // calculated. |
| nl[1].n_un.n_name = const_cast<char*>("_malloc"); |
| |
| int rv = nlist(lib_c_path, nl); |
| if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) { |
| return NULL; |
| } |
| |
| // nlist() returns addresses as offsets in the image, not the instruction |
| // pointer in memory. Use the known in-memory address of malloc() |
| // to compute the offset for malloc_error_break(). |
| uintptr_t reference_addr = reinterpret_cast<uintptr_t>(&malloc); |
| reference_addr -= nl[1].n_value; |
| reference_addr += nl[0].n_value; |
| |
| return reinterpret_cast<malloc_error_break_t>(reference_addr); |
| #endif // ARCH_CPU_32_BITS |
| |
| return NULL; |
| } |
| |
| // Simple scoper that saves the current value of errno, resets it to 0, and on |
| // destruction puts the old value back. This is so that CrMallocErrorBreak can |
| // safely test errno free from the effects of other routines. |
| class ScopedClearErrno { |
| public: |
| ScopedClearErrno() : old_errno_(errno) { |
| errno = 0; |
| } |
| ~ScopedClearErrno() { |
| if (errno == 0) |
| errno = old_errno_; |
| } |
| |
| private: |
| int old_errno_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedClearErrno); |
| }; |
| |
| // Combines ThreadLocalBoolean with AutoReset. It would be convenient |
| // to compose ThreadLocalPointer<bool> with base::AutoReset<bool>, but that |
| // would require allocating some storage for the bool. |
| class ThreadLocalBooleanAutoReset { |
| public: |
| ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value) |
| : scoped_tlb_(tlb), |
| original_value_(tlb->Get()) { |
| scoped_tlb_->Set(new_value); |
| } |
| ~ThreadLocalBooleanAutoReset() { |
| scoped_tlb_->Set(original_value_); |
| } |
| |
| private: |
| ThreadLocalBoolean* scoped_tlb_; |
| bool original_value_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset); |
| }; |
| |
| base::LazyInstance<ThreadLocalBoolean>::Leaky |
| g_unchecked_malloc = LAZY_INSTANCE_INITIALIZER; |
| |
| // NOTE(shess): This is called when the malloc library noticed that the heap |
| // is fubar. Avoid calls which will re-enter the malloc library. |
| void CrMallocErrorBreak() { |
| g_original_malloc_error_break(); |
| |
| // Out of memory is certainly not heap corruption, and not necessarily |
| // something for which the process should be terminated. Leave that decision |
| // to the OOM killer. The EBADF case comes up because the malloc library |
| // attempts to log to ASL (syslog) before calling this code, which fails |
| // accessing a Unix-domain socket because of sandboxing. |
| if (errno == ENOMEM || (errno == EBADF && g_unchecked_malloc.Get().Get())) |
| return; |
| |
| // A unit test checks this error message, so it needs to be in release builds. |
| char buf[1024] = |
| "Terminating process due to a potential for future heap corruption: " |
| "errno="; |
| char errnobuf[] = { |
| '0' + ((errno / 100) % 10), |
| '0' + ((errno / 10) % 10), |
| '0' + (errno % 10), |
| '\000' |
| }; |
| COMPILE_ASSERT(ELAST <= 999, errno_too_large_to_encode); |
| strlcat(buf, errnobuf, sizeof(buf)); |
| RAW_LOG(ERROR, buf); |
| |
| // Crash by writing to NULL+errno to allow analyzing errno from |
| // crash dump info (setting a breakpad key would re-enter the malloc |
| // library). Max documented errno in intro(2) is actually 102, but |
| // it really just needs to be "small" to stay on the right vm page. |
| const int kMaxErrno = 256; |
| char* volatile death_ptr = NULL; |
| death_ptr += std::min(errno, kMaxErrno); |
| *death_ptr = '!'; |
| } |
| |
| } // namespace |
| |
| void EnableTerminationOnHeapCorruption() { |
| #ifdef ADDRESS_SANITIZER |
| // Don't do anything special on heap corruption, because it should be handled |
| // by AddressSanitizer. |
| return; |
| #endif |
| |
| // Only override once, otherwise CrMallocErrorBreak() will recurse |
| // to itself. |
| if (g_original_malloc_error_break) |
| return; |
| |
| malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak(); |
| if (!malloc_error_break) { |
| DLOG(WARNING) << "Could not find malloc_error_break"; |
| return; |
| } |
| |
| mach_error_t err = mach_override_ptr( |
| (void*)malloc_error_break, |
| (void*)&CrMallocErrorBreak, |
| (void**)&g_original_malloc_error_break); |
| |
| if (err != err_none) |
| DLOG(WARNING) << "Could not override malloc_error_break; error = " << err; |
| } |
| |
| // ------------------------------------------------------------------------ |
| |
| namespace { |
| |
| bool g_oom_killer_enabled; |
| |
| // === C malloc/calloc/valloc/realloc/posix_memalign === |
| |
| typedef void* (*malloc_type)(struct _malloc_zone_t* zone, |
| size_t size); |
| typedef void* (*calloc_type)(struct _malloc_zone_t* zone, |
| size_t num_items, |
| size_t size); |
| typedef void* (*valloc_type)(struct _malloc_zone_t* zone, |
| size_t size); |
| typedef void (*free_type)(struct _malloc_zone_t* zone, |
| void* ptr); |
| typedef void* (*realloc_type)(struct _malloc_zone_t* zone, |
| void* ptr, |
| size_t size); |
| typedef void* (*memalign_type)(struct _malloc_zone_t* zone, |
| size_t alignment, |
| size_t size); |
| |
| malloc_type g_old_malloc; |
| calloc_type g_old_calloc; |
| valloc_type g_old_valloc; |
| free_type g_old_free; |
| realloc_type g_old_realloc; |
| memalign_type g_old_memalign; |
| |
| malloc_type g_old_malloc_purgeable; |
| calloc_type g_old_calloc_purgeable; |
| valloc_type g_old_valloc_purgeable; |
| free_type g_old_free_purgeable; |
| realloc_type g_old_realloc_purgeable; |
| memalign_type g_old_memalign_purgeable; |
| |
| void* oom_killer_malloc(struct _malloc_zone_t* zone, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_malloc(zone, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_calloc(struct _malloc_zone_t* zone, |
| size_t num_items, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_calloc(zone, num_items, size); |
| if (!result && num_items && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_valloc(struct _malloc_zone_t* zone, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_valloc(zone, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void oom_killer_free(struct _malloc_zone_t* zone, |
| void* ptr) { |
| ScopedClearErrno clear_errno; |
| g_old_free(zone, ptr); |
| } |
| |
| void* oom_killer_realloc(struct _malloc_zone_t* zone, |
| void* ptr, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_realloc(zone, ptr, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_memalign(struct _malloc_zone_t* zone, |
| size_t alignment, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_memalign(zone, alignment, size); |
| // Only die if posix_memalign would have returned ENOMEM, since there are |
| // other reasons why NULL might be returned (see |
| // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ). |
| if (!result && size && alignment >= sizeof(void*) |
| && (alignment & (alignment - 1)) == 0) { |
| debug::BreakDebugger(); |
| } |
| return result; |
| } |
| |
| void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_malloc_purgeable(zone, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone, |
| size_t num_items, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_calloc_purgeable(zone, num_items, size); |
| if (!result && num_items && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_valloc_purgeable(zone, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void oom_killer_free_purgeable(struct _malloc_zone_t* zone, |
| void* ptr) { |
| ScopedClearErrno clear_errno; |
| g_old_free_purgeable(zone, ptr); |
| } |
| |
| void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone, |
| void* ptr, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_realloc_purgeable(zone, ptr, size); |
| if (!result && size) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone, |
| size_t alignment, |
| size_t size) { |
| ScopedClearErrno clear_errno; |
| void* result = g_old_memalign_purgeable(zone, alignment, size); |
| // Only die if posix_memalign would have returned ENOMEM, since there are |
| // other reasons why NULL might be returned (see |
| // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ). |
| if (!result && size && alignment >= sizeof(void*) |
| && (alignment & (alignment - 1)) == 0) { |
| debug::BreakDebugger(); |
| } |
| return result; |
| } |
| |
| // === C++ operator new === |
| |
| void oom_killer_new() { |
| debug::BreakDebugger(); |
| } |
| |
| // === Core Foundation CFAllocators === |
| |
| bool CanGetContextForCFAllocator() { |
| return !base::mac::IsOSLaterThanMountainLion_DontCallThis(); |
| } |
| |
| CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) { |
| if (base::mac::IsOSSnowLeopard()) { |
| ChromeCFAllocatorLeopards* our_allocator = |
| const_cast<ChromeCFAllocatorLeopards*>( |
| reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator)); |
| return &our_allocator->_context; |
| } else if (base::mac::IsOSLion() || base::mac::IsOSMountainLion()) { |
| ChromeCFAllocatorLions* our_allocator = |
| const_cast<ChromeCFAllocatorLions*>( |
| reinterpret_cast<const ChromeCFAllocatorLions*>(allocator)); |
| return &our_allocator->_context; |
| } else { |
| return NULL; |
| } |
| } |
| |
| CFAllocatorAllocateCallBack g_old_cfallocator_system_default; |
| CFAllocatorAllocateCallBack g_old_cfallocator_malloc; |
| CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone; |
| |
| void* oom_killer_cfallocator_system_default(CFIndex alloc_size, |
| CFOptionFlags hint, |
| void* info) { |
| void* result = g_old_cfallocator_system_default(alloc_size, hint, info); |
| if (!result) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_cfallocator_malloc(CFIndex alloc_size, |
| CFOptionFlags hint, |
| void* info) { |
| void* result = g_old_cfallocator_malloc(alloc_size, hint, info); |
| if (!result) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size, |
| CFOptionFlags hint, |
| void* info) { |
| void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info); |
| if (!result) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| // === Cocoa NSObject allocation === |
| |
| typedef id (*allocWithZone_t)(id, SEL, NSZone*); |
| allocWithZone_t g_old_allocWithZone; |
| |
| id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone) |
| { |
| id result = g_old_allocWithZone(self, _cmd, zone); |
| if (!result) |
| debug::BreakDebugger(); |
| return result; |
| } |
| |
| } // namespace |
| |
| void* UncheckedMalloc(size_t size) { |
| if (g_old_malloc) { |
| ScopedClearErrno clear_errno; |
| ThreadLocalBooleanAutoReset flag(g_unchecked_malloc.Pointer(), true); |
| return g_old_malloc(malloc_default_zone(), size); |
| } |
| return malloc(size); |
| } |
| |
| void EnableTerminationOnOutOfMemory() { |
| if (g_oom_killer_enabled) |
| return; |
| |
| g_oom_killer_enabled = true; |
| |
| // === C malloc/calloc/valloc/realloc/posix_memalign === |
| |
| // This approach is not perfect, as requests for amounts of memory larger than |
| // MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will |
| // still fail with a NULL rather than dying (see |
| // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details). |
| // Unfortunately, it's the best we can do. Also note that this does not affect |
| // allocations from non-default zones. |
| |
| CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc && |
| !g_old_memalign) << "Old allocators unexpectedly non-null"; |
| |
| CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable && |
| !g_old_valloc_purgeable && !g_old_realloc_purgeable && |
| !g_old_memalign_purgeable) << "Old allocators unexpectedly non-null"; |
| |
| #if !defined(ADDRESS_SANITIZER) |
| // Don't do anything special on OOM for the malloc zones replaced by |
| // AddressSanitizer, as modifying or protecting them may not work correctly. |
| |
| // See http://trac.webkit.org/changeset/53362/trunk/Tools/DumpRenderTree/mac |
| bool zone_allocators_protected = base::mac::IsOSLionOrLater(); |
| |
| ChromeMallocZone* default_zone = |
| reinterpret_cast<ChromeMallocZone*>(malloc_default_zone()); |
| ChromeMallocZone* purgeable_zone = |
| reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone()); |
| |
| vm_address_t page_start_default = 0; |
| vm_address_t page_start_purgeable = 0; |
| vm_size_t len_default = 0; |
| vm_size_t len_purgeable = 0; |
| if (zone_allocators_protected) { |
| page_start_default = reinterpret_cast<vm_address_t>(default_zone) & |
| static_cast<vm_size_t>(~(getpagesize() - 1)); |
| len_default = reinterpret_cast<vm_address_t>(default_zone) - |
| page_start_default + sizeof(ChromeMallocZone); |
| mprotect(reinterpret_cast<void*>(page_start_default), len_default, |
| PROT_READ | PROT_WRITE); |
| |
| if (purgeable_zone) { |
| page_start_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) & |
| static_cast<vm_size_t>(~(getpagesize() - 1)); |
| len_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) - |
| page_start_purgeable + sizeof(ChromeMallocZone); |
| mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable, |
| PROT_READ | PROT_WRITE); |
| } |
| } |
| |
| // Default zone |
| |
| g_old_malloc = default_zone->malloc; |
| g_old_calloc = default_zone->calloc; |
| g_old_valloc = default_zone->valloc; |
| g_old_free = default_zone->free; |
| g_old_realloc = default_zone->realloc; |
| CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free && |
| g_old_realloc) |
| << "Failed to get system allocation functions."; |
| |
| default_zone->malloc = oom_killer_malloc; |
| default_zone->calloc = oom_killer_calloc; |
| default_zone->valloc = oom_killer_valloc; |
| default_zone->free = oom_killer_free; |
| default_zone->realloc = oom_killer_realloc; |
| |
| if (default_zone->version >= 5) { |
| g_old_memalign = default_zone->memalign; |
| if (g_old_memalign) |
| default_zone->memalign = oom_killer_memalign; |
| } |
| |
| // Purgeable zone (if it exists) |
| |
| if (purgeable_zone) { |
| g_old_malloc_purgeable = purgeable_zone->malloc; |
| g_old_calloc_purgeable = purgeable_zone->calloc; |
| g_old_valloc_purgeable = purgeable_zone->valloc; |
| g_old_free_purgeable = purgeable_zone->free; |
| g_old_realloc_purgeable = purgeable_zone->realloc; |
| CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable && |
| g_old_valloc_purgeable && g_old_free_purgeable && |
| g_old_realloc_purgeable) |
| << "Failed to get system allocation functions."; |
| |
| purgeable_zone->malloc = oom_killer_malloc_purgeable; |
| purgeable_zone->calloc = oom_killer_calloc_purgeable; |
| purgeable_zone->valloc = oom_killer_valloc_purgeable; |
| purgeable_zone->free = oom_killer_free_purgeable; |
| purgeable_zone->realloc = oom_killer_realloc_purgeable; |
| |
| if (purgeable_zone->version >= 5) { |
| g_old_memalign_purgeable = purgeable_zone->memalign; |
| if (g_old_memalign_purgeable) |
| purgeable_zone->memalign = oom_killer_memalign_purgeable; |
| } |
| } |
| |
| if (zone_allocators_protected) { |
| mprotect(reinterpret_cast<void*>(page_start_default), len_default, |
| PROT_READ); |
| if (purgeable_zone) { |
| mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable, |
| PROT_READ); |
| } |
| } |
| #endif |
| |
| // === C malloc_zone_batch_malloc === |
| |
| // batch_malloc is omitted because the default malloc zone's implementation |
| // only supports batch_malloc for "tiny" allocations from the free list. It |
| // will fail for allocations larger than "tiny", and will only allocate as |
| // many blocks as it's able to from the free list. These factors mean that it |
| // can return less than the requested memory even in a non-out-of-memory |
| // situation. There's no good way to detect whether a batch_malloc failure is |
| // due to these other factors, or due to genuine memory or address space |
| // exhaustion. The fact that it only allocates space from the "tiny" free list |
| // means that it's likely that a failure will not be due to memory exhaustion. |
| // Similarly, these constraints on batch_malloc mean that callers must always |
| // be expecting to receive less memory than was requested, even in situations |
| // where memory pressure is not a concern. Finally, the only public interface |
| // to batch_malloc is malloc_zone_batch_malloc, which is specific to the |
| // system's malloc implementation. It's unlikely that anyone's even heard of |
| // it. |
| |
| // === C++ operator new === |
| |
| // Yes, operator new does call through to malloc, but this will catch failures |
| // that our imperfect handling of malloc cannot. |
| |
| std::set_new_handler(oom_killer_new); |
| |
| #ifndef ADDRESS_SANITIZER |
| // === Core Foundation CFAllocators === |
| |
| // This will not catch allocation done by custom allocators, but will catch |
| // all allocation done by system-provided ones. |
| |
| CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc && |
| !g_old_cfallocator_malloc_zone) |
| << "Old allocators unexpectedly non-null"; |
| |
| bool cf_allocator_internals_known = CanGetContextForCFAllocator(); |
| |
| if (cf_allocator_internals_known) { |
| CFAllocatorContext* context = |
| ContextForCFAllocator(kCFAllocatorSystemDefault); |
| CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault."; |
| g_old_cfallocator_system_default = context->allocate; |
| CHECK(g_old_cfallocator_system_default) |
| << "Failed to get kCFAllocatorSystemDefault allocation function."; |
| context->allocate = oom_killer_cfallocator_system_default; |
| |
| context = ContextForCFAllocator(kCFAllocatorMalloc); |
| CHECK(context) << "Failed to get context for kCFAllocatorMalloc."; |
| g_old_cfallocator_malloc = context->allocate; |
| CHECK(g_old_cfallocator_malloc) |
| << "Failed to get kCFAllocatorMalloc allocation function."; |
| context->allocate = oom_killer_cfallocator_malloc; |
| |
| context = ContextForCFAllocator(kCFAllocatorMallocZone); |
| CHECK(context) << "Failed to get context for kCFAllocatorMallocZone."; |
| g_old_cfallocator_malloc_zone = context->allocate; |
| CHECK(g_old_cfallocator_malloc_zone) |
| << "Failed to get kCFAllocatorMallocZone allocation function."; |
| context->allocate = oom_killer_cfallocator_malloc_zone; |
| } else { |
| NSLog(@"Internals of CFAllocator not known; out-of-memory failures via " |
| "CFAllocator will not result in termination. http://crbug.com/45650"); |
| } |
| #endif |
| |
| // === Cocoa NSObject allocation === |
| |
| // Note that both +[NSObject new] and +[NSObject alloc] call through to |
| // +[NSObject allocWithZone:]. |
| |
| CHECK(!g_old_allocWithZone) |
| << "Old allocator unexpectedly non-null"; |
| |
| Class nsobject_class = [NSObject class]; |
| Method orig_method = class_getClassMethod(nsobject_class, |
| @selector(allocWithZone:)); |
| g_old_allocWithZone = reinterpret_cast<allocWithZone_t>( |
| method_getImplementation(orig_method)); |
| CHECK(g_old_allocWithZone) |
| << "Failed to get allocWithZone allocation function."; |
| method_setImplementation(orig_method, |
| reinterpret_cast<IMP>(oom_killer_allocWithZone)); |
| } |
| |
| ProcessId GetParentProcessId(ProcessHandle process) { |
| struct kinfo_proc info; |
| size_t length = sizeof(struct kinfo_proc); |
| int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process }; |
| if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) { |
| DPLOG(ERROR) << "sysctl"; |
| return -1; |
| } |
| if (length == 0) |
| return -1; |
| return info.kp_eproc.e_ppid; |
| } |
| |
| namespace { |
| |
| const int kWaitBeforeKillSeconds = 2; |
| |
| // Reap |child| process. This call blocks until completion. |
| void BlockingReap(pid_t child) { |
| const pid_t result = HANDLE_EINTR(waitpid(child, NULL, 0)); |
| if (result == -1) { |
| DPLOG(ERROR) << "waitpid(" << child << ", NULL, 0)"; |
| } |
| } |
| |
| // Waits for |timeout| seconds for the given |child| to exit and reap it. If |
| // the child doesn't exit within the time specified, kills it. |
| // |
| // This function takes two approaches: first, it tries to use kqueue to |
| // observe when the process exits. kevent can monitor a kqueue with a |
| // timeout, so this method is preferred to wait for a specified period of |
| // time. Once the kqueue indicates the process has exited, waitpid will reap |
| // the exited child. If the kqueue doesn't provide an exit event notification, |
| // before the timeout expires, or if the kqueue fails or misbehaves, the |
| // process will be mercilessly killed and reaped. |
| // |
| // A child process passed to this function may be in one of several states: |
| // running, terminated and not yet reaped, and (apparently, and unfortunately) |
| // terminated and already reaped. Normally, a process will at least have been |
| // asked to exit before this function is called, but this is not required. |
| // If a process is terminating and unreaped, there may be a window between the |
| // time that kqueue will no longer recognize it and when it becomes an actual |
| // zombie that a non-blocking (WNOHANG) waitpid can reap. This condition is |
| // detected when kqueue indicates that the process is not running and a |
| // non-blocking waitpid fails to reap the process but indicates that it is |
| // still running. In this event, a blocking attempt to reap the process |
| // collects the known-dying child, preventing zombies from congregating. |
| // |
| // In the event that the kqueue misbehaves entirely, as it might under a |
| // EMFILE condition ("too many open files", or out of file descriptors), this |
| // function will forcibly kill and reap the child without delay. This |
| // eliminates another potential zombie vector. (If you're out of file |
| // descriptors, you're probably deep into something else, but that doesn't |
| // mean that zombies be allowed to kick you while you're down.) |
| // |
| // The fact that this function seemingly can be called to wait on a child |
| // that's not only already terminated but already reaped is a bit of a |
| // problem: a reaped child's pid can be reclaimed and may refer to a distinct |
| // process in that case. The fact that this function can seemingly be called |
| // to wait on a process that's not even a child is also a problem: kqueue will |
| // work in that case, but waitpid won't, and killing a non-child might not be |
| // the best approach. |
| void WaitForChildToDie(pid_t child, int timeout) { |
| DCHECK(child > 0); |
| DCHECK(timeout > 0); |
| |
| // DON'T ADD ANY EARLY RETURNS TO THIS FUNCTION without ensuring that |
| // |child| has been reaped. Specifically, even if a kqueue, kevent, or other |
| // call fails, this function should fall back to the last resort of trying |
| // to kill and reap the process. Not observing this rule will resurrect |
| // zombies. |
| |
| int result; |
| |
| int kq = HANDLE_EINTR(kqueue()); |
| if (kq == -1) { |
| DPLOG(ERROR) << "kqueue()"; |
| } else { |
| file_util::ScopedFD auto_close_kq(&kq); |
| |
| struct kevent change = {0}; |
| EV_SET(&change, child, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL); |
| result = HANDLE_EINTR(kevent(kq, &change, 1, NULL, 0, NULL)); |
| |
| if (result == -1) { |
| if (errno != ESRCH) { |
| DPLOG(ERROR) << "kevent (setup " << child << ")"; |
| } else { |
| // At this point, one of the following has occurred: |
| // 1. The process has died but has not yet been reaped. |
| // 2. The process has died and has already been reaped. |
| // 3. The process is in the process of dying. It's no longer |
| // kqueueable, but it may not be waitable yet either. Mark calls |
| // this case the "zombie death race". |
| |
| result = HANDLE_EINTR(waitpid(child, NULL, WNOHANG)); |
| |
| if (result != 0) { |
| // A positive result indicates case 1. waitpid succeeded and reaped |
| // the child. A result of -1 indicates case 2. The child has already |
| // been reaped. In both of these cases, no further action is |
| // necessary. |
| return; |
| } |
| |
| // |result| is 0, indicating case 3. The process will be waitable in |
| // short order. Fall back out of the kqueue code to kill it (for good |
| // measure) and reap it. |
| } |
| } else { |
| // Keep track of the elapsed time to be able to restart kevent if it's |
| // interrupted. |
| TimeDelta remaining_delta = TimeDelta::FromSeconds(timeout); |
| Time deadline = Time::Now() + remaining_delta; |
| result = -1; |
| struct kevent event = {0}; |
| while (remaining_delta.InMilliseconds() > 0) { |
| const struct timespec remaining_timespec = remaining_delta.ToTimeSpec(); |
| result = kevent(kq, NULL, 0, &event, 1, &remaining_timespec); |
| if (result == -1 && errno == EINTR) { |
| remaining_delta = deadline - Time::Now(); |
| result = 0; |
| } else { |
| break; |
| } |
| } |
| |
| if (result == -1) { |
| DPLOG(ERROR) << "kevent (wait " << child << ")"; |
| } else if (result > 1) { |
| DLOG(ERROR) << "kevent (wait " << child << "): unexpected result " |
| << result; |
| } else if (result == 1) { |
| if ((event.fflags & NOTE_EXIT) && |
| (event.ident == static_cast<uintptr_t>(child))) { |
| // The process is dead or dying. This won't block for long, if at |
| // all. |
| BlockingReap(child); |
| return; |
| } else { |
| DLOG(ERROR) << "kevent (wait " << child |
| << "): unexpected event: fflags=" << event.fflags |
| << ", ident=" << event.ident; |
| } |
| } |
| } |
| } |
| |
| // The child is still alive, or is very freshly dead. Be sure by sending it |
| // a signal. This is safe even if it's freshly dead, because it will be a |
| // zombie (or on the way to zombiedom) and kill will return 0 even if the |
| // signal is not delivered to a live process. |
| result = kill(child, SIGKILL); |
| if (result == -1) { |
| DPLOG(ERROR) << "kill(" << child << ", SIGKILL)"; |
| } else { |
| // The child is definitely on the way out now. BlockingReap won't need to |
| // wait for long, if at all. |
| BlockingReap(child); |
| } |
| } |
| |
| } // namespace |
| |
| void EnsureProcessTerminated(ProcessHandle process) { |
| WaitForChildToDie(process, kWaitBeforeKillSeconds); |
| } |
| |
| } // namespace base |