| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| |
| // Windows Timer Primer |
| // |
| // A good article: http://www.ddj.com/windows/184416651 |
| // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 |
| // |
| // The default windows timer, GetSystemTimeAsFileTime is not very precise. |
| // It is only good to ~15.5ms. |
| // |
| // QueryPerformanceCounter is the logical choice for a high-precision timer. |
| // However, it is known to be buggy on some hardware. Specifically, it can |
| // sometimes "jump". On laptops, QPC can also be very expensive to call. |
| // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower |
| // on laptops. A unittest exists which will show the relative cost of various |
| // timers on any system. |
| // |
| // The next logical choice is timeGetTime(). timeGetTime has a precision of |
| // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other |
| // applications on the system. By default, precision is only 15.5ms. |
| // Unfortunately, we don't want to call timeBeginPeriod because we don't |
| // want to affect other applications. Further, on mobile platforms, use of |
| // faster multimedia timers can hurt battery life. See the intel |
| // article about this here: |
| // http://softwarecommunity.intel.com/articles/eng/1086.htm |
| // |
| // To work around all this, we're going to generally use timeGetTime(). We |
| // will only increase the system-wide timer if we're not running on battery |
| // power. Using timeBeginPeriod(1) is a requirement in order to make our |
| // message loop waits have the same resolution that our time measurements |
| // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when |
| // there is nothing else to waken the Wait. |
| |
| #include "base/time.h" |
| |
| #pragma comment(lib, "winmm.lib") |
| #include <windows.h> |
| #include <mmsystem.h> |
| |
| #include "base/basictypes.h" |
| #include "base/logging.h" |
| #include "base/cpu.h" |
| #include "base/memory/singleton.h" |
| #include "base/synchronization/lock.h" |
| |
| using base::Time; |
| using base::TimeDelta; |
| using base::TimeTicks; |
| |
| namespace { |
| |
| // From MSDN, FILETIME "Contains a 64-bit value representing the number of |
| // 100-nanosecond intervals since January 1, 1601 (UTC)." |
| int64 FileTimeToMicroseconds(const FILETIME& ft) { |
| // Need to bit_cast to fix alignment, then divide by 10 to convert |
| // 100-nanoseconds to milliseconds. This only works on little-endian |
| // machines. |
| return bit_cast<int64, FILETIME>(ft) / 10; |
| } |
| |
| void MicrosecondsToFileTime(int64 us, FILETIME* ft) { |
| DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " |
| "representable in FILETIME"; |
| |
| // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will |
| // handle alignment problems. This only works on little-endian machines. |
| *ft = bit_cast<FILETIME, int64>(us * 10); |
| } |
| |
| int64 CurrentWallclockMicroseconds() { |
| FILETIME ft; |
| ::GetSystemTimeAsFileTime(&ft); |
| return FileTimeToMicroseconds(ft); |
| } |
| |
| // Time between resampling the un-granular clock for this API. 60 seconds. |
| const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; |
| |
| int64 initial_time = 0; |
| TimeTicks initial_ticks; |
| |
| void InitializeClock() { |
| initial_ticks = TimeTicks::Now(); |
| initial_time = CurrentWallclockMicroseconds(); |
| } |
| |
| } // namespace |
| |
| // Time ----------------------------------------------------------------------- |
| |
| // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 |
| // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the |
| // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding |
| // 1700, 1800, and 1900. |
| // static |
| const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); |
| |
| bool Time::high_resolution_timer_enabled_ = false; |
| int Time::high_resolution_timer_activated_ = 0; |
| |
| // static |
| Time Time::Now() { |
| if (initial_time == 0) |
| InitializeClock(); |
| |
| // We implement time using the high-resolution timers so that we can get |
| // timeouts which are smaller than 10-15ms. If we just used |
| // CurrentWallclockMicroseconds(), we'd have the less-granular timer. |
| // |
| // To make this work, we initialize the clock (initial_time) and the |
| // counter (initial_ctr). To compute the initial time, we can check |
| // the number of ticks that have elapsed, and compute the delta. |
| // |
| // To avoid any drift, we periodically resync the counters to the system |
| // clock. |
| while (true) { |
| TimeTicks ticks = TimeTicks::Now(); |
| |
| // Calculate the time elapsed since we started our timer |
| TimeDelta elapsed = ticks - initial_ticks; |
| |
| // Check if enough time has elapsed that we need to resync the clock. |
| if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { |
| InitializeClock(); |
| continue; |
| } |
| |
| return Time(elapsed + Time(initial_time)); |
| } |
| } |
| |
| // static |
| Time Time::NowFromSystemTime() { |
| // Force resync. |
| InitializeClock(); |
| return Time(initial_time); |
| } |
| |
| // static |
| Time Time::FromFileTime(FILETIME ft) { |
| if (bit_cast<int64, FILETIME>(ft) == 0) |
| return Time(); |
| if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() && |
| ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) |
| return Max(); |
| return Time(FileTimeToMicroseconds(ft)); |
| } |
| |
| FILETIME Time::ToFileTime() const { |
| if (is_null()) |
| return bit_cast<FILETIME, int64>(0); |
| if (is_max()) { |
| FILETIME result; |
| result.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
| result.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
| return result; |
| } |
| FILETIME utc_ft; |
| MicrosecondsToFileTime(us_, &utc_ft); |
| return utc_ft; |
| } |
| |
| // static |
| void Time::EnableHighResolutionTimer(bool enable) { |
| // Test for single-threaded access. |
| static PlatformThreadId my_thread = PlatformThread::CurrentId(); |
| DCHECK(PlatformThread::CurrentId() == my_thread); |
| |
| if (high_resolution_timer_enabled_ == enable) |
| return; |
| |
| high_resolution_timer_enabled_ = enable; |
| } |
| |
| // static |
| bool Time::ActivateHighResolutionTimer(bool activating) { |
| if (!high_resolution_timer_enabled_ && activating) |
| return false; |
| |
| // Using anything other than 1ms makes timers granular |
| // to that interval. |
| const int kMinTimerIntervalMs = 1; |
| MMRESULT result; |
| if (activating) { |
| result = timeBeginPeriod(kMinTimerIntervalMs); |
| high_resolution_timer_activated_++; |
| } else { |
| result = timeEndPeriod(kMinTimerIntervalMs); |
| high_resolution_timer_activated_--; |
| } |
| return result == TIMERR_NOERROR; |
| } |
| |
| // static |
| bool Time::IsHighResolutionTimerInUse() { |
| // Note: we should track the high_resolution_timer_activated_ value |
| // under a lock if we want it to be accurate in a system with multiple |
| // message loops. We don't do that - because we don't want to take the |
| // expense of a lock for this. We *only* track this value so that unit |
| // tests can see if the high resolution timer is on or off. |
| return high_resolution_timer_enabled_ && |
| high_resolution_timer_activated_ > 0; |
| } |
| |
| // static |
| Time Time::FromExploded(bool is_local, const Exploded& exploded) { |
| // Create the system struct representing our exploded time. It will either be |
| // in local time or UTC. |
| SYSTEMTIME st; |
| st.wYear = exploded.year; |
| st.wMonth = exploded.month; |
| st.wDayOfWeek = exploded.day_of_week; |
| st.wDay = exploded.day_of_month; |
| st.wHour = exploded.hour; |
| st.wMinute = exploded.minute; |
| st.wSecond = exploded.second; |
| st.wMilliseconds = exploded.millisecond; |
| |
| FILETIME ft; |
| bool success = true; |
| // Ensure that it's in UTC. |
| if (is_local) { |
| SYSTEMTIME utc_st; |
| success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) && |
| SystemTimeToFileTime(&utc_st, &ft); |
| } else { |
| success = !!SystemTimeToFileTime(&st, &ft); |
| } |
| |
| if (!success) { |
| NOTREACHED() << "Unable to convert time"; |
| return Time(0); |
| } |
| return Time(FileTimeToMicroseconds(ft)); |
| } |
| |
| void Time::Explode(bool is_local, Exploded* exploded) const { |
| if (us_ < 0LL) { |
| // We are not able to convert it to FILETIME. |
| ZeroMemory(exploded, sizeof(*exploded)); |
| return; |
| } |
| |
| // FILETIME in UTC. |
| FILETIME utc_ft; |
| MicrosecondsToFileTime(us_, &utc_ft); |
| |
| // FILETIME in local time if necessary. |
| bool success = true; |
| // FILETIME in SYSTEMTIME (exploded). |
| SYSTEMTIME st; |
| if (is_local) { |
| SYSTEMTIME utc_st; |
| // We don't use FileTimeToLocalFileTime here, since it uses the current |
| // settings for the time zone and daylight saving time. Therefore, if it is |
| // daylight saving time, it will take daylight saving time into account, |
| // even if the time you are converting is in standard time. |
| success = FileTimeToSystemTime(&utc_ft, &utc_st) && |
| SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st); |
| } else { |
| success = !!FileTimeToSystemTime(&utc_ft, &st); |
| } |
| |
| if (!success) { |
| NOTREACHED() << "Unable to convert time, don't know why"; |
| ZeroMemory(exploded, sizeof(*exploded)); |
| return; |
| } |
| |
| exploded->year = st.wYear; |
| exploded->month = st.wMonth; |
| exploded->day_of_week = st.wDayOfWeek; |
| exploded->day_of_month = st.wDay; |
| exploded->hour = st.wHour; |
| exploded->minute = st.wMinute; |
| exploded->second = st.wSecond; |
| exploded->millisecond = st.wMilliseconds; |
| } |
| |
| // TimeTicks ------------------------------------------------------------------ |
| namespace { |
| |
| // We define a wrapper to adapt between the __stdcall and __cdecl call of the |
| // mock function, and to avoid a static constructor. Assigning an import to a |
| // function pointer directly would require setup code to fetch from the IAT. |
| DWORD timeGetTimeWrapper() { |
| return timeGetTime(); |
| } |
| |
| DWORD (*tick_function)(void) = &timeGetTimeWrapper; |
| |
| // Accumulation of time lost due to rollover (in milliseconds). |
| int64 rollover_ms = 0; |
| |
| // The last timeGetTime value we saw, to detect rollover. |
| DWORD last_seen_now = 0; |
| |
| // Lock protecting rollover_ms and last_seen_now. |
| // Note: this is a global object, and we usually avoid these. However, the time |
| // code is low-level, and we don't want to use Singletons here (it would be too |
| // easy to use a Singleton without even knowing it, and that may lead to many |
| // gotchas). Its impact on startup time should be negligible due to low-level |
| // nature of time code. |
| base::Lock rollover_lock; |
| |
| // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic |
| // because it returns the number of milliseconds since Windows has started, |
| // which will roll over the 32-bit value every ~49 days. We try to track |
| // rollover ourselves, which works if TimeTicks::Now() is called at least every |
| // 49 days. |
| TimeDelta RolloverProtectedNow() { |
| base::AutoLock locked(rollover_lock); |
| // We should hold the lock while calling tick_function to make sure that |
| // we keep last_seen_now stay correctly in sync. |
| DWORD now = tick_function(); |
| if (now < last_seen_now) |
| rollover_ms += 0x100000000I64; // ~49.7 days. |
| last_seen_now = now; |
| return TimeDelta::FromMilliseconds(now + rollover_ms); |
| } |
| |
| // Overview of time counters: |
| // (1) CPU cycle counter. (Retrieved via RDTSC) |
| // The CPU counter provides the highest resolution time stamp and is the least |
| // expensive to retrieve. However, the CPU counter is unreliable and should not |
| // be used in production. Its biggest issue is that it is per processor and it |
| // is not synchronized between processors. Also, on some computers, the counters |
| // will change frequency due to thermal and power changes, and stop in some |
| // states. |
| // |
| // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
| // resolution (100 nanoseconds) time stamp but is comparatively more expensive |
| // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
| // (with some help from ACPI). |
| // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
| // in the worst case, it gets the counter from the rollover interrupt on the |
| // programmable interrupt timer. In best cases, the HAL may conclude that the |
| // RDTSC counter runs at a constant frequency, then it uses that instead. On |
| // multiprocessor machines, it will try to verify the values returned from |
| // RDTSC on each processor are consistent with each other, and apply a handful |
| // of workarounds for known buggy hardware. In other words, QPC is supposed to |
| // give consistent result on a multiprocessor computer, but it is unreliable in |
| // reality due to bugs in BIOS or HAL on some, especially old computers. |
| // With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
| // it should be used with caution. |
| // |
| // (3) System time. The system time provides a low-resolution (typically 10ms |
| // to 55 milliseconds) time stamp but is comparatively less expensive to |
| // retrieve and more reliable. |
| class HighResNowSingleton { |
| public: |
| static HighResNowSingleton* GetInstance() { |
| return Singleton<HighResNowSingleton>::get(); |
| } |
| |
| bool IsUsingHighResClock() { |
| return ticks_per_second_ != 0.0; |
| } |
| |
| void DisableHighResClock() { |
| ticks_per_second_ = 0.0; |
| } |
| |
| TimeDelta Now() { |
| if (IsUsingHighResClock()) |
| return TimeDelta::FromMicroseconds(UnreliableNow()); |
| |
| // Just fallback to the slower clock. |
| return RolloverProtectedNow(); |
| } |
| |
| int64 GetQPCDriftMicroseconds() { |
| if (!IsUsingHighResClock()) |
| return 0; |
| |
| // The static_cast<long> is needed as a hint to VS 2008 to tell it |
| // which version of abs() to use. Other compilers don't seem to |
| // need it, including VS 2010, but to keep code identical we use it |
| // everywhere. |
| // TODO(joi): Remove the hint if/when we no longer support VS 2008. |
| return abs(static_cast<long>((UnreliableNow() - ReliableNow()) - skew_)); |
| } |
| |
| int64 QPCValueToMicroseconds(LONGLONG qpc_value) { |
| if (!ticks_per_second_) |
| return 0; |
| |
| // Intentionally calculate microseconds in a round about manner to avoid |
| // overflow and precision issues. Think twice before simplifying! |
| int64 whole_seconds = qpc_value / ticks_per_second_; |
| int64 leftover_ticks = qpc_value % ticks_per_second_; |
| int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) + |
| ((leftover_ticks * Time::kMicrosecondsPerSecond) / |
| ticks_per_second_); |
| return microseconds; |
| } |
| |
| private: |
| HighResNowSingleton() |
| : ticks_per_second_(0), |
| skew_(0) { |
| InitializeClock(); |
| |
| // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is |
| // unreliable. Fallback to low-res clock. |
| base::CPU cpu; |
| if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15) |
| DisableHighResClock(); |
| } |
| |
| // Synchronize the QPC clock with GetSystemTimeAsFileTime. |
| void InitializeClock() { |
| LARGE_INTEGER ticks_per_sec = {0}; |
| if (!QueryPerformanceFrequency(&ticks_per_sec)) |
| return; // Broken, we don't guarantee this function works. |
| ticks_per_second_ = ticks_per_sec.QuadPart; |
| |
| skew_ = UnreliableNow() - ReliableNow(); |
| } |
| |
| // Get the number of microseconds since boot in an unreliable fashion. |
| int64 UnreliableNow() { |
| LARGE_INTEGER now; |
| QueryPerformanceCounter(&now); |
| return QPCValueToMicroseconds(now.QuadPart); |
| } |
| |
| // Get the number of microseconds since boot in a reliable fashion. |
| int64 ReliableNow() { |
| return RolloverProtectedNow().InMicroseconds(); |
| } |
| |
| int64 ticks_per_second_; // 0 indicates QPF failed and we're broken. |
| int64 skew_; // Skew between lo-res and hi-res clocks (for debugging). |
| |
| friend struct DefaultSingletonTraits<HighResNowSingleton>; |
| }; |
| |
| } // namespace |
| |
| // static |
| TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( |
| TickFunctionType ticker) { |
| TickFunctionType old = tick_function; |
| tick_function = ticker; |
| return old; |
| } |
| |
| // static |
| TimeTicks TimeTicks::Now() { |
| return TimeTicks() + RolloverProtectedNow(); |
| } |
| |
| // static |
| TimeTicks TimeTicks::HighResNow() { |
| return TimeTicks() + HighResNowSingleton::GetInstance()->Now(); |
| } |
| |
| // static |
| TimeTicks TimeTicks::ThreadNow() { |
| return HighResNow(); |
| } |
| |
| // static |
| bool TimeTicks::HasThreadNow() { |
| return false; |
| } |
| |
| // static |
| TimeTicks TimeTicks::NowFromSystemTraceTime() { |
| return HighResNow(); |
| } |
| |
| // static |
| int64 TimeTicks::GetQPCDriftMicroseconds() { |
| return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds(); |
| } |
| |
| // static |
| TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { |
| return TimeTicks( |
| HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value)); |
| } |
| |
| // static |
| bool TimeTicks::IsHighResClockWorking() { |
| return HighResNowSingleton::GetInstance()->IsUsingHighResClock(); |
| } |
| |
| // TimeDelta ------------------------------------------------------------------ |
| |
| // static |
| TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { |
| return TimeDelta( |
| HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value)); |
| } |