| /* |
| ****************************************************************************** |
| * Copyright (C) 1997-2008, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ****************************************************************************** |
| * file name: nfrs.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * Modification history |
| * Date Name Comments |
| * 10/11/2001 Doug Ported from ICU4J |
| */ |
| |
| #include "nfrs.h" |
| |
| #if U_HAVE_RBNF |
| |
| #include "unicode/uchar.h" |
| #include "nfrule.h" |
| #include "nfrlist.h" |
| |
| #ifdef RBNF_DEBUG |
| #include "cmemory.h" |
| #endif |
| |
| #include "util.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| #if 0 |
| // euclid's algorithm works with doubles |
| // note, doubles only get us up to one quadrillion or so, which |
| // isn't as much range as we get with longs. We probably still |
| // want either 64-bit math, or BigInteger. |
| |
| static int64_t |
| util_lcm(int64_t x, int64_t y) |
| { |
| x.abs(); |
| y.abs(); |
| |
| if (x == 0 || y == 0) { |
| return 0; |
| } else { |
| do { |
| if (x < y) { |
| int64_t t = x; x = y; y = t; |
| } |
| x -= y * (x/y); |
| } while (x != 0); |
| |
| return y; |
| } |
| } |
| |
| #else |
| /** |
| * Calculates the least common multiple of x and y. |
| */ |
| static int64_t |
| util_lcm(int64_t x, int64_t y) |
| { |
| // binary gcd algorithm from Knuth, "The Art of Computer Programming," |
| // vol. 2, 1st ed., pp. 298-299 |
| int64_t x1 = x; |
| int64_t y1 = y; |
| |
| int p2 = 0; |
| while ((x1 & 1) == 0 && (y1 & 1) == 0) { |
| ++p2; |
| x1 >>= 1; |
| y1 >>= 1; |
| } |
| |
| int64_t t; |
| if ((x1 & 1) == 1) { |
| t = -y1; |
| } else { |
| t = x1; |
| } |
| |
| while (t != 0) { |
| while ((t & 1) == 0) { |
| t = t >> 1; |
| } |
| if (t > 0) { |
| x1 = t; |
| } else { |
| y1 = -t; |
| } |
| t = x1 - y1; |
| } |
| |
| int64_t gcd = x1 << p2; |
| |
| // x * y == gcd(x, y) * lcm(x, y) |
| return x / gcd * y; |
| } |
| #endif |
| |
| static const UChar gPercent = 0x0025; |
| static const UChar gColon = 0x003a; |
| static const UChar gSemicolon = 0x003b; |
| static const UChar gLineFeed = 0x000a; |
| |
| static const UChar gFourSpaces[] = |
| { |
| 0x20, 0x20, 0x20, 0x20, 0 |
| }; /* " " */ |
| static const UChar gPercentPercent[] = |
| { |
| 0x25, 0x25, 0 |
| }; /* "%%" */ |
| |
| NFRuleSet::NFRuleSet(UnicodeString* descriptions, int32_t index, UErrorCode& status) |
| : name() |
| , rules(0) |
| , negativeNumberRule(NULL) |
| , fIsFractionRuleSet(FALSE) |
| , fIsPublic(FALSE) |
| , fRecursionCount(0) |
| { |
| for (int i = 0; i < 3; ++i) { |
| fractionRules[i] = NULL; |
| } |
| |
| if (U_FAILURE(status)) { |
| return; |
| } |
| |
| UnicodeString& description = descriptions[index]; // !!! make sure index is valid |
| |
| if (description.length() == 0) { |
| // throw new IllegalArgumentException("Empty rule set description"); |
| status = U_PARSE_ERROR; |
| return; |
| } |
| |
| // if the description begins with a rule set name (the rule set |
| // name can be omitted in formatter descriptions that consist |
| // of only one rule set), copy it out into our "name" member |
| // and delete it from the description |
| if (description.charAt(0) == gPercent) { |
| int32_t pos = description.indexOf(gColon); |
| if (pos == -1) { |
| // throw new IllegalArgumentException("Rule set name doesn't end in colon"); |
| status = U_PARSE_ERROR; |
| } else { |
| name.setTo(description, 0, pos); |
| while (pos < description.length() && uprv_isRuleWhiteSpace(description.charAt(++pos))) { |
| } |
| description.remove(0, pos); |
| } |
| } else { |
| name.setTo(UNICODE_STRING_SIMPLE("%default")); |
| } |
| |
| if (description.length() == 0) { |
| // throw new IllegalArgumentException("Empty rule set description"); |
| status = U_PARSE_ERROR; |
| } |
| |
| fIsPublic = name.indexOf(gPercentPercent) != 0; |
| |
| // all of the other members of NFRuleSet are initialized |
| // by parseRules() |
| } |
| |
| void |
| NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) |
| { |
| // start by creating a Vector whose elements are Strings containing |
| // the descriptions of the rules (one rule per element). The rules |
| // are separated by semicolons (there's no escape facility: ALL |
| // semicolons are rule delimiters) |
| |
| if (U_FAILURE(status)) { |
| return; |
| } |
| |
| // dlf - the original code kept a separate description array for no reason, |
| // so I got rid of it. The loop was too complex so I simplified it. |
| |
| UnicodeString currentDescription; |
| int32_t oldP = 0; |
| while (oldP < description.length()) { |
| int32_t p = description.indexOf(gSemicolon, oldP); |
| if (p == -1) { |
| p = description.length(); |
| } |
| currentDescription.setTo(description, oldP, p - oldP); |
| NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); |
| oldP = p + 1; |
| } |
| |
| // for rules that didn't specify a base value, their base values |
| // were initialized to 0. Make another pass through the list and |
| // set all those rules' base values. We also remove any special |
| // rules from the list and put them into their own member variables |
| int64_t defaultBaseValue = 0; |
| |
| // (this isn't a for loop because we might be deleting items from |
| // the vector-- we want to make sure we only increment i when |
| // we _didn't_ delete aything from the vector) |
| uint32_t i = 0; |
| while (i < rules.size()) { |
| NFRule* rule = rules[i]; |
| |
| switch (rule->getType()) { |
| // if the rule's base value is 0, fill in a default |
| // base value (this will be 1 plus the preceding |
| // rule's base value for regular rule sets, and the |
| // same as the preceding rule's base value in fraction |
| // rule sets) |
| case NFRule::kNoBase: |
| rule->setBaseValue(defaultBaseValue, status); |
| if (!isFractionRuleSet()) { |
| ++defaultBaseValue; |
| } |
| ++i; |
| break; |
| |
| // if it's the negative-number rule, copy it into its own |
| // data member and delete it from the list |
| case NFRule::kNegativeNumberRule: |
| negativeNumberRule = rules.remove(i); |
| break; |
| |
| // if it's the improper fraction rule, copy it into the |
| // correct element of fractionRules |
| case NFRule::kImproperFractionRule: |
| fractionRules[0] = rules.remove(i); |
| break; |
| |
| // if it's the proper fraction rule, copy it into the |
| // correct element of fractionRules |
| case NFRule::kProperFractionRule: |
| fractionRules[1] = rules.remove(i); |
| break; |
| |
| // if it's the master rule, copy it into the |
| // correct element of fractionRules |
| case NFRule::kMasterRule: |
| fractionRules[2] = rules.remove(i); |
| break; |
| |
| // if it's a regular rule that already knows its base value, |
| // check to make sure the rules are in order, and update |
| // the default base value for the next rule |
| default: |
| if (rule->getBaseValue() < defaultBaseValue) { |
| // throw new IllegalArgumentException("Rules are not in order"); |
| status = U_PARSE_ERROR; |
| return; |
| } |
| defaultBaseValue = rule->getBaseValue(); |
| if (!isFractionRuleSet()) { |
| ++defaultBaseValue; |
| } |
| ++i; |
| break; |
| } |
| } |
| } |
| |
| NFRuleSet::~NFRuleSet() |
| { |
| delete negativeNumberRule; |
| delete fractionRules[0]; |
| delete fractionRules[1]; |
| delete fractionRules[2]; |
| } |
| |
| static UBool |
| util_equalRules(const NFRule* rule1, const NFRule* rule2) |
| { |
| if (rule1) { |
| if (rule2) { |
| return *rule1 == *rule2; |
| } |
| } else if (!rule2) { |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| UBool |
| NFRuleSet::operator==(const NFRuleSet& rhs) const |
| { |
| if (rules.size() == rhs.rules.size() && |
| fIsFractionRuleSet == rhs.fIsFractionRuleSet && |
| name == rhs.name && |
| util_equalRules(negativeNumberRule, rhs.negativeNumberRule) && |
| util_equalRules(fractionRules[0], rhs.fractionRules[0]) && |
| util_equalRules(fractionRules[1], rhs.fractionRules[1]) && |
| util_equalRules(fractionRules[2], rhs.fractionRules[2])) { |
| |
| for (uint32_t i = 0; i < rules.size(); ++i) { |
| if (*rules[i] != *rhs.rules[i]) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| #define RECURSION_LIMIT 50 |
| |
| void |
| NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos) const |
| { |
| NFRule *rule = findNormalRule(number); |
| if (rule) { // else error, but can't report it |
| NFRuleSet* ncThis = (NFRuleSet*)this; |
| if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
| // stop recursion |
| ncThis->fRecursionCount = 0; |
| } else { |
| rule->doFormat(number, toAppendTo, pos); |
| ncThis->fRecursionCount--; |
| } |
| } |
| } |
| |
| void |
| NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos) const |
| { |
| NFRule *rule = findDoubleRule(number); |
| if (rule) { // else error, but can't report it |
| NFRuleSet* ncThis = (NFRuleSet*)this; |
| if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
| // stop recursion |
| ncThis->fRecursionCount = 0; |
| } else { |
| rule->doFormat(number, toAppendTo, pos); |
| ncThis->fRecursionCount--; |
| } |
| } |
| } |
| |
| NFRule* |
| NFRuleSet::findDoubleRule(double number) const |
| { |
| // if this is a fraction rule set, use findFractionRuleSetRule() |
| if (isFractionRuleSet()) { |
| return findFractionRuleSetRule(number); |
| } |
| |
| // if the number is negative, return the negative number rule |
| // (if there isn't a negative-number rule, we pretend it's a |
| // positive number) |
| if (number < 0) { |
| if (negativeNumberRule) { |
| return negativeNumberRule; |
| } else { |
| number = -number; |
| } |
| } |
| |
| // if the number isn't an integer, we use one of the fraction rules... |
| if (number != uprv_floor(number)) { |
| // if the number is between 0 and 1, return the proper |
| // fraction rule |
| if (number < 1 && fractionRules[1]) { |
| return fractionRules[1]; |
| } |
| // otherwise, return the improper fraction rule |
| else if (fractionRules[0]) { |
| return fractionRules[0]; |
| } |
| } |
| |
| // if there's a master rule, use it to format the number |
| if (fractionRules[2]) { |
| return fractionRules[2]; |
| } |
| |
| // and if we haven't yet returned a rule, use findNormalRule() |
| // to find the applicable rule |
| int64_t r = util64_fromDouble(number + 0.5); |
| return findNormalRule(r); |
| } |
| |
| NFRule * |
| NFRuleSet::findNormalRule(int64_t number) const |
| { |
| // if this is a fraction rule set, use findFractionRuleSetRule() |
| // to find the rule (we should only go into this clause if the |
| // value is 0) |
| if (fIsFractionRuleSet) { |
| return findFractionRuleSetRule((double)number); |
| } |
| |
| // if the number is negative, return the negative-number rule |
| // (if there isn't one, pretend the number is positive) |
| if (number < 0) { |
| if (negativeNumberRule) { |
| return negativeNumberRule; |
| } else { |
| number = -number; |
| } |
| } |
| |
| // we have to repeat the preceding two checks, even though we |
| // do them in findRule(), because the version of format() that |
| // takes a long bypasses findRule() and goes straight to this |
| // function. This function does skip the fraction rules since |
| // we know the value is an integer (it also skips the master |
| // rule, since it's considered a fraction rule. Skipping the |
| // master rule in this function is also how we avoid infinite |
| // recursion) |
| |
| // {dlf} unfortunately this fails if there are no rules except |
| // special rules. If there are no rules, use the master rule. |
| |
| // binary-search the rule list for the applicable rule |
| // (a rule is used for all values from its base value to |
| // the next rule's base value) |
| int32_t hi = rules.size(); |
| if (hi > 0) { |
| int32_t lo = 0; |
| |
| while (lo < hi) { |
| int32_t mid = (lo + hi) / 2; |
| if (rules[mid]->getBaseValue() == number) { |
| return rules[mid]; |
| } |
| else if (rules[mid]->getBaseValue() > number) { |
| hi = mid; |
| } |
| else { |
| lo = mid + 1; |
| } |
| } |
| if (hi == 0) { // bad rule set, minimum base > 0 |
| return NULL; // want to throw exception here |
| } |
| |
| NFRule *result = rules[hi - 1]; |
| |
| // use shouldRollBack() to see whether we need to invoke the |
| // rollback rule (see shouldRollBack()'s documentation for |
| // an explanation of the rollback rule). If we do, roll back |
| // one rule and return that one instead of the one we'd normally |
| // return |
| if (result->shouldRollBack((double)number)) { |
| if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
| return NULL; |
| } |
| result = rules[hi - 2]; |
| } |
| return result; |
| } |
| // else use the master rule |
| return fractionRules[2]; |
| } |
| |
| /** |
| * If this rule is a fraction rule set, this function is used by |
| * findRule() to select the most appropriate rule for formatting |
| * the number. Basically, the base value of each rule in the rule |
| * set is treated as the denominator of a fraction. Whichever |
| * denominator can produce the fraction closest in value to the |
| * number passed in is the result. If there's a tie, the earlier |
| * one in the list wins. (If there are two rules in a row with the |
| * same base value, the first one is used when the numerator of the |
| * fraction would be 1, and the second rule is used the rest of the |
| * time. |
| * @param number The number being formatted (which will always be |
| * a number between 0 and 1) |
| * @return The rule to use to format this number |
| */ |
| NFRule* |
| NFRuleSet::findFractionRuleSetRule(double number) const |
| { |
| // the obvious way to do this (multiply the value being formatted |
| // by each rule's base value until you get an integral result) |
| // doesn't work because of rounding error. This method is more |
| // accurate |
| |
| // find the least common multiple of the rules' base values |
| // and multiply this by the number being formatted. This is |
| // all the precision we need, and we can do all of the rest |
| // of the math using integer arithmetic |
| int64_t leastCommonMultiple = rules[0]->getBaseValue(); |
| int64_t numerator; |
| { |
| for (uint32_t i = 1; i < rules.size(); ++i) { |
| leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); |
| } |
| numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); |
| } |
| // for each rule, do the following... |
| int64_t tempDifference; |
| int64_t difference = util64_fromDouble(uprv_maxMantissa()); |
| int32_t winner = 0; |
| for (uint32_t i = 0; i < rules.size(); ++i) { |
| // "numerator" is the numerator of the fraction if the |
| // denominator is the LCD. The numerator if the rule's |
| // base value is the denominator is "numerator" times the |
| // base value divided bythe LCD. Here we check to see if |
| // that's an integer, and if not, how close it is to being |
| // an integer. |
| tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; |
| |
| |
| // normalize the result of the above calculation: we want |
| // the numerator's distance from the CLOSEST multiple |
| // of the LCD |
| if (leastCommonMultiple - tempDifference < tempDifference) { |
| tempDifference = leastCommonMultiple - tempDifference; |
| } |
| |
| // if this is as close as we've come, keep track of how close |
| // that is, and the line number of the rule that did it. If |
| // we've scored a direct hit, we don't have to look at any more |
| // rules |
| if (tempDifference < difference) { |
| difference = tempDifference; |
| winner = i; |
| if (difference == 0) { |
| break; |
| } |
| } |
| } |
| |
| // if we have two successive rules that both have the winning base |
| // value, then the first one (the one we found above) is used if |
| // the numerator of the fraction is 1 and the second one is used if |
| // the numerator of the fraction is anything else (this lets us |
| // do things like "one third"/"two thirds" without haveing to define |
| // a whole bunch of extra rule sets) |
| if ((unsigned)(winner + 1) < rules.size() && |
| rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { |
| double n = ((double)rules[winner]->getBaseValue()) * number; |
| if (n < 0.5 || n >= 2) { |
| ++winner; |
| } |
| } |
| |
| // finally, return the winning rule |
| return rules[winner]; |
| } |
| |
| /** |
| * Parses a string. Matches the string to be parsed against each |
| * of its rules (with a base value less than upperBound) and returns |
| * the value produced by the rule that matched the most charcters |
| * in the source string. |
| * @param text The string to parse |
| * @param parsePosition The initial position is ignored and assumed |
| * to be 0. On exit, this object has been updated to point to the |
| * first character position this rule set didn't consume. |
| * @param upperBound Limits the rules that can be allowed to match. |
| * Only rules whose base values are strictly less than upperBound |
| * are considered. |
| * @return The numerical result of parsing this string. This will |
| * be the matching rule's base value, composed appropriately with |
| * the results of matching any of its substitutions. The object |
| * will be an instance of Long if it's an integral value; otherwise, |
| * it will be an instance of Double. This function always returns |
| * a valid object: If nothing matched the input string at all, |
| * this function returns new Long(0), and the parse position is |
| * left unchanged. |
| */ |
| #ifdef RBNF_DEBUG |
| #include <stdio.h> |
| |
| static void dumpUS(FILE* f, const UnicodeString& us) { |
| int len = us.length(); |
| char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
| if (buf != NULL) { |
| us.extract(0, len, buf); |
| buf[len] = 0; |
| fprintf(f, "%s", buf); |
| uprv_free(buf); //delete[] buf; |
| } |
| } |
| #endif |
| |
| UBool |
| NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const |
| { |
| // try matching each rule in the rule set against the text being |
| // parsed. Whichever one matches the most characters is the one |
| // that determines the value we return. |
| |
| result.setLong(0); |
| |
| // dump out if there's no text to parse |
| if (text.length() == 0) { |
| return 0; |
| } |
| |
| ParsePosition highWaterMark; |
| ParsePosition workingPos = pos; |
| |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, "<nfrs> %x '", this); |
| dumpUS(stderr, name); |
| fprintf(stderr, "' text '"); |
| dumpUS(stderr, text); |
| fprintf(stderr, "'\n"); |
| fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); |
| #endif |
| |
| // start by trying the negative number rule (if there is one) |
| if (negativeNumberRule) { |
| Formattable tempResult; |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, " <nfrs before negative> %x ub: %g\n", negativeNumberRule, upperBound); |
| #endif |
| UBool success = negativeNumberRule->doParse(text, workingPos, 0, upperBound, tempResult); |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, " <nfrs after negative> success: %d wpi: %d\n", success, workingPos.getIndex()); |
| #endif |
| if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
| result = tempResult; |
| highWaterMark = workingPos; |
| } |
| workingPos = pos; |
| } |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, "<nfrs> continue fractional with text '"); |
| dumpUS(stderr, text); |
| fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
| #endif |
| // then try each of the fraction rules |
| { |
| for (int i = 0; i < 3; i++) { |
| if (fractionRules[i]) { |
| Formattable tempResult; |
| UBool success = fractionRules[i]->doParse(text, workingPos, 0, upperBound, tempResult); |
| if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
| result = tempResult; |
| highWaterMark = workingPos; |
| } |
| workingPos = pos; |
| } |
| } |
| } |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, "<nfrs> continue other with text '"); |
| dumpUS(stderr, text); |
| fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
| #endif |
| |
| // finally, go through the regular rules one at a time. We start |
| // at the end of the list because we want to try matching the most |
| // sigificant rule first (this helps ensure that we parse |
| // "five thousand three hundred six" as |
| // "(five thousand) (three hundred) (six)" rather than |
| // "((five thousand three) hundred) (six)"). Skip rules whose |
| // base values are higher than the upper bound (again, this helps |
| // limit ambiguity by making sure the rules that match a rule's |
| // are less significant than the rule containing the substitutions)/ |
| { |
| int64_t ub = util64_fromDouble(upperBound); |
| #ifdef RBNF_DEBUG |
| { |
| char ubstr[64]; |
| util64_toa(ub, ubstr, 64); |
| char ubstrhex[64]; |
| util64_toa(ub, ubstrhex, 64, 16); |
| fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); |
| } |
| #endif |
| for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { |
| if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { |
| continue; |
| } |
| Formattable tempResult; |
| UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); |
| if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
| result = tempResult; |
| highWaterMark = workingPos; |
| } |
| workingPos = pos; |
| } |
| } |
| #ifdef RBNF_DEBUG |
| fprintf(stderr, "<nfrs> exit\n"); |
| #endif |
| // finally, update the parse postion we were passed to point to the |
| // first character we didn't use, and return the result that |
| // corresponds to that string of characters |
| pos = highWaterMark; |
| |
| return 1; |
| } |
| |
| void |
| NFRuleSet::appendRules(UnicodeString& result) const |
| { |
| // the rule set name goes first... |
| result.append(name); |
| result.append(gColon); |
| result.append(gLineFeed); |
| |
| // followed by the regular rules... |
| for (uint32_t i = 0; i < rules.size(); i++) { |
| result.append(gFourSpaces); |
| rules[i]->_appendRuleText(result); |
| result.append(gLineFeed); |
| } |
| |
| // followed by the special rules (if they exist) |
| if (negativeNumberRule) { |
| result.append(gFourSpaces); |
| negativeNumberRule->_appendRuleText(result); |
| result.append(gLineFeed); |
| } |
| |
| { |
| for (uint32_t i = 0; i < 3; ++i) { |
| if (fractionRules[i]) { |
| result.append(gFourSpaces); |
| fractionRules[i]->_appendRuleText(result); |
| result.append(gLineFeed); |
| } |
| } |
| } |
| } |
| |
| // utility functions |
| |
| int64_t util64_fromDouble(double d) { |
| int64_t result = 0; |
| if (!uprv_isNaN(d)) { |
| double mant = uprv_maxMantissa(); |
| if (d < -mant) { |
| d = -mant; |
| } else if (d > mant) { |
| d = mant; |
| } |
| UBool neg = d < 0; |
| if (neg) { |
| d = -d; |
| } |
| result = (int64_t)uprv_floor(d); |
| if (neg) { |
| result = -result; |
| } |
| } |
| return result; |
| } |
| |
| int64_t util64_pow(int32_t r, uint32_t e) { |
| if (r == 0) { |
| return 0; |
| } else if (e == 0) { |
| return 1; |
| } else { |
| int64_t n = r; |
| while (--e > 0) { |
| n *= r; |
| } |
| return n; |
| } |
| } |
| |
| static const uint8_t asciiDigits[] = { |
| 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, |
| 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, |
| 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, |
| 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, |
| 0x77u, 0x78u, 0x79u, 0x7au, |
| }; |
| |
| static const UChar kUMinus = (UChar)0x002d; |
| |
| #ifdef RBNF_DEBUG |
| static const char kMinus = '-'; |
| |
| static const uint8_t digitInfo[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, |
| 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, |
| 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
| 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
| 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
| 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
| 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
| 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
| 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
| 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
| }; |
| |
| int64_t util64_atoi(const char* str, uint32_t radix) |
| { |
| if (radix > 36) { |
| radix = 36; |
| } else if (radix < 2) { |
| radix = 2; |
| } |
| int64_t lradix = radix; |
| |
| int neg = 0; |
| if (*str == kMinus) { |
| ++str; |
| neg = 1; |
| } |
| int64_t result = 0; |
| uint8_t b; |
| while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { |
| result *= lradix; |
| result += (int32_t)b; |
| } |
| if (neg) { |
| result = -result; |
| } |
| return result; |
| } |
| |
| int64_t util64_utoi(const UChar* str, uint32_t radix) |
| { |
| if (radix > 36) { |
| radix = 36; |
| } else if (radix < 2) { |
| radix = 2; |
| } |
| int64_t lradix = radix; |
| |
| int neg = 0; |
| if (*str == kUMinus) { |
| ++str; |
| neg = 1; |
| } |
| int64_t result = 0; |
| UChar c; |
| uint8_t b; |
| while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { |
| result *= lradix; |
| result += (int32_t)b; |
| } |
| if (neg) { |
| result = -result; |
| } |
| return result; |
| } |
| |
| uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
| { |
| if (radix > 36) { |
| radix = 36; |
| } else if (radix < 2) { |
| radix = 2; |
| } |
| int64_t base = radix; |
| |
| char* p = buf; |
| if (len && (w < 0) && (radix == 10) && !raw) { |
| w = -w; |
| *p++ = kMinus; |
| --len; |
| } else if (len && (w == 0)) { |
| *p++ = (char)raw ? 0 : asciiDigits[0]; |
| --len; |
| } |
| |
| while (len && w != 0) { |
| int64_t n = w / base; |
| int64_t m = n * base; |
| int32_t d = (int32_t)(w-m); |
| *p++ = raw ? (char)d : asciiDigits[d]; |
| w = n; |
| --len; |
| } |
| if (len) { |
| *p = 0; // null terminate if room for caller convenience |
| } |
| |
| len = p - buf; |
| if (*buf == kMinus) { |
| ++buf; |
| } |
| while (--p > buf) { |
| char c = *p; |
| *p = *buf; |
| *buf = c; |
| ++buf; |
| } |
| |
| return len; |
| } |
| #endif |
| |
| uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) |
| { |
| if (radix > 36) { |
| radix = 36; |
| } else if (radix < 2) { |
| radix = 2; |
| } |
| int64_t base = radix; |
| |
| UChar* p = buf; |
| if (len && (w < 0) && (radix == 10) && !raw) { |
| w = -w; |
| *p++ = kUMinus; |
| --len; |
| } else if (len && (w == 0)) { |
| *p++ = (UChar)raw ? 0 : asciiDigits[0]; |
| --len; |
| } |
| |
| while (len && (w != 0)) { |
| int64_t n = w / base; |
| int64_t m = n * base; |
| int32_t d = (int32_t)(w-m); |
| *p++ = (UChar)(raw ? d : asciiDigits[d]); |
| w = n; |
| --len; |
| } |
| if (len) { |
| *p = 0; // null terminate if room for caller convenience |
| } |
| |
| len = (uint32_t)(p - buf); |
| if (*buf == kUMinus) { |
| ++buf; |
| } |
| while (--p > buf) { |
| UChar c = *p; |
| *p = *buf; |
| *buf = c; |
| ++buf; |
| } |
| |
| return len; |
| } |
| |
| |
| U_NAMESPACE_END |
| |
| /* U_HAVE_RBNF */ |
| #endif |
| |