| /* |
| ******************************************************************************* |
| * Copyright (C) 1996-2011, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| * file name: ucol.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * Modification history |
| * Date Name Comments |
| * 1996-1999 various members of ICU team maintained C API for collation framework |
| * 02/16/2001 synwee Added internal method getPrevSpecialCE |
| * 03/01/2001 synwee Added maxexpansion functionality. |
| * 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_COLLATION |
| |
| #include "unicode/coleitr.h" |
| #include "unicode/unorm.h" |
| #include "unicode/udata.h" |
| #include "unicode/ustring.h" |
| |
| #include "ucol_imp.h" |
| #include "bocsu.h" |
| |
| #include "normalizer2impl.h" |
| #include "unorm_it.h" |
| #include "umutex.h" |
| #include "cmemory.h" |
| #include "ucln_in.h" |
| #include "cstring.h" |
| #include "utracimp.h" |
| #include "putilimp.h" |
| #include "uassert.h" |
| |
| #ifdef UCOL_DEBUG |
| #include <stdio.h> |
| #endif |
| |
| U_NAMESPACE_USE |
| |
| #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
| |
| #define LAST_BYTE_MASK_ 0xFF |
| #define SECOND_LAST_BYTE_SHIFT_ 8 |
| |
| #define ZERO_CC_LIMIT_ 0xC0 |
| |
| // this is static pointer to the normalizer fcdTrieIndex |
| // it is always the same between calls to u_cleanup |
| // and therefore writing to it is not synchronized. |
| // It is cleaned in ucol_cleanup |
| static const uint16_t *fcdTrieIndex=NULL; |
| // Code points at fcdHighStart and above have a zero FCD value. |
| static UChar32 fcdHighStart = 0; |
| |
| // These are values from UCA required for |
| // implicit generation and supressing sort key compression |
| // they should regularly be in the UCA, but if one |
| // is running without UCA, it could be a problem |
| static const int32_t maxRegularPrimary = 0x7A; |
| static const int32_t minImplicitPrimary = 0xE0; |
| static const int32_t maxImplicitPrimary = 0xE4; |
| |
| U_CDECL_BEGIN |
| static UBool U_CALLCONV |
| ucol_cleanup(void) |
| { |
| fcdTrieIndex = NULL; |
| return TRUE; |
| } |
| |
| static int32_t U_CALLCONV |
| _getFoldingOffset(uint32_t data) { |
| return (int32_t)(data&0xFFFFFF); |
| } |
| |
| U_CDECL_END |
| |
| // init FCD data |
| static inline |
| UBool initializeFCD(UErrorCode *status) { |
| if (fcdTrieIndex != NULL) { |
| return TRUE; |
| } else { |
| // The result is constant, until the library is reloaded. |
| fcdTrieIndex = unorm_getFCDTrieIndex(fcdHighStart, status); |
| ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); |
| return U_SUCCESS(*status); |
| } |
| } |
| |
| static |
| inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString, |
| int32_t sourceLen, collIterate *s, |
| UErrorCode *status) |
| { |
| (s)->string = (s)->pos = sourceString; |
| (s)->origFlags = 0; |
| (s)->flags = 0; |
| if (sourceLen >= 0) { |
| s->flags |= UCOL_ITER_HASLEN; |
| (s)->endp = (UChar *)sourceString+sourceLen; |
| } |
| else { |
| /* change to enable easier checking for end of string for fcdpositon */ |
| (s)->endp = NULL; |
| } |
| (s)->extendCEs = NULL; |
| (s)->extendCEsSize = 0; |
| (s)->CEpos = (s)->toReturn = (s)->CEs; |
| (s)->offsetBuffer = NULL; |
| (s)->offsetBufferSize = 0; |
| (s)->offsetReturn = (s)->offsetStore = NULL; |
| (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0; |
| (s)->coll = (collator); |
| (s)->nfd = Normalizer2Factory::getNFDInstance(*status); |
| (s)->fcdPosition = 0; |
| if(collator->normalizationMode == UCOL_ON) { |
| (s)->flags |= UCOL_ITER_NORM; |
| } |
| if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) { |
| (s)->flags |= UCOL_HIRAGANA_Q; |
| } |
| (s)->iterator = NULL; |
| //(s)->iteratorIndex = 0; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| uprv_init_collIterate(const UCollator *collator, const UChar *sourceString, |
| int32_t sourceLen, collIterate *s, |
| UErrorCode *status) { |
| /* Out-of-line version for use from other files. */ |
| IInit_collIterate(collator, sourceString, sourceLen, s, status); |
| } |
| |
| U_CAPI collIterate * U_EXPORT2 |
| uprv_new_collIterate(UErrorCode *status) { |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| collIterate *s = new collIterate; |
| if(s == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| return s; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| uprv_delete_collIterate(collIterate *s) { |
| delete s; |
| } |
| |
| U_CAPI UBool U_EXPORT2 |
| uprv_collIterateAtEnd(collIterate *s) { |
| return s == NULL || s->pos == s->endp; |
| } |
| |
| /** |
| * Backup the state of the collIterate struct data |
| * @param data collIterate to backup |
| * @param backup storage |
| */ |
| static |
| inline void backupState(const collIterate *data, collIterateState *backup) |
| { |
| backup->fcdPosition = data->fcdPosition; |
| backup->flags = data->flags; |
| backup->origFlags = data->origFlags; |
| backup->pos = data->pos; |
| backup->bufferaddress = data->writableBuffer.getBuffer(); |
| backup->buffersize = data->writableBuffer.length(); |
| backup->iteratorMove = 0; |
| backup->iteratorIndex = 0; |
| if(data->iterator != NULL) { |
| //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT); |
| backup->iteratorIndex = data->iterator->getState(data->iterator); |
| // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE |
| if(backup->iteratorIndex == UITER_NO_STATE) { |
| while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) { |
| backup->iteratorMove++; |
| data->iterator->move(data->iterator, -1, UITER_CURRENT); |
| } |
| data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
| } |
| } |
| } |
| |
| /** |
| * Loads the state into the collIterate struct data |
| * @param data collIterate to backup |
| * @param backup storage |
| * @param forwards boolean to indicate if forwards iteration is used, |
| * false indicates backwards iteration |
| */ |
| static |
| inline void loadState(collIterate *data, const collIterateState *backup, |
| UBool forwards) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| data->flags = backup->flags; |
| data->origFlags = backup->origFlags; |
| if(data->iterator != NULL) { |
| //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO); |
| data->iterator->setState(data->iterator, backup->iteratorIndex, &status); |
| if(backup->iteratorMove != 0) { |
| data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); |
| } |
| } |
| data->pos = backup->pos; |
| |
| if ((data->flags & UCOL_ITER_INNORMBUF) && |
| data->writableBuffer.getBuffer() != backup->bufferaddress) { |
| /* |
| this is when a new buffer has been reallocated and we'll have to |
| calculate the new position. |
| note the new buffer has to contain the contents of the old buffer. |
| */ |
| if (forwards) { |
| data->pos = data->writableBuffer.getTerminatedBuffer() + |
| (data->pos - backup->bufferaddress); |
| } |
| else { |
| /* backwards direction */ |
| int32_t temp = backup->buffersize - |
| (int32_t)(data->pos - backup->bufferaddress); |
| data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp); |
| } |
| } |
| if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
| /* |
| this is alittle tricky. |
| if we are initially not in the normalization buffer, even if we |
| normalize in the later stage, the data in the buffer will be |
| ignored, since we skip back up to the data string. |
| however if we are already in the normalization buffer, any |
| further normalization will pull data into the normalization |
| buffer and modify the fcdPosition. |
| since we are keeping the data in the buffer for use, the |
| fcdPosition can not be reverted back. |
| arrgghh.... |
| */ |
| data->fcdPosition = backup->fcdPosition; |
| } |
| } |
| |
| static UBool |
| reallocCEs(collIterate *data, int32_t newCapacity) { |
| uint32_t *oldCEs = data->extendCEs; |
| if(oldCEs == NULL) { |
| oldCEs = data->CEs; |
| } |
| int32_t length = data->CEpos - oldCEs; |
| uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4); |
| if(newCEs == NULL) { |
| return FALSE; |
| } |
| uprv_memcpy(newCEs, oldCEs, length * 4); |
| uprv_free(data->extendCEs); |
| data->extendCEs = newCEs; |
| data->extendCEsSize = newCapacity; |
| data->CEpos = newCEs + length; |
| return TRUE; |
| } |
| |
| static UBool |
| increaseCEsCapacity(collIterate *data) { |
| int32_t oldCapacity; |
| if(data->extendCEs != NULL) { |
| oldCapacity = data->extendCEsSize; |
| } else { |
| oldCapacity = LENGTHOF(data->CEs); |
| } |
| return reallocCEs(data, 2 * oldCapacity); |
| } |
| |
| static UBool |
| ensureCEsCapacity(collIterate *data, int32_t minCapacity) { |
| int32_t oldCapacity; |
| if(data->extendCEs != NULL) { |
| oldCapacity = data->extendCEsSize; |
| } else { |
| oldCapacity = LENGTHOF(data->CEs); |
| } |
| if(minCapacity <= oldCapacity) { |
| return TRUE; |
| } |
| oldCapacity *= 2; |
| return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity); |
| } |
| |
| void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer); |
| if(length >= offsetBufferSize) { |
| int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE; |
| int32_t *newBuffer = reinterpret_cast<int32_t *>(uprv_malloc(newCapacity * 4)); |
| if(newBuffer == NULL) { |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| if(length > 0) { |
| uprv_memcpy(newBuffer, offsetBuffer, length * 4); |
| } |
| uprv_free(offsetBuffer); |
| offsetBuffer = newBuffer; |
| offsetStore = offsetBuffer + length; |
| offsetBufferSize = newCapacity; |
| } |
| *offsetStore++ = offset; |
| } |
| |
| /* |
| * collIter_eos() |
| * Checks for a collIterate being positioned at the end of |
| * its source string. |
| * |
| */ |
| static |
| inline UBool collIter_eos(collIterate *s) { |
| if(s->flags & UCOL_USE_ITERATOR) { |
| return !(s->iterator->hasNext(s->iterator)); |
| } |
| if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) { |
| // Null terminated string, but not at null, so not at end. |
| // Whether in main or normalization buffer doesn't matter. |
| return FALSE; |
| } |
| |
| // String with length. Can't be in normalization buffer, which is always |
| // null termintated. |
| if (s->flags & UCOL_ITER_HASLEN) { |
| return (s->pos == s->endp); |
| } |
| |
| // We are at a null termination, could be either normalization buffer or main string. |
| if ((s->flags & UCOL_ITER_INNORMBUF) == 0) { |
| // At null at end of main string. |
| return TRUE; |
| } |
| |
| // At null at end of normalization buffer. Need to check whether there there are |
| // any characters left in the main buffer. |
| if(s->origFlags & UCOL_USE_ITERATOR) { |
| return !(s->iterator->hasNext(s->iterator)); |
| } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) { |
| // Null terminated main string. fcdPosition is the 'return' position into main buf. |
| return (*s->fcdPosition == 0); |
| } |
| else { |
| // Main string with an end pointer. |
| return s->fcdPosition == s->endp; |
| } |
| } |
| |
| /* |
| * collIter_bos() |
| * Checks for a collIterate being positioned at the start of |
| * its source string. |
| * |
| */ |
| static |
| inline UBool collIter_bos(collIterate *source) { |
| // if we're going backwards, we need to know whether there is more in the |
| // iterator, even if we are in the side buffer |
| if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
| return !source->iterator->hasPrevious(source->iterator); |
| } |
| if (source->pos <= source->string || |
| ((source->flags & UCOL_ITER_INNORMBUF) && |
| *(source->pos - 1) == 0 && source->fcdPosition == NULL)) { |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /*static |
| inline UBool collIter_SimpleBos(collIterate *source) { |
| // if we're going backwards, we need to know whether there is more in the |
| // iterator, even if we are in the side buffer |
| if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { |
| return !source->iterator->hasPrevious(source->iterator); |
| } |
| if (source->pos == source->string) { |
| return TRUE; |
| } |
| return FALSE; |
| }*/ |
| //return (data->pos == data->string) || |
| |
| |
| /****************************************************************************/ |
| /* Following are the open/close functions */ |
| /* */ |
| /****************************************************************************/ |
| |
| static UCollator* |
| ucol_initFromBinary(const uint8_t *bin, int32_t length, |
| const UCollator *base, |
| UCollator *fillIn, |
| UErrorCode *status) |
| { |
| UCollator *result = fillIn; |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| /* |
| if(base == NULL) { |
| // we don't support null base yet |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| */ |
| // We need these and we could be running without UCA |
| uprv_uca_initImplicitConstants(status); |
| UCATableHeader *colData = (UCATableHeader *)bin; |
| // do we want version check here? We're trying to figure out whether collators are compatible |
| if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 || |
| uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) || |
| colData->version[0] != UCOL_BUILDER_VERSION) |
| { |
| *status = U_COLLATOR_VERSION_MISMATCH; |
| return NULL; |
| } |
| else { |
| if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) { |
| result = ucol_initCollator((const UCATableHeader *)bin, result, base, status); |
| if(U_FAILURE(*status)){ |
| return NULL; |
| } |
| result->hasRealData = TRUE; |
| } |
| else { |
| if(base) { |
| result = ucol_initCollator(base->image, result, base, status); |
| ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status); |
| if(U_FAILURE(*status)){ |
| return NULL; |
| } |
| result->hasRealData = FALSE; |
| } |
| else { |
| *status = U_USELESS_COLLATOR_ERROR; |
| return NULL; |
| } |
| } |
| result->freeImageOnClose = FALSE; |
| } |
| result->actualLocale = NULL; |
| result->validLocale = NULL; |
| result->requestedLocale = NULL; |
| result->rules = NULL; |
| result->rulesLength = 0; |
| result->freeRulesOnClose = FALSE; |
| result->ucaRules = NULL; |
| return result; |
| } |
| |
| U_CAPI UCollator* U_EXPORT2 |
| ucol_openBinary(const uint8_t *bin, int32_t length, |
| const UCollator *base, |
| UErrorCode *status) |
| { |
| return ucol_initFromBinary(bin, length, base, NULL, status); |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| ucol_cloneBinary(const UCollator *coll, |
| uint8_t *buffer, int32_t capacity, |
| UErrorCode *status) |
| { |
| int32_t length = 0; |
| if(U_FAILURE(*status)) { |
| return length; |
| } |
| if(capacity < 0) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return length; |
| } |
| if(coll->hasRealData == TRUE) { |
| length = coll->image->size; |
| if(length <= capacity) { |
| uprv_memcpy(buffer, coll->image, length); |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } else { |
| length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); |
| if(length <= capacity) { |
| /* build the UCATableHeader with minimal entries */ |
| /* do not copy the header from the UCA file because its values are wrong! */ |
| /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ |
| |
| /* reset everything */ |
| uprv_memset(buffer, 0, length); |
| |
| /* set the tailoring-specific values */ |
| UCATableHeader *myData = (UCATableHeader *)buffer; |
| myData->size = length; |
| |
| /* offset for the options, the only part of the data that is present after the header */ |
| myData->options = sizeof(UCATableHeader); |
| |
| /* need to always set the expansion value for an upper bound of the options */ |
| myData->expansion = myData->options + sizeof(UColOptionSet); |
| |
| myData->magic = UCOL_HEADER_MAGIC; |
| myData->isBigEndian = U_IS_BIG_ENDIAN; |
| myData->charSetFamily = U_CHARSET_FAMILY; |
| |
| /* copy UCA's version; genrb will override all but the builder version with tailoring data */ |
| uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); |
| |
| uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); |
| uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); |
| uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); |
| myData->jamoSpecial = coll->image->jamoSpecial; |
| |
| /* copy the collator options */ |
| uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| return length; |
| } |
| |
| U_CAPI UCollator* U_EXPORT2 |
| ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status) |
| { |
| UCollator * localCollator; |
| int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator); |
| char *stackBufferChars = (char *)stackBuffer; |
| int32_t imageSize = 0; |
| int32_t rulesSize = 0; |
| int32_t rulesPadding = 0; |
| uint8_t *image; |
| UChar *rules; |
| UBool colAllocated = FALSE; |
| UBool imageAllocated = FALSE; |
| |
| if (status == NULL || U_FAILURE(*status)){ |
| return 0; |
| } |
| if ((stackBuffer && !pBufferSize) || !coll){ |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| if (coll->rules && coll->freeRulesOnClose) { |
| rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar); |
| rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar)); |
| bufferSizeNeeded += rulesSize + rulesPadding; |
| } |
| |
| if (stackBuffer && *pBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */ |
| *pBufferSize = bufferSizeNeeded; |
| return 0; |
| } |
| |
| /* Pointers on 64-bit platforms need to be aligned |
| * on a 64-bit boundry in memory. |
| */ |
| if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { |
| int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars); |
| if (*pBufferSize > offsetUp) { |
| *pBufferSize -= offsetUp; |
| stackBufferChars += offsetUp; |
| } |
| else { |
| /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */ |
| *pBufferSize = 1; |
| } |
| } |
| stackBuffer = (void *)stackBufferChars; |
| |
| if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) { |
| /* allocate one here...*/ |
| stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded); |
| // Null pointer check. |
| if (stackBufferChars == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| colAllocated = TRUE; |
| if (U_SUCCESS(*status)) { |
| *status = U_SAFECLONE_ALLOCATED_WARNING; |
| } |
| } |
| localCollator = (UCollator *)stackBufferChars; |
| rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding); |
| { |
| UErrorCode tempStatus = U_ZERO_ERROR; |
| imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus); |
| } |
| if (coll->freeImageOnClose) { |
| image = (uint8_t *)uprv_malloc(imageSize); |
| // Null pointer check |
| if (image == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| ucol_cloneBinary(coll, image, imageSize, status); |
| imageAllocated = TRUE; |
| } |
| else { |
| image = (uint8_t *)coll->image; |
| } |
| localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status); |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| |
| if (coll->rules) { |
| if (coll->freeRulesOnClose) { |
| localCollator->rules = u_strcpy(rules, coll->rules); |
| //bufferEnd += rulesSize; |
| } |
| else { |
| localCollator->rules = coll->rules; |
| } |
| localCollator->freeRulesOnClose = FALSE; |
| localCollator->rulesLength = coll->rulesLength; |
| } |
| |
| int32_t i; |
| for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) { |
| ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status); |
| } |
| // zero copies of pointers |
| localCollator->actualLocale = NULL; |
| localCollator->validLocale = NULL; |
| localCollator->requestedLocale = NULL; |
| localCollator->ucaRules = coll->ucaRules; // There should only be one copy here. |
| localCollator->freeOnClose = colAllocated; |
| localCollator->freeImageOnClose = imageAllocated; |
| return localCollator; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| ucol_close(UCollator *coll) |
| { |
| UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE); |
| UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll); |
| if(coll != NULL) { |
| // these are always owned by each UCollator struct, |
| // so we always free them |
| if(coll->validLocale != NULL) { |
| uprv_free(coll->validLocale); |
| } |
| if(coll->actualLocale != NULL) { |
| uprv_free(coll->actualLocale); |
| } |
| if(coll->requestedLocale != NULL) { |
| uprv_free(coll->requestedLocale); |
| } |
| if(coll->latinOneCEs != NULL) { |
| uprv_free(coll->latinOneCEs); |
| } |
| if(coll->options != NULL && coll->freeOptionsOnClose) { |
| uprv_free(coll->options); |
| } |
| if(coll->rules != NULL && coll->freeRulesOnClose) { |
| uprv_free((UChar *)coll->rules); |
| } |
| if(coll->image != NULL && coll->freeImageOnClose) { |
| uprv_free((UCATableHeader *)coll->image); |
| } |
| if(coll->leadBytePermutationTable != NULL) { |
| uprv_free(coll->leadBytePermutationTable); |
| } |
| if(coll->reorderCodes != NULL) { |
| uprv_free(coll->reorderCodes); |
| } |
| |
| /* Here, it would be advisable to close: */ |
| /* - UData for UCA (unless we stuff it in the root resb */ |
| /* Again, do we need additional housekeeping... HMMM! */ |
| UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose); |
| if(coll->freeOnClose){ |
| /* for safeClone, if freeOnClose is FALSE, |
| don't free the other instance data */ |
| uprv_free(coll); |
| } |
| } |
| UTRACE_EXIT(); |
| } |
| |
| /* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/ |
| /* you should be able to get the binary chunk to write out... Doesn't look very full now */ |
| U_CFUNC uint8_t* U_EXPORT2 |
| ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status) |
| { |
| uint8_t *result = NULL; |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| if(coll->hasRealData == TRUE) { |
| *length = coll->image->size; |
| result = (uint8_t *)uprv_malloc(*length); |
| /* test for NULL */ |
| if (result == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memcpy(result, coll->image, *length); |
| } else { |
| *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); |
| result = (uint8_t *)uprv_malloc(*length); |
| /* test for NULL */ |
| if (result == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| |
| /* build the UCATableHeader with minimal entries */ |
| /* do not copy the header from the UCA file because its values are wrong! */ |
| /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ |
| |
| /* reset everything */ |
| uprv_memset(result, 0, *length); |
| |
| /* set the tailoring-specific values */ |
| UCATableHeader *myData = (UCATableHeader *)result; |
| myData->size = *length; |
| |
| /* offset for the options, the only part of the data that is present after the header */ |
| myData->options = sizeof(UCATableHeader); |
| |
| /* need to always set the expansion value for an upper bound of the options */ |
| myData->expansion = myData->options + sizeof(UColOptionSet); |
| |
| myData->magic = UCOL_HEADER_MAGIC; |
| myData->isBigEndian = U_IS_BIG_ENDIAN; |
| myData->charSetFamily = U_CHARSET_FAMILY; |
| |
| /* copy UCA's version; genrb will override all but the builder version with tailoring data */ |
| uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); |
| |
| uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); |
| uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); |
| uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); |
| myData->jamoSpecial = coll->image->jamoSpecial; |
| |
| /* copy the collator options */ |
| uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); |
| } |
| return result; |
| } |
| |
| void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) { |
| if(U_FAILURE(*status)) { |
| return; |
| } |
| result->caseFirst = (UColAttributeValue)opts->caseFirst; |
| result->caseLevel = (UColAttributeValue)opts->caseLevel; |
| result->frenchCollation = (UColAttributeValue)opts->frenchCollation; |
| result->normalizationMode = (UColAttributeValue)opts->normalizationMode; |
| if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) { |
| return; |
| } |
| result->strength = (UColAttributeValue)opts->strength; |
| result->variableTopValue = opts->variableTopValue; |
| result->alternateHandling = (UColAttributeValue)opts->alternateHandling; |
| result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ; |
| result->numericCollation = (UColAttributeValue)opts->numericCollation; |
| result->caseFirstisDefault = TRUE; |
| result->caseLevelisDefault = TRUE; |
| result->frenchCollationisDefault = TRUE; |
| result->normalizationModeisDefault = TRUE; |
| result->strengthisDefault = TRUE; |
| result->variableTopValueisDefault = TRUE; |
| result->alternateHandlingisDefault = TRUE; |
| result->hiraganaQisDefault = TRUE; |
| result->numericCollationisDefault = TRUE; |
| |
| ucol_updateInternalState(result, status); |
| |
| result->options = opts; |
| } |
| |
| |
| /** |
| * Approximate determination if a character is at a contraction end. |
| * Guaranteed to be TRUE if a character is at the end of a contraction, |
| * otherwise it is not deterministic. |
| * @param c character to be determined |
| * @param coll collator |
| */ |
| static |
| inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) { |
| if (c < coll->minContrEndCP) { |
| return FALSE; |
| } |
| |
| int32_t hash = c; |
| uint8_t htbyte; |
| if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { |
| if (U16_IS_TRAIL(c)) { |
| return TRUE; |
| } |
| hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; |
| } |
| htbyte = coll->contrEndCP[hash>>3]; |
| return (((htbyte >> (hash & 7)) & 1) == 1); |
| } |
| |
| |
| |
| /* |
| * i_getCombiningClass() |
| * A fast, at least partly inline version of u_getCombiningClass() |
| * This is a candidate for further optimization. Used heavily |
| * in contraction processing. |
| */ |
| static |
| inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) { |
| uint8_t sCC = 0; |
| if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) { |
| sCC = u_getCombiningClass(c); |
| } |
| return sCC; |
| } |
| |
| UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) { |
| UChar c; |
| UCollator *result = fillIn; |
| if(U_FAILURE(*status) || image == NULL) { |
| return NULL; |
| } |
| |
| if(result == NULL) { |
| result = (UCollator *)uprv_malloc(sizeof(UCollator)); |
| if(result == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return result; |
| } |
| result->freeOnClose = TRUE; |
| } else { |
| result->freeOnClose = FALSE; |
| } |
| |
| result->image = image; |
| result->mapping.getFoldingOffset = _getFoldingOffset; |
| const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition; |
| utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status); |
| if(U_FAILURE(*status)) { |
| if(result->freeOnClose == TRUE) { |
| uprv_free(result); |
| result = NULL; |
| } |
| return result; |
| } |
| |
| result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping); |
| result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs); |
| result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex); |
| result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion); |
| result->rules = NULL; |
| result->rulesLength = 0; |
| result->freeRulesOnClose = FALSE; |
| result->reorderCodes = NULL; |
| result->reorderCodesLength = 0; |
| result->leadBytePermutationTable = NULL; |
| |
| /* get the version info from UCATableHeader and populate the Collator struct*/ |
| result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/ |
| result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/ |
| result->dataVersion[2] = 0; |
| result->dataVersion[3] = 0; |
| |
| result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP; |
| result->minUnsafeCP = 0; |
| for (c=0; c<0x300; c++) { // Find the smallest unsafe char. |
| if (ucol_unsafeCP(c, result)) break; |
| } |
| result->minUnsafeCP = c; |
| |
| result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP; |
| result->minContrEndCP = 0; |
| for (c=0; c<0x300; c++) { // Find the Contraction-ending char. |
| if (ucol_contractionEndCP(c, result)) break; |
| } |
| result->minContrEndCP = c; |
| |
| /* max expansion tables */ |
| result->endExpansionCE = (uint32_t*)((uint8_t*)result->image + |
| result->image->endExpansionCE); |
| result->lastEndExpansionCE = result->endExpansionCE + |
| result->image->endExpansionCECount - 1; |
| result->expansionCESize = (uint8_t*)result->image + |
| result->image->expansionCESize; |
| |
| |
| //result->errorCode = *status; |
| |
| result->latinOneCEs = NULL; |
| |
| result->latinOneRegenTable = FALSE; |
| result->latinOneFailed = FALSE; |
| result->UCA = UCA; |
| |
| /* Normally these will be set correctly later. This is the default if you use UCA or the default. */ |
| result->ucaRules = NULL; |
| result->actualLocale = NULL; |
| result->validLocale = NULL; |
| result->requestedLocale = NULL; |
| result->hasRealData = FALSE; // real data lives in .dat file... |
| result->freeImageOnClose = FALSE; |
| |
| /* set attributes */ |
| ucol_setOptionsFromHeader( |
| result, |
| (UColOptionSet*)((uint8_t*)result->image+result->image->options), |
| status); |
| result->freeOptionsOnClose = FALSE; |
| |
| return result; |
| } |
| |
| /* new Mark's code */ |
| |
| /** |
| * For generation of Implicit CEs |
| * @author Davis |
| * |
| * Cleaned up so that changes can be made more easily. |
| * Old values: |
| # First Implicit: E26A792D |
| # Last Implicit: E3DC70C0 |
| # First CJK: E0030300 |
| # Last CJK: E0A9DD00 |
| # First CJK_A: E0A9DF00 |
| # Last CJK_A: E0DE3100 |
| */ |
| /* Following is a port of Mark's code for new treatment of implicits. |
| * It is positioned here, since ucol_initUCA need to initialize the |
| * variables below according to the data in the fractional UCA. |
| */ |
| |
| /** |
| * Function used to: |
| * a) collapse the 2 different Han ranges from UCA into one (in the right order), and |
| * b) bump any non-CJK characters by 10FFFF. |
| * The relevant blocks are: |
| * A: 4E00..9FFF; CJK Unified Ideographs |
| * F900..FAFF; CJK Compatibility Ideographs |
| * B: 3400..4DBF; CJK Unified Ideographs Extension A |
| * 20000..XX; CJK Unified Ideographs Extension B (and others later on) |
| * As long as |
| * no new B characters are allocated between 4E00 and FAFF, and |
| * no new A characters are outside of this range, |
| * (very high probability) this simple code will work. |
| * The reordered blocks are: |
| * Block1 is CJK |
| * Block2 is CJK_COMPAT_USED |
| * Block3 is CJK_A |
| * (all contiguous) |
| * Any other CJK gets its normal code point |
| * Any non-CJK gets +10FFFF |
| * When we reorder Block1, we make sure that it is at the very start, |
| * so that it will use a 3-byte form. |
| * Warning: the we only pick up the compatibility characters that are |
| * NOT decomposed, so that block is smaller! |
| */ |
| |
| // CONSTANTS |
| static const UChar32 |
| NON_CJK_OFFSET = 0x110000, |
| UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2 |
| |
| /** |
| * Precomputed by initImplicitConstants() |
| */ |
| static int32_t |
| final3Multiplier = 0, |
| final4Multiplier = 0, |
| final3Count = 0, |
| final4Count = 0, |
| medialCount = 0, |
| min3Primary = 0, |
| min4Primary = 0, |
| max4Primary = 0, |
| minTrail = 0, |
| maxTrail = 0, |
| max3Trail = 0, |
| max4Trail = 0, |
| min4Boundary = 0; |
| |
| static const UChar32 |
| // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;; |
| // 9FCB;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;; |
| CJK_BASE = 0x4E00, |
| CJK_LIMIT = 0x9FCB+1, |
| // Unified CJK ideographs in the compatibility ideographs block. |
| CJK_COMPAT_USED_BASE = 0xFA0E, |
| CJK_COMPAT_USED_LIMIT = 0xFA2F+1, |
| // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;; |
| // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;; |
| CJK_A_BASE = 0x3400, |
| CJK_A_LIMIT = 0x4DB5+1, |
| // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;; |
| // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;; |
| CJK_B_BASE = 0x20000, |
| CJK_B_LIMIT = 0x2A6D6+1, |
| // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;; |
| // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;; |
| CJK_C_BASE = 0x2A700, |
| CJK_C_LIMIT = 0x2B734+1, |
| // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;; |
| // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;; |
| CJK_D_BASE = 0x2B740, |
| CJK_D_LIMIT = 0x2B81D+1; |
| // when adding to this list, look for all occurrences (in project) |
| // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!! |
| |
| static UChar32 swapCJK(UChar32 i) { |
| if (i < CJK_A_BASE) { |
| // non-CJK |
| } else if (i < CJK_A_LIMIT) { |
| // Extension A has lower code points than the original Unihan+compat |
| // but sorts higher. |
| return i - CJK_A_BASE |
| + (CJK_LIMIT - CJK_BASE) |
| + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
| } else if (i < CJK_BASE) { |
| // non-CJK |
| } else if (i < CJK_LIMIT) { |
| return i - CJK_BASE; |
| } else if (i < CJK_COMPAT_USED_BASE) { |
| // non-CJK |
| } else if (i < CJK_COMPAT_USED_LIMIT) { |
| return i - CJK_COMPAT_USED_BASE |
| + (CJK_LIMIT - CJK_BASE); |
| } else if (i < CJK_B_BASE) { |
| // non-CJK |
| } else if (i < CJK_B_LIMIT) { |
| return i; // non-BMP-CJK |
| } else if (i < CJK_C_BASE) { |
| // non-CJK |
| } else if (i < CJK_C_LIMIT) { |
| return i; // non-BMP-CJK |
| } else if (i < CJK_D_BASE) { |
| // non-CJK |
| } else if (i < CJK_D_LIMIT) { |
| return i; // non-BMP-CJK |
| } |
| return i + NON_CJK_OFFSET; // non-CJK |
| } |
| |
| U_CAPI UChar32 U_EXPORT2 |
| uprv_uca_getRawFromCodePoint(UChar32 i) { |
| return swapCJK(i)+1; |
| } |
| |
| U_CAPI UChar32 U_EXPORT2 |
| uprv_uca_getCodePointFromRaw(UChar32 i) { |
| i--; |
| UChar32 result = 0; |
| if(i >= NON_CJK_OFFSET) { |
| result = i - NON_CJK_OFFSET; |
| } else if(i >= CJK_B_BASE) { |
| result = i; |
| } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted |
| if(i < CJK_LIMIT - CJK_BASE) { |
| result = i + CJK_BASE; |
| } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { |
| result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE); |
| } else { |
| result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); |
| } |
| } else { |
| result = -1; |
| } |
| return result; |
| } |
| |
| // GET IMPLICIT PRIMARY WEIGHTS |
| // Return value is left justified primary key |
| U_CAPI uint32_t U_EXPORT2 |
| uprv_uca_getImplicitFromRaw(UChar32 cp) { |
| /* |
| if (cp < 0 || cp > UCOL_MAX_INPUT) { |
| throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp)); |
| } |
| */ |
| int32_t last0 = cp - min4Boundary; |
| if (last0 < 0) { |
| int32_t last1 = cp / final3Count; |
| last0 = cp % final3Count; |
| |
| int32_t last2 = last1 / medialCount; |
| last1 %= medialCount; |
| |
| last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start |
| last1 = minTrail + last1; // offset |
| last2 = min3Primary + last2; // offset |
| /* |
| if (last2 >= min4Primary) { |
| throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2)); |
| } |
| */ |
| return (last2 << 24) + (last1 << 16) + (last0 << 8); |
| } else { |
| int32_t last1 = last0 / final4Count; |
| last0 %= final4Count; |
| |
| int32_t last2 = last1 / medialCount; |
| last1 %= medialCount; |
| |
| int32_t last3 = last2 / medialCount; |
| last2 %= medialCount; |
| |
| last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start |
| last1 = minTrail + last1; // offset |
| last2 = minTrail + last2; // offset |
| last3 = min4Primary + last3; // offset |
| /* |
| if (last3 > max4Primary) { |
| throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3)); |
| } |
| */ |
| return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0; |
| } |
| } |
| |
| static uint32_t U_EXPORT2 |
| uprv_uca_getImplicitPrimary(UChar32 cp) { |
| //fprintf(stdout, "Incoming: %04x\n", cp); |
| //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp)); |
| |
| cp = swapCJK(cp); |
| cp++; |
| // we now have a range of numbers from 0 to 21FFFF. |
| |
| //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp)); |
| //fprintf(stdout, "CJK swapped: %04x\n", cp); |
| |
| return uprv_uca_getImplicitFromRaw(cp); |
| } |
| |
| /** |
| * Converts implicit CE into raw integer ("code point") |
| * @param implicit |
| * @return -1 if illegal format |
| */ |
| U_CAPI UChar32 U_EXPORT2 |
| uprv_uca_getRawFromImplicit(uint32_t implicit) { |
| UChar32 result; |
| UChar32 b3 = implicit & 0xFF; |
| UChar32 b2 = (implicit >> 8) & 0xFF; |
| UChar32 b1 = (implicit >> 16) & 0xFF; |
| UChar32 b0 = (implicit >> 24) & 0xFF; |
| |
| // simple parameter checks |
| if (b0 < min3Primary || b0 > max4Primary |
| || b1 < minTrail || b1 > maxTrail) |
| return -1; |
| // normal offsets |
| b1 -= minTrail; |
| |
| // take care of the final values, and compose |
| if (b0 < min4Primary) { |
| if (b2 < minTrail || b2 > max3Trail || b3 != 0) |
| return -1; |
| b2 -= minTrail; |
| UChar32 remainder = b2 % final3Multiplier; |
| if (remainder != 0) |
| return -1; |
| b0 -= min3Primary; |
| b2 /= final3Multiplier; |
| result = ((b0 * medialCount) + b1) * final3Count + b2; |
| } else { |
| if (b2 < minTrail || b2 > maxTrail |
| || b3 < minTrail || b3 > max4Trail) |
| return -1; |
| b2 -= minTrail; |
| b3 -= minTrail; |
| UChar32 remainder = b3 % final4Multiplier; |
| if (remainder != 0) |
| return -1; |
| b3 /= final4Multiplier; |
| b0 -= min4Primary; |
| result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary; |
| } |
| // final check |
| if (result < 0 || result > UCOL_MAX_INPUT) |
| return -1; |
| return result; |
| } |
| |
| |
| static inline int32_t divideAndRoundUp(int a, int b) { |
| return 1 + (a-1)/b; |
| } |
| |
| /* this function is either called from initUCA or from genUCA before |
| * doing canonical closure for the UCA. |
| */ |
| |
| /** |
| * Set up to generate implicits. |
| * Maintenance Note: this function may end up being called more than once, due |
| * to threading races during initialization. Make sure that |
| * none of the Constants is ever transiently assigned an |
| * incorrect value. |
| * @param minPrimary |
| * @param maxPrimary |
| * @param minTrail final byte |
| * @param maxTrail final byte |
| * @param gap3 the gap we leave for tailoring for 3-byte forms |
| * @param gap4 the gap we leave for tailoring for 4-byte forms |
| */ |
| static void initImplicitConstants(int minPrimary, int maxPrimary, |
| int minTrailIn, int maxTrailIn, |
| int gap3, int primaries3count, |
| UErrorCode *status) { |
| // some simple parameter checks |
| if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) |
| || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) |
| || (primaries3count < 1)) |
| { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| }; |
| |
| minTrail = minTrailIn; |
| maxTrail = maxTrailIn; |
| |
| min3Primary = minPrimary; |
| max4Primary = maxPrimary; |
| // compute constants for use later. |
| // number of values we can use in trailing bytes |
| // leave room for empty values between AND above, e.g. if gap = 2 |
| // range 3..7 => +3 -4 -5 -6 -7: so 1 value |
| // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values |
| // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values |
| final3Multiplier = gap3 + 1; |
| final3Count = (maxTrail - minTrail + 1) / final3Multiplier; |
| max3Trail = minTrail + (final3Count - 1) * final3Multiplier; |
| |
| // medials can use full range |
| medialCount = (maxTrail - minTrail + 1); |
| // find out how many values fit in each form |
| int32_t threeByteCount = medialCount * final3Count; |
| // now determine where the 3/4 boundary is. |
| // we use 3 bytes below the boundary, and 4 above |
| int32_t primariesAvailable = maxPrimary - minPrimary + 1; |
| int32_t primaries4count = primariesAvailable - primaries3count; |
| |
| |
| int32_t min3ByteCoverage = primaries3count * threeByteCount; |
| min4Primary = minPrimary + primaries3count; |
| min4Boundary = min3ByteCoverage; |
| // Now expand out the multiplier for the 4 bytes, and redo. |
| |
| int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary; |
| int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count); |
| int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount); |
| int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte; |
| if (gap4 < 1) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| final4Multiplier = gap4 + 1; |
| final4Count = neededPerFinalByte; |
| max4Trail = minTrail + (final4Count - 1) * final4Multiplier; |
| } |
| |
| /** |
| * Supply parameters for generating implicit CEs |
| */ |
| U_CAPI void U_EXPORT2 |
| uprv_uca_initImplicitConstants(UErrorCode *status) { |
| // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms. |
| //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status); |
| initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status); |
| } |
| |
| |
| /* collIterNormalize Incremental Normalization happens here. */ |
| /* pick up the range of chars identifed by FCD, */ |
| /* normalize it into the collIterate's writable buffer, */ |
| /* switch the collIterate's state to use the writable buffer. */ |
| /* */ |
| static |
| void collIterNormalize(collIterate *collationSource) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */ |
| const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */ |
| |
| collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)), |
| collationSource->writableBuffer, |
| status); |
| if (U_FAILURE(status)) { |
| #ifdef UCOL_DEBUG |
| fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status)); |
| #endif |
| return; |
| } |
| |
| collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer(); |
| collationSource->origFlags = collationSource->flags; |
| collationSource->flags |= UCOL_ITER_INNORMBUF; |
| collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
| } |
| |
| |
| // This function takes the iterator and extracts normalized stuff up to the next boundary |
| // It is similar in the end results to the collIterNormalize, but for the cases when we |
| // use an iterator |
| /*static |
| inline void normalizeIterator(collIterate *collationSource) { |
| UErrorCode status = U_ZERO_ERROR; |
| UBool wasNormalized = FALSE; |
| //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT); |
| uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator); |
| int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
| (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
| if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) { |
| // reallocate and terminate |
| if(!u_growBufferFromStatic(collationSource->stackWritableBuffer, |
| &collationSource->writableBuffer, |
| (int32_t *)&collationSource->writableBufSize, normLen + 1, |
| 0) |
| ) { |
| #ifdef UCOL_DEBUG |
| fprintf(stderr, "normalizeIterator(), out of memory\n"); |
| #endif |
| return; |
| } |
| status = U_ZERO_ERROR; |
| //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO); |
| collationSource->iterator->setState(collationSource->iterator, iterIndex, &status); |
| normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, |
| (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); |
| } |
| // Terminate the buffer - we already checked that it is big enough |
| collationSource->writableBuffer[normLen] = 0; |
| if(collationSource->writableBuffer != collationSource->stackWritableBuffer) { |
| collationSource->flags |= UCOL_ITER_ALLOCATED; |
| } |
| collationSource->pos = collationSource->writableBuffer; |
| collationSource->origFlags = collationSource->flags; |
| collationSource->flags |= UCOL_ITER_INNORMBUF; |
| collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
| }*/ |
| |
| |
| /* Incremental FCD check and normalize */ |
| /* Called from getNextCE when normalization state is suspect. */ |
| /* When entering, the state is known to be this: */ |
| /* o We are working in the main buffer of the collIterate, not the side */ |
| /* writable buffer. When in the side buffer, normalization mode is always off, */ |
| /* so we won't get here. */ |
| /* o The leading combining class from the current character is 0 or */ |
| /* the trailing combining class of the previous char was zero. */ |
| /* True because the previous call to this function will have always exited */ |
| /* that way, and we get called for every char where cc might be non-zero. */ |
| static |
| inline UBool collIterFCD(collIterate *collationSource) { |
| const UChar *srcP, *endP; |
| uint8_t leadingCC; |
| uint8_t prevTrailingCC = 0; |
| uint16_t fcd; |
| UBool needNormalize = FALSE; |
| |
| srcP = collationSource->pos-1; |
| |
| if (collationSource->flags & UCOL_ITER_HASLEN) { |
| endP = collationSource->endp; |
| } else { |
| endP = NULL; |
| } |
| |
| // Get the trailing combining class of the current character. If it's zero, |
| // we are OK. |
| /* trie access */ |
| fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP); |
| if (fcd != 0) { |
| prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
| |
| if (prevTrailingCC != 0) { |
| // The current char has a non-zero trailing CC. Scan forward until we find |
| // a char with a leading cc of zero. |
| while (endP == NULL || srcP != endP) |
| { |
| const UChar *savedSrcP = srcP; |
| |
| /* trie access */ |
| fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP); |
| leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
| if (leadingCC == 0) { |
| srcP = savedSrcP; // Hit char that is not part of combining sequence. |
| // back up over it. (Could be surrogate pair!) |
| break; |
| } |
| |
| if (leadingCC < prevTrailingCC) { |
| needNormalize = TRUE; |
| } |
| |
| prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
| } |
| } |
| } |
| |
| collationSource->fcdPosition = (UChar *)srcP; |
| |
| return needNormalize; |
| } |
| |
| /****************************************************************************/ |
| /* Following are the CE retrieval functions */ |
| /* */ |
| /****************************************************************************/ |
| |
| static uint32_t getImplicit(UChar32 cp, collIterate *collationSource); |
| static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource); |
| |
| /* there should be a macro version of this function in the header file */ |
| /* This is the first function that tries to fetch a collation element */ |
| /* If it's not succesfull or it encounters a more difficult situation */ |
| /* some more sofisticated and slower functions are invoked */ |
| static |
| inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
| uint32_t order = 0; |
| if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */ |
| order = *(collationSource->toReturn++); /* if so, return them */ |
| if(collationSource->CEpos == collationSource->toReturn) { |
| collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs; |
| } |
| return order; |
| } |
| |
| UChar ch = 0; |
| collationSource->offsetReturn = NULL; |
| |
| do { |
| for (;;) /* Loop handles case when incremental normalize switches */ |
| { /* to or from the side buffer / original string, and we */ |
| /* need to start again to get the next character. */ |
| |
| if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0) |
| { |
| // The source string is null terminated and we're not working from the side buffer, |
| // and we're not normalizing. This is the fast path. |
| // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.) |
| ch = *collationSource->pos++; |
| if (ch != 0) { |
| break; |
| } |
| else { |
| return UCOL_NO_MORE_CES; |
| } |
| } |
| |
| if (collationSource->flags & UCOL_ITER_HASLEN) { |
| // Normal path for strings when length is specified. |
| // (We can't be in side buffer because it is always null terminated.) |
| if (collationSource->pos >= collationSource->endp) { |
| // Ran off of the end of the main source string. We're done. |
| return UCOL_NO_MORE_CES; |
| } |
| ch = *collationSource->pos++; |
| } |
| else if(collationSource->flags & UCOL_USE_ITERATOR) { |
| UChar32 iterCh = collationSource->iterator->next(collationSource->iterator); |
| if(iterCh == U_SENTINEL) { |
| return UCOL_NO_MORE_CES; |
| } |
| ch = (UChar)iterCh; |
| } |
| else |
| { |
| // Null terminated string. |
| ch = *collationSource->pos++; |
| if (ch == 0) { |
| // Ran off end of buffer. |
| if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
| // Ran off end of main string. backing up one character. |
| collationSource->pos--; |
| return UCOL_NO_MORE_CES; |
| } |
| else |
| { |
| // Hit null in the normalize side buffer. |
| // Usually this means the end of the normalized data, |
| // except for one odd case: a null followed by combining chars, |
| // which is the case if we are at the start of the buffer. |
| if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) { |
| break; |
| } |
| |
| // Null marked end of side buffer. |
| // Revert to the main string and |
| // loop back to top to try again to get a character. |
| collationSource->pos = collationSource->fcdPosition; |
| collationSource->flags = collationSource->origFlags; |
| continue; |
| } |
| } |
| } |
| |
| if(collationSource->flags&UCOL_HIRAGANA_Q) { |
| /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag |
| * based on whether the previous codepoint was Hiragana or Katakana. |
| */ |
| if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) || |
| ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) { |
| collationSource->flags |= UCOL_WAS_HIRAGANA; |
| } else { |
| collationSource->flags &= ~UCOL_WAS_HIRAGANA; |
| } |
| } |
| |
| // We've got a character. See if there's any fcd and/or normalization stuff to do. |
| // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer. |
| if ((collationSource->flags & UCOL_ITER_NORM) == 0) { |
| break; |
| } |
| |
| if (collationSource->fcdPosition >= collationSource->pos) { |
| // An earlier FCD check has already covered the current character. |
| // We can go ahead and process this char. |
| break; |
| } |
| |
| if (ch < ZERO_CC_LIMIT_ ) { |
| // Fast fcd safe path. Trailing combining class == 0. This char is OK. |
| break; |
| } |
| |
| if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
| // We need to peek at the next character in order to tell if we are FCD |
| if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) { |
| // We are at the last char of source string. |
| // It is always OK for FCD check. |
| break; |
| } |
| |
| // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test |
| if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) { |
| break; |
| } |
| } |
| |
| |
| // Need a more complete FCD check and possible normalization. |
| if (collIterFCD(collationSource)) { |
| collIterNormalize(collationSource); |
| } |
| if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { |
| // No normalization was needed. Go ahead and process the char we already had. |
| break; |
| } |
| |
| // Some normalization happened. Next loop iteration will pick up a char |
| // from the normalization buffer. |
| |
| } // end for (;;) |
| |
| |
| if (ch <= 0xFF) { |
| /* For latin-1 characters we never need to fall back to the UCA table */ |
| /* because all of the UCA data is replicated in the latinOneMapping array */ |
| order = coll->latinOneMapping[ch]; |
| if (order > UCOL_NOT_FOUND) { |
| order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); |
| } |
| } |
| else |
| { |
| // Always use UCA for Han, Hangul |
| // (Han extension A is before main Han block) |
| // **** Han compatibility chars ?? **** |
| if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
| (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) { |
| if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) { |
| // between the two target ranges; do normal lookup |
| // **** this range is YI, Modifier tone letters, **** |
| // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
| // **** Latin-D might be tailored, so we need to **** |
| // **** do the normal lookup for these guys. **** |
| order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
| } else { |
| // in one of the target ranges; use UCA |
| order = UCOL_NOT_FOUND; |
| } |
| } else { |
| order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
| } |
| |
| if(order > UCOL_NOT_FOUND) { /* if a CE is special */ |
| order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */ |
| } |
| |
| if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */ |
| /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */ |
| order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
| |
| if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */ |
| order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status); |
| } |
| } |
| } |
| } while ( order == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
| |
| if(order == UCOL_NOT_FOUND) { |
| order = getImplicit(ch, collationSource); |
| } |
| return order; /* return the CE */ |
| } |
| |
| /* ucol_getNextCE, out-of-line version for use from other files. */ |
| U_CAPI uint32_t U_EXPORT2 |
| ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { |
| return ucol_IGetNextCE(coll, collationSource, status); |
| } |
| |
| |
| /** |
| * Incremental previous normalization happens here. Pick up the range of chars |
| * identifed by FCD, normalize it into the collIterate's writable buffer, |
| * switch the collIterate's state to use the writable buffer. |
| * @param data collation iterator data |
| */ |
| static |
| void collPrevIterNormalize(collIterate *data) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| const UChar *pEnd = data->pos; /* End normalize + 1 */ |
| const UChar *pStart; |
| |
| /* Start normalize */ |
| if (data->fcdPosition == NULL) { |
| pStart = data->string; |
| } |
| else { |
| pStart = data->fcdPosition + 1; |
| } |
| |
| int32_t normLen = |
| data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)), |
| data->writableBuffer, |
| status). |
| length(); |
| if(U_FAILURE(status)) { |
| return; |
| } |
| /* |
| this puts the null termination infront of the normalized string instead |
| of the end |
| */ |
| data->writableBuffer.insert(0, (UChar)0); |
| |
| /* |
| * The usual case at this point is that we've got a base |
| * character followed by marks that were normalized. If |
| * fcdPosition is NULL, that means that we backed up to |
| * the beginning of the string and there's no base character. |
| * |
| * Forward processing will usually normalize when it sees |
| * the first mark, so that mark will get it's natural offset |
| * and the rest will get the offset of the character following |
| * the marks. The base character will also get its natural offset. |
| * |
| * We write the offset of the base character, if there is one, |
| * followed by the offset of the first mark and then the offsets |
| * of the rest of the marks. |
| */ |
| int32_t firstMarkOffset = 0; |
| int32_t trailOffset = (int32_t)(data->pos - data->string + 1); |
| int32_t trailCount = normLen - 1; |
| |
| if (data->fcdPosition != NULL) { |
| int32_t baseOffset = (int32_t)(data->fcdPosition - data->string); |
| UChar baseChar = *data->fcdPosition; |
| |
| firstMarkOffset = baseOffset + 1; |
| |
| /* |
| * If the base character is the start of a contraction, forward processing |
| * will normalize the marks while checking for the contraction, which means |
| * that the offset of the first mark will the same as the other marks. |
| * |
| * **** THIS IS PROBABLY NOT A COMPLETE TEST **** |
| */ |
| if (baseChar >= 0x100) { |
| uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar); |
| |
| if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) { |
| baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar); |
| } |
| |
| if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) { |
| firstMarkOffset = trailOffset; |
| } |
| } |
| |
| data->appendOffset(baseOffset, status); |
| } |
| |
| data->appendOffset(firstMarkOffset, status); |
| |
| for (int32_t i = 0; i < trailCount; i += 1) { |
| data->appendOffset(trailOffset, status); |
| } |
| |
| data->offsetRepeatValue = trailOffset; |
| |
| data->offsetReturn = data->offsetStore - 1; |
| if (data->offsetReturn == data->offsetBuffer) { |
| data->offsetStore = data->offsetBuffer; |
| } |
| |
| data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen; |
| data->origFlags = data->flags; |
| data->flags |= UCOL_ITER_INNORMBUF; |
| data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
| } |
| |
| |
| /** |
| * Incremental FCD check for previous iteration and normalize. Called from |
| * getPrevCE when normalization state is suspect. |
| * When entering, the state is known to be this: |
| * o We are working in the main buffer of the collIterate, not the side |
| * writable buffer. When in the side buffer, normalization mode is always |
| * off, so we won't get here. |
| * o The leading combining class from the current character is 0 or the |
| * trailing combining class of the previous char was zero. |
| * True because the previous call to this function will have always exited |
| * that way, and we get called for every char where cc might be non-zero. |
| * @param data collation iterate struct |
| * @return normalization status, TRUE for normalization to be done, FALSE |
| * otherwise |
| */ |
| static |
| inline UBool collPrevIterFCD(collIterate *data) |
| { |
| const UChar *src, *start; |
| uint8_t leadingCC; |
| uint8_t trailingCC = 0; |
| uint16_t fcd; |
| UBool result = FALSE; |
| |
| start = data->string; |
| src = data->pos + 1; |
| |
| /* Get the trailing combining class of the current character. */ |
| fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src); |
| |
| leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
| |
| if (leadingCC != 0) { |
| /* |
| The current char has a non-zero leading combining class. |
| Scan backward until we find a char with a trailing cc of zero. |
| */ |
| for (;;) |
| { |
| if (start == src) { |
| data->fcdPosition = NULL; |
| return result; |
| } |
| |
| fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src); |
| |
| trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); |
| |
| if (trailingCC == 0) { |
| break; |
| } |
| |
| if (leadingCC < trailingCC) { |
| result = TRUE; |
| } |
| |
| leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); |
| } |
| } |
| |
| data->fcdPosition = (UChar *)src; |
| |
| return result; |
| } |
| |
| /** gets a code unit from the string at a given offset |
| * Handles both normal and iterative cases. |
| * No error checking - caller beware! |
| */ |
| static inline |
| UChar peekCodeUnit(collIterate *source, int32_t offset) { |
| if(source->pos != NULL) { |
| return *(source->pos + offset); |
| } else if(source->iterator != NULL) { |
| UChar32 c; |
| if(offset != 0) { |
| source->iterator->move(source->iterator, offset, UITER_CURRENT); |
| c = source->iterator->next(source->iterator); |
| source->iterator->move(source->iterator, -offset-1, UITER_CURRENT); |
| } else { |
| c = source->iterator->current(source->iterator); |
| } |
| return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0. |
| } else { |
| return 0xfffd; |
| } |
| } |
| |
| // Code point version. Treats the offset as a _code point_ delta. |
| // We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16. |
| // We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer. |
| static inline |
| UChar32 peekCodePoint(collIterate *source, int32_t offset) { |
| UChar32 c; |
| if(source->pos != NULL) { |
| const UChar *p = source->pos; |
| if(offset >= 0) { |
| // Skip forward over (offset-1) code points. |
| while(--offset >= 0) { |
| if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) { |
| ++p; |
| } |
| } |
| // Read the code point there. |
| c = *p++; |
| UChar trail; |
| if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) { |
| c = U16_GET_SUPPLEMENTARY(c, trail); |
| } |
| } else /* offset<0 */ { |
| // Skip backward over (offset-1) code points. |
| while(++offset < 0) { |
| if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) { |
| --p; |
| } |
| } |
| // Read the code point before that. |
| c = *--p; |
| UChar lead; |
| if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) { |
| c = U16_GET_SUPPLEMENTARY(lead, c); |
| } |
| } |
| } else if(source->iterator != NULL) { |
| if(offset >= 0) { |
| // Skip forward over (offset-1) code points. |
| int32_t fwd = offset; |
| while(fwd-- > 0) { |
| uiter_next32(source->iterator); |
| } |
| // Read the code point there. |
| c = uiter_current32(source->iterator); |
| // Return to the starting point, skipping backward over (offset-1) code points. |
| while(offset-- > 0) { |
| uiter_previous32(source->iterator); |
| } |
| } else /* offset<0 */ { |
| // Read backward, reading offset code points, remember only the last-read one. |
| int32_t back = offset; |
| do { |
| c = uiter_previous32(source->iterator); |
| } while(++back < 0); |
| // Return to the starting position, skipping forward over offset code points. |
| do { |
| uiter_next32(source->iterator); |
| } while(++offset < 0); |
| } |
| } else { |
| c = U_SENTINEL; |
| } |
| return c; |
| } |
| |
| /** |
| * Determines if we are at the start of the data string in the backwards |
| * collation iterator |
| * @param data collation iterator |
| * @return TRUE if we are at the start |
| */ |
| static |
| inline UBool isAtStartPrevIterate(collIterate *data) { |
| if(data->pos == NULL && data->iterator != NULL) { |
| return !data->iterator->hasPrevious(data->iterator); |
| } |
| //return (collIter_bos(data)) || |
| return (data->pos == data->string) || |
| ((data->flags & UCOL_ITER_INNORMBUF) && |
| *(data->pos - 1) == 0 && data->fcdPosition == NULL); |
| } |
| |
| static |
| inline void goBackOne(collIterate *data) { |
| # if 0 |
| // somehow, it looks like we need to keep iterator synced up |
| // at all times, as above. |
| if(data->pos) { |
| data->pos--; |
| } |
| if(data->iterator) { |
| data->iterator->previous(data->iterator); |
| } |
| #endif |
| if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) { |
| data->iterator->previous(data->iterator); |
| } |
| if(data->pos) { |
| data->pos --; |
| } |
| } |
| |
| /** |
| * Inline function that gets a simple CE. |
| * So what it does is that it will first check the expansion buffer. If the |
| * expansion buffer is not empty, ie the end pointer to the expansion buffer |
| * is different from the string pointer, we return the collation element at the |
| * return pointer and decrement it. |
| * For more complicated CEs it resorts to getComplicatedCE. |
| * @param coll collator data |
| * @param data collation iterator struct |
| * @param status error status |
| */ |
| static |
| inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data, |
| UErrorCode *status) |
| { |
| uint32_t result = (uint32_t)UCOL_NULLORDER; |
| |
| if (data->offsetReturn != NULL) { |
| if (data->offsetRepeatCount > 0) { |
| data->offsetRepeatCount -= 1; |
| } else { |
| if (data->offsetReturn == data->offsetBuffer) { |
| data->offsetReturn = NULL; |
| data->offsetStore = data->offsetBuffer; |
| } else { |
| data->offsetReturn -= 1; |
| } |
| } |
| } |
| |
| if ((data->extendCEs && data->toReturn > data->extendCEs) || |
| (!data->extendCEs && data->toReturn > data->CEs)) |
| { |
| data->toReturn -= 1; |
| result = *(data->toReturn); |
| if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) { |
| data->CEpos = data->toReturn; |
| } |
| } |
| else { |
| UChar ch = 0; |
| |
| do { |
| /* |
| Loop handles case when incremental normalize switches to or from the |
| side buffer / original string, and we need to start again to get the |
| next character. |
| */ |
| for (;;) { |
| if (data->flags & UCOL_ITER_HASLEN) { |
| /* |
| Normal path for strings when length is specified. |
| Not in side buffer because it is always null terminated. |
| */ |
| if (data->pos <= data->string) { |
| /* End of the main source string */ |
| return UCOL_NO_MORE_CES; |
| } |
| data->pos --; |
| ch = *data->pos; |
| } |
| // we are using an iterator to go back. Pray for us! |
| else if (data->flags & UCOL_USE_ITERATOR) { |
| UChar32 iterCh = data->iterator->previous(data->iterator); |
| if(iterCh == U_SENTINEL) { |
| return UCOL_NO_MORE_CES; |
| } else { |
| ch = (UChar)iterCh; |
| } |
| } |
| else { |
| data->pos --; |
| ch = *data->pos; |
| /* we are in the side buffer. */ |
| if (ch == 0) { |
| /* |
| At the start of the normalize side buffer. |
| Go back to string. |
| Because pointer points to the last accessed character, |
| hence we have to increment it by one here. |
| */ |
| data->flags = data->origFlags; |
| data->offsetRepeatValue = 0; |
| |
| if (data->fcdPosition == NULL) { |
| data->pos = data->string; |
| return UCOL_NO_MORE_CES; |
| } |
| else { |
| data->pos = data->fcdPosition + 1; |
| } |
| |
| continue; |
| } |
| } |
| |
| if(data->flags&UCOL_HIRAGANA_Q) { |
| if(ch>=0x3040 && ch<=0x309f) { |
| data->flags |= UCOL_WAS_HIRAGANA; |
| } else { |
| data->flags &= ~UCOL_WAS_HIRAGANA; |
| } |
| } |
| |
| /* |
| * got a character to determine if there's fcd and/or normalization |
| * stuff to do. |
| * if the current character is not fcd. |
| * if current character is at the start of the string |
| * Trailing combining class == 0. |
| * Note if pos is in the writablebuffer, norm is always 0 |
| */ |
| if (ch < ZERO_CC_LIMIT_ || |
| // this should propel us out of the loop in the iterator case |
| (data->flags & UCOL_ITER_NORM) == 0 || |
| (data->fcdPosition != NULL && data->fcdPosition <= data->pos) |
| || data->string == data->pos) { |
| break; |
| } |
| |
| if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { |
| /* if next character is FCD */ |
| if (data->pos == data->string) { |
| /* First char of string is always OK for FCD check */ |
| break; |
| } |
| |
| /* Not first char of string, do the FCD fast test */ |
| if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) { |
| break; |
| } |
| } |
| |
| /* Need a more complete FCD check and possible normalization. */ |
| if (collPrevIterFCD(data)) { |
| collPrevIterNormalize(data); |
| } |
| |
| if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
| /* No normalization. Go ahead and process the char. */ |
| break; |
| } |
| |
| /* |
| Some normalization happened. |
| Next loop picks up a char from the normalization buffer. |
| */ |
| } |
| |
| /* attempt to handle contractions, after removal of the backwards |
| contraction |
| */ |
| if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) { |
| result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status); |
| } else { |
| if (ch <= 0xFF) { |
| result = coll->latinOneMapping[ch]; |
| } |
| else { |
| // Always use UCA for [3400..9FFF], [AC00..D7AF] |
| // **** [FA0E..FA2F] ?? **** |
| if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && |
| (ch >= 0x3400 && ch <= 0xD7AF)) { |
| if (ch > 0x9FFF && ch < 0xAC00) { |
| // between the two target ranges; do normal lookup |
| // **** this range is YI, Modifier tone letters, **** |
| // **** Latin-D, Syloti Nagari, Phagas-pa. **** |
| // **** Latin-D might be tailored, so we need to **** |
| // **** do the normal lookup for these guys. **** |
| result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
| } else { |
| result = UCOL_NOT_FOUND; |
| } |
| } else { |
| result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
| } |
| } |
| if (result > UCOL_NOT_FOUND) { |
| result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status); |
| } |
| if (result == UCOL_NOT_FOUND) { // Not found in master list |
| if (!isAtStartPrevIterate(data) && |
| ucol_contractionEndCP(ch, data->coll)) |
| { |
| result = UCOL_CONTRACTION; |
| } else { |
| if(coll->UCA) { |
| result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
| } |
| } |
| |
| if (result > UCOL_NOT_FOUND) { |
| if(coll->UCA) { |
| result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status); |
| } |
| } |
| } |
| } |
| } while ( result == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); |
| |
| if(result == UCOL_NOT_FOUND) { |
| result = getPrevImplicit(ch, data); |
| } |
| } |
| |
| return result; |
| } |
| |
| |
| /* ucol_getPrevCE, out-of-line version for use from other files. */ |
| U_CFUNC uint32_t U_EXPORT2 |
| ucol_getPrevCE(const UCollator *coll, collIterate *data, |
| UErrorCode *status) { |
| return ucol_IGetPrevCE(coll, data, status); |
| } |
| |
| |
| /* this should be connected to special Jamo handling */ |
| U_CFUNC uint32_t U_EXPORT2 |
| ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) { |
| collIterate colIt; |
| IInit_collIterate(coll, &u, 1, &colIt, status); |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| return ucol_IGetNextCE(coll, &colIt, status); |
| } |
| |
| /** |
| * Inserts the argument character into the end of the buffer pushing back the |
| * null terminator. |
| * @param data collIterate struct data |
| * @param ch character to be appended |
| * @return the position of the new addition |
| */ |
| static |
| inline const UChar * insertBufferEnd(collIterate *data, UChar ch) |
| { |
| int32_t oldLength = data->writableBuffer.length(); |
| return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength; |
| } |
| |
| /** |
| * Inserts the argument string into the end of the buffer pushing back the |
| * null terminator. |
| * @param data collIterate struct data |
| * @param string to be appended |
| * @param length of the string to be appended |
| * @return the position of the new addition |
| */ |
| static |
| inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length) |
| { |
| int32_t oldLength = data->writableBuffer.length(); |
| return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength; |
| } |
| |
| /** |
| * Special normalization function for contraction in the forwards iterator. |
| * This normalization sequence will place the current character at source->pos |
| * and its following normalized sequence into the buffer. |
| * The fcd position, pos will be changed. |
| * pos will now point to positions in the buffer. |
| * Flags will be changed accordingly. |
| * @param data collation iterator data |
| */ |
| static |
| inline void normalizeNextContraction(collIterate *data) |
| { |
| int32_t strsize; |
| UErrorCode status = U_ZERO_ERROR; |
| /* because the pointer points to the next character */ |
| const UChar *pStart = data->pos - 1; |
| const UChar *pEnd; |
| |
| if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { |
| data->writableBuffer.setTo(*(pStart - 1)); |
| strsize = 1; |
| } |
| else { |
| strsize = data->writableBuffer.length(); |
| } |
| |
| pEnd = data->fcdPosition; |
| |
| data->writableBuffer.append( |
| data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status)); |
| if(U_FAILURE(status)) { |
| return; |
| } |
| |
| data->pos = data->writableBuffer.getTerminatedBuffer() + strsize; |
| data->origFlags = data->flags; |
| data->flags |= UCOL_ITER_INNORMBUF; |
| data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
| } |
| |
| /** |
| * Contraction character management function that returns the next character |
| * for the forwards iterator. |
| * Does nothing if the next character is in buffer and not the first character |
| * in it. |
| * Else it checks next character in data string to see if it is normalizable. |
| * If it is not, the character is simply copied into the buffer, else |
| * the whole normalized substring is copied into the buffer, including the |
| * current character. |
| * @param data collation element iterator data |
| * @return next character |
| */ |
| static |
| inline UChar getNextNormalizedChar(collIterate *data) |
| { |
| UChar nextch; |
| UChar ch; |
| // Here we need to add the iterator code. One problem is the way |
| // end of string is handled. If we just return next char, it could |
| // be the sentinel. Most of the cases already check for this, but we |
| // need to be sure. |
| if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) { |
| /* if no normalization and not in buffer. */ |
| if(data->flags & UCOL_USE_ITERATOR) { |
| return (UChar)data->iterator->next(data->iterator); |
| } else { |
| return *(data->pos ++); |
| } |
| } |
| |
| //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) { |
| //normalizeIterator(data); |
| //} |
| |
| UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
| if ((innormbuf && *data->pos != 0) || |
| (data->fcdPosition != NULL && !innormbuf && |
| data->pos < data->fcdPosition)) { |
| /* |
| if next character is in normalized buffer, no further normalization |
| is required |
| */ |
| return *(data->pos ++); |
| } |
| |
| if (data->flags & UCOL_ITER_HASLEN) { |
| /* in data string */ |
| if (data->pos + 1 == data->endp) { |
| return *(data->pos ++); |
| } |
| } |
| else { |
| if (innormbuf) { |
| // inside the normalization buffer, but at the end |
| // (since we encountered zero). This means, in the |
| // case we're using char iterator, that we need to |
| // do another round of normalization. |
| //if(data->origFlags & UCOL_USE_ITERATOR) { |
| // we need to restore original flags, |
| // otherwise, we'll lose them |
| //data->flags = data->origFlags; |
| //normalizeIterator(data); |
| //return *(data->pos++); |
| //} else { |
| /* |
| in writable buffer, at this point fcdPosition can not be |
| pointing to the end of the data string. see contracting tag. |
| */ |
| if(data->fcdPosition) { |
| if (*(data->fcdPosition + 1) == 0 || |
| data->fcdPosition + 1 == data->endp) { |
| /* at the end of the string, dump it into the normalizer */ |
| data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1; |
| // Check if data->pos received a null pointer |
| if (data->pos == NULL) { |
| return (UChar)-1; // Return to indicate error. |
| } |
| return *(data->fcdPosition ++); |
| } |
| data->pos = data->fcdPosition; |
| } else if(data->origFlags & UCOL_USE_ITERATOR) { |
| // if we are here, we're using a normalizing iterator. |
| // we should just continue further. |
| data->flags = data->origFlags; |
| data->pos = NULL; |
| return (UChar)data->iterator->next(data->iterator); |
| } |
| //} |
| } |
| else { |
| if (*(data->pos + 1) == 0) { |
| return *(data->pos ++); |
| } |
| } |
| } |
| |
| ch = *data->pos ++; |
| nextch = *data->pos; |
| |
| /* |
| * if the current character is not fcd. |
| * Trailing combining class == 0. |
| */ |
| if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) && |
| (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ || |
| ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) { |
| /* |
| Need a more complete FCD check and possible normalization. |
| normalize substring will be appended to buffer |
| */ |
| if (collIterFCD(data)) { |
| normalizeNextContraction(data); |
| return *(data->pos ++); |
| } |
| else if (innormbuf) { |
| /* fcdposition shifted even when there's no normalization, if we |
| don't input the rest into this, we'll get the wrong position when |
| we reach the end of the writableBuffer */ |
| int32_t length = (int32_t)(data->fcdPosition - data->pos + 1); |
| data->pos = insertBufferEnd(data, data->pos - 1, length); |
| // Check if data->pos received a null pointer |
| if (data->pos == NULL) { |
| return (UChar)-1; // Return to indicate error. |
| } |
| return *(data->pos ++); |
| } |
| } |
| |
| if (innormbuf) { |
| /* |
| no normalization is to be done hence only one character will be |
| appended to the buffer. |
| */ |
| data->pos = insertBufferEnd(data, ch) + 1; |
| // Check if data->pos received a null pointer |
| if (data->pos == NULL) { |
| return (UChar)-1; // Return to indicate error. |
| } |
| } |
| |
| /* points back to the pos in string */ |
| return ch; |
| } |
| |
| |
| |
| /** |
| * Function to copy the buffer into writableBuffer and sets the fcd position to |
| * the correct position |
| * @param source data string source |
| * @param buffer character buffer |
| */ |
| static |
| inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer) |
| { |
| /* okay confusing part here. to ensure that the skipped characters are |
| considered later, we need to place it in the appropriate position in the |
| normalization buffer and reassign the pos pointer. simple case if pos |
| reside in string, simply copy to normalization buffer and |
| fcdposition = pos, pos = start of normalization buffer. if pos in |
| normalization buffer, we'll insert the copy infront of pos and point pos |
| to the start of the normalization buffer. why am i doing these copies? |
| well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does |
| not require any changes, which be really painful. */ |
| if (source->flags & UCOL_ITER_INNORMBUF) { |
| int32_t replaceLength = source->pos - source->writableBuffer.getBuffer(); |
| source->writableBuffer.replace(0, replaceLength, buffer); |
| } |
| else { |
| source->fcdPosition = source->pos; |
| source->origFlags = source->flags; |
| source->flags |= UCOL_ITER_INNORMBUF; |
| source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); |
| source->writableBuffer = buffer; |
| } |
| |
| source->pos = source->writableBuffer.getTerminatedBuffer(); |
| } |
| |
| /** |
| * Function to get the discontiguos collation element within the source. |
| * Note this function will set the position to the appropriate places. |
| * @param coll current collator used |
| * @param source data string source |
| * @param constart index to the start character in the contraction table |
| * @return discontiguos collation element offset |
| */ |
| static |
| uint32_t getDiscontiguous(const UCollator *coll, collIterate *source, |
| const UChar *constart) |
| { |
| /* source->pos currently points to the second combining character after |
| the start character */ |
| const UChar *temppos = source->pos; |
| UnicodeString buffer; |
| const UChar *tempconstart = constart; |
| uint8_t tempflags = source->flags; |
| UBool multicontraction = FALSE; |
| collIterateState discState; |
| |
| backupState(source, &discState); |
| |
| buffer.setTo(peekCodePoint(source, -1)); |
| for (;;) { |
| UChar *UCharOffset; |
| UChar schar, |
| tchar; |
| uint32_t result; |
| |
| if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp) |
| || (peekCodeUnit(source, 0) == 0 && |
| //|| (*source->pos == 0 && |
| ((source->flags & UCOL_ITER_INNORMBUF) == 0 || |
| source->fcdPosition == NULL || |
| source->fcdPosition == source->endp || |
| *(source->fcdPosition) == 0 || |
| u_getCombiningClass(*(source->fcdPosition)) == 0)) || |
| /* end of string in null terminated string or stopped by a |
| null character, note fcd does not always point to a base |
| character after the discontiguos change */ |
| u_getCombiningClass(peekCodePoint(source, 0)) == 0) { |
| //u_getCombiningClass(*(source->pos)) == 0) { |
| //constart = (UChar *)coll->image + getContractOffset(CE); |
| if (multicontraction) { |
| source->pos = temppos - 1; |
| setDiscontiguosAttribute(source, buffer); |
| return *(coll->contractionCEs + |
| (tempconstart - coll->contractionIndex)); |
| } |
| constart = tempconstart; |
| break; |
| } |
| |
| UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/ |
| schar = getNextNormalizedChar(source); |
| |
| while (schar > (tchar = *UCharOffset)) { |
| UCharOffset++; |
| } |
| |
| if (schar != tchar) { |
| /* not the correct codepoint. we stuff the current codepoint into |
| the discontiguos buffer and try the next character */ |
| buffer.append(schar); |
| continue; |
| } |
| else { |
| if (u_getCombiningClass(schar) == |
| u_getCombiningClass(peekCodePoint(source, -2))) { |
| buffer.append(schar); |
| continue; |
| } |
| result = *(coll->contractionCEs + |
| (UCharOffset - coll->contractionIndex)); |
| } |
| |
| if (result == UCOL_NOT_FOUND) { |
| break; |
| } else if (isContraction(result)) { |
| /* this is a multi-contraction*/ |
| tempconstart = (UChar *)coll->image + getContractOffset(result); |
| if (*(coll->contractionCEs + (constart - coll->contractionIndex)) |
| != UCOL_NOT_FOUND) { |
| multicontraction = TRUE; |
| temppos = source->pos + 1; |
| } |
| } else { |
| setDiscontiguosAttribute(source, buffer); |
| return result; |
| } |
| } |
| |
| /* no problems simply reverting just like that, |
| if we are in string before getting into this function, points back to |
| string hence no problem. |
| if we are in normalization buffer before getting into this function, |
| since we'll never use another normalization within this function, we |
| know that fcdposition points to a base character. the normalization buffer |
| never change, hence this revert works. */ |
| loadState(source, &discState, TRUE); |
| goBackOne(source); |
| |
| //source->pos = temppos - 1; |
| source->flags = tempflags; |
| return *(coll->contractionCEs + (constart - coll->contractionIndex)); |
| } |
| |
| /* now uses Mark's getImplicitPrimary code */ |
| static |
| inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) { |
| uint32_t r = uprv_uca_getImplicitPrimary(cp); |
| *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0; |
| collationSource->offsetRepeatCount += 1; |
| return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order' |
| } |
| |
| /** |
| * Inserts the argument character into the front of the buffer replacing the |
| * front null terminator. |
| * @param data collation element iterator data |
| * @param ch character to be appended |
| */ |
| static |
| inline void insertBufferFront(collIterate *data, UChar ch) |
| { |
| data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2; |
| } |
| |
| /** |
| * Special normalization function for contraction in the previous iterator. |
| * This normalization sequence will place the current character at source->pos |
| * and its following normalized sequence into the buffer. |
| * The fcd position, pos will be changed. |
| * pos will now point to positions in the buffer. |
| * Flags will be changed accordingly. |
| * @param data collation iterator data |
| */ |
| static |
| inline void normalizePrevContraction(collIterate *data, UErrorCode *status) |
| { |
| const UChar *pEnd = data->pos + 1; /* End normalize + 1 */ |
| const UChar *pStart; |
| |
| UnicodeString endOfBuffer; |
| if (data->flags & UCOL_ITER_HASLEN) { |
| /* |
| normalization buffer not used yet, we'll pull down the next |
| character into the end of the buffer |
| */ |
| endOfBuffer.setTo(*pEnd); |
| } |
| else { |
| endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL |
| } |
| |
| if (data->fcdPosition == NULL) { |
| pStart = data->string; |
| } |
| else { |
| pStart = data->fcdPosition + 1; |
| } |
| int32_t normLen = |
| data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), |
| data->writableBuffer, |
| *status). |
| length(); |
| if(U_FAILURE(*status)) { |
| return; |
| } |
| /* |
| this puts the null termination infront of the normalized string instead |
| of the end |
| */ |
| data->pos = |
| data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() + |
| 1 + normLen; |
| data->origFlags = data->flags; |
| data->flags |= UCOL_ITER_INNORMBUF; |
| data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
| } |
| |
| /** |
| * Contraction character management function that returns the previous character |
| * for the backwards iterator. |
| * Does nothing if the previous character is in buffer and not the first |
| * character in it. |
| * Else it checks previous character in data string to see if it is |
| * normalizable. |
| * If it is not, the character is simply copied into the buffer, else |
| * the whole normalized substring is copied into the buffer, including the |
| * current character. |
| * @param data collation element iterator data |
| * @return previous character |
| */ |
| static |
| inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status) |
| { |
| UChar prevch; |
| UChar ch; |
| const UChar *start; |
| UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); |
| if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 || |
| (innormbuf && *(data->pos - 1) != 0)) { |
| /* |
| if no normalization. |
| if previous character is in normalized buffer, no further normalization |
| is required |
| */ |
| if(data->flags & UCOL_USE_ITERATOR) { |
| data->iterator->move(data->iterator, -1, UITER_CURRENT); |
| return (UChar)data->iterator->next(data->iterator); |
| } else { |
| return *(data->pos - 1); |
| } |
| } |
| |
| start = data->pos; |
| if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) { |
| /* in data string */ |
| if ((start - 1) == data->string) { |
| return *(start - 1); |
| } |
| start --; |
| ch = *start; |
| prevch = *(start - 1); |
| } |
| else { |
| /* |
| in writable buffer, at this point fcdPosition can not be NULL. |
| see contracting tag. |
| */ |
| if (data->fcdPosition == data->string) { |
| /* at the start of the string, just dump it into the normalizer */ |
| insertBufferFront(data, *(data->fcdPosition)); |
| data->fcdPosition = NULL; |
| return *(data->pos - 1); |
| } |
| start = data->fcdPosition; |
| ch = *start; |
| prevch = *(start - 1); |
| } |
| /* |
| * if the current character is not fcd. |
| * Trailing combining class == 0. |
| */ |
| if (data->fcdPosition > start && |
| (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_)) |
| { |
| /* |
| Need a more complete FCD check and possible normalization. |
| normalize substring will be appended to buffer |
| */ |
| const UChar *backuppos = data->pos; |
| data->pos = start; |
| if (collPrevIterFCD(data)) { |
| normalizePrevContraction(data, status); |
| return *(data->pos - 1); |
| } |
| data->pos = backuppos; |
| data->fcdPosition ++; |
| } |
| |
| if (innormbuf) { |
| /* |
| no normalization is to be done hence only one character will be |
| appended to the buffer. |
| */ |
| insertBufferFront(data, ch); |
| data->fcdPosition --; |
| } |
| |
| return ch; |
| } |
| |
| /* This function handles the special CEs like contractions, expansions, surrogates, Thai */ |
| /* It is called by getNextCE */ |
| |
| /* The following should be even */ |
| #define UCOL_MAX_DIGITS_FOR_NUMBER 254 |
| |
| uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) { |
| collIterateState entryState; |
| backupState(source, &entryState); |
| UChar32 cp = ch; |
| |
| for (;;) { |
| // This loop will repeat only in the case of contractions, and only when a contraction |
| // is found and the first CE resulting from that contraction is itself a special |
| // (an expansion, for example.) All other special CE types are fully handled the |
| // first time through, and the loop exits. |
| |
| const uint32_t *CEOffset = NULL; |
| switch(getCETag(CE)) { |
| case NOT_FOUND_TAG: |
| /* This one is not found, and we'll let somebody else bother about it... no more games */ |
| return CE; |
| case SPEC_PROC_TAG: |
| { |
| // Special processing is getting a CE that is preceded by a certain prefix |
| // Currently this is only needed for optimizing Japanese length and iteration marks. |
| // When we encouter a special processing tag, we go backwards and try to see if |
| // we have a match. |
| // Contraction tables are used - so the whole process is not unlike contraction. |
| // prefix data is stored backwards in the table. |
| const UChar *UCharOffset; |
| UChar schar, tchar; |
| collIterateState prefixState; |
| backupState(source, &prefixState); |
| loadState(source, &entryState, TRUE); |
| goBackOne(source); // We want to look at the point where we entered - actually one |
| // before that... |
| |
| for(;;) { |
| // This loop will run once per source string character, for as long as we |
| // are matching a potential contraction sequence |
| |
| // First we position ourselves at the begining of contraction sequence |
| const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
| if (collIter_bos(source)) { |
| CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
| break; |
| } |
| schar = getPrevNormalizedChar(source, status); |
| goBackOne(source); |
| |
| while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
| UCharOffset++; |
| } |
| |
| if (schar == tchar) { |
| // Found the source string char in the table. |
| // Pick up the corresponding CE from the table. |
| CE = *(coll->contractionCEs + |
| (UCharOffset - coll->contractionIndex)); |
| } |
| else |
| { |
| // Source string char was not in the table. |
| // We have not found the prefix. |
| CE = *(coll->contractionCEs + |
| (ContractionStart - coll->contractionIndex)); |
| } |
| |
| if(!isPrefix(CE)) { |
| // The source string char was in the contraction table, and the corresponding |
| // CE is not a prefix CE. We found the prefix, break |
| // out of loop, this CE will end up being returned. This is the normal |
| // way out of prefix handling when the source actually contained |
| // the prefix. |
| break; |
| } |
| } |
| if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue |
| loadState(source, &prefixState, TRUE); |
| if(source->origFlags & UCOL_USE_ITERATOR) { |
| source->flags = source->origFlags; |
| } |
| } else { // prefix search was a failure, we have to backup all the way to the start |
| loadState(source, &entryState, TRUE); |
| } |
| break; |
| } |
| case CONTRACTION_TAG: |
| { |
| /* This should handle contractions */ |
| collIterateState state; |
| backupState(source, &state); |
| uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND; |
| const UChar *UCharOffset; |
| UChar schar, tchar; |
| |
| for (;;) { |
| /* This loop will run once per source string character, for as long as we */ |
| /* are matching a potential contraction sequence */ |
| |
| /* First we position ourselves at the begining of contraction sequence */ |
| const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
| |
| if (collIter_eos(source)) { |
| // Ran off the end of the source string. |
| CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
| // So we'll pick whatever we have at the point... |
| if (CE == UCOL_NOT_FOUND) { |
| // back up the source over all the chars we scanned going into this contraction. |
| CE = firstCE; |
| loadState(source, &state, TRUE); |
| if(source->origFlags & UCOL_USE_ITERATOR) { |
| source->flags = source->origFlags; |
| } |
| } |
| break; |
| } |
| |
| uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */ |
| uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8); |
| |
| schar = getNextNormalizedChar(source); |
| while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
| UCharOffset++; |
| } |
| |
| if (schar == tchar) { |
| // Found the source string char in the contraction table. |
| // Pick up the corresponding CE from the table. |
| CE = *(coll->contractionCEs + |
| (UCharOffset - coll->contractionIndex)); |
| } |
| else |
| { |
| // Source string char was not in contraction table. |
| // Unless we have a discontiguous contraction, we have finished |
| // with this contraction. |
| // in order to do the proper detection, we |
| // need to see if we're dealing with a supplementary |
| /* We test whether the next two char are surrogate pairs. |
| * This test is done if the iterator is not NULL. |
| * If there is no surrogate pair, the iterator |
| * goes back one if needed. */ |
| UChar32 miss = schar; |
| if (source->iterator) { |
| UChar32 surrNextChar; /* the next char in the iteration to test */ |
| int32_t prevPos; /* holds the previous position before move forward of the source iterator */ |
| if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) { |
| prevPos = source->iterator->index; |
| surrNextChar = getNextNormalizedChar(source); |
| if (U16_IS_TRAIL(surrNextChar)) { |
| miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar); |
| } else if (prevPos < source->iterator->index){ |
| goBackOne(source); |
| } |
| } |
| } else if (U16_IS_LEAD(schar)) { |
| miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source)); |
| } |
| |
| uint8_t sCC; |
| if (miss < 0x300 || |
| maxCC == 0 || |
| (sCC = i_getCombiningClass(miss, coll)) == 0 || |
| sCC>maxCC || |
| (allSame != 0 && sCC == maxCC) || |
| collIter_eos(source)) |
| { |
| // Contraction can not be discontiguous. |
| goBackOne(source); // back up the source string by one, |
| // because the character we just looked at was |
| // not part of the contraction. */ |
| if(U_IS_SUPPLEMENTARY(miss)) { |
| goBackOne(source); |
| } |
| CE = *(coll->contractionCEs + |
| (ContractionStart - coll->contractionIndex)); |
| } else { |
| // |
| // Contraction is possibly discontiguous. |
| // Scan more of source string looking for a match |
| // |
| UChar tempchar; |
| /* find the next character if schar is not a base character |
| and we are not yet at the end of the string */ |
| tempchar = getNextNormalizedChar(source); |
| // probably need another supplementary thingie here |
| goBackOne(source); |
| if (i_getCombiningClass(tempchar, coll) == 0) { |
| goBackOne(source); |
| if(U_IS_SUPPLEMENTARY(miss)) { |
| goBackOne(source); |
| } |
| /* Spit out the last char of the string, wasn't tasty enough */ |
| CE = *(coll->contractionCEs + |
| (ContractionStart - coll->contractionIndex)); |
| } else { |
| CE = getDiscontiguous(coll, source, ContractionStart); |
| } |
| } |
| } // else after if(schar == tchar) |
| |
| if(CE == UCOL_NOT_FOUND) { |
| /* The Source string did not match the contraction that we were checking. */ |
| /* Back up the source position to undo the effects of having partially */ |
| /* scanned through what ultimately proved to not be a contraction. */ |
| loadState(source, &state, TRUE); |
| CE = firstCE; |
| break; |
| } |
| |
| if(!isContraction(CE)) { |
| // The source string char was in the contraction table, and the corresponding |
| // CE is not a contraction CE. We completed the contraction, break |
| // out of loop, this CE will end up being returned. This is the normal |
| // way out of contraction handling when the source actually contained |
| // the contraction. |
| break; |
| } |
| |
| |
| // The source string char was in the contraction table, and the corresponding |
| // CE is IS a contraction CE. We will continue looping to check the source |
| // string for the remaining chars in the contraction. |
| uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex)); |
| if(tempCE != UCOL_NOT_FOUND) { |
| // We have scanned a a section of source string for which there is a |
| // CE from the contraction table. Remember the CE and scan position, so |
| // that we can return to this point if further scanning fails to |
| // match a longer contraction sequence. |
| firstCE = tempCE; |
| |
| goBackOne(source); |
| backupState(source, &state); |
| getNextNormalizedChar(source); |
| |
| // Another way to do this is: |
| //collIterateState tempState; |
| //backupState(source, &tempState); |
| //goBackOne(source); |
| //backupState(source, &state); |
| //loadState(source, &tempState, TRUE); |
| |
| // The problem is that for incomplete contractions we have to remember the previous |
| // position. Before, the only thing I needed to do was state.pos--; |
| // After iterator introduction and especially after introduction of normalizing |
| // iterators, it became much more difficult to decrease the saved state. |
| // I'm not yet sure which of the two methods above is faster. |
| } |
| } // for(;;) |
| break; |
| } // case CONTRACTION_TAG: |
| case LONG_PRIMARY_TAG: |
| { |
| *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
| CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
| source->offsetRepeatCount += 1; |
| return CE; |
| } |
| case EXPANSION_TAG: |
| { |
| /* This should handle expansion. */ |
| /* NOTE: we can encounter both continuations and expansions in an expansion! */ |
| /* I have to decide where continuations are going to be dealt with */ |
| uint32_t size; |
| uint32_t i; /* general counter */ |
| |
| CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
| size = getExpansionCount(CE); |
| CE = *CEOffset++; |
| //source->offsetRepeatCount = -1; |
| |
| if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
| for(i = 1; i<size; i++) { |
| *(source->CEpos++) = *CEOffset++; |
| source->offsetRepeatCount += 1; |
| } |
| } else { /* else, we do */ |
| while(*CEOffset != 0) { |
| *(source->CEpos++) = *CEOffset++; |
| source->offsetRepeatCount += 1; |
| } |
| } |
| |
| return CE; |
| } |
| case DIGIT_TAG: |
| { |
| /* |
| We do a check to see if we want to collate digits as numbers; if so we generate |
| a custom collation key. Otherwise we pull out the value stored in the expansion table. |
| */ |
| //uint32_t size; |
| uint32_t i; /* general counter */ |
| |
| if (source->coll->numericCollation == UCOL_ON){ |
| collIterateState digitState = {0,0,0,0,0,0,0,0,0}; |
| UChar32 char32 = 0; |
| int32_t digVal = 0; |
| |
| uint32_t digIndx = 0; |
| uint32_t endIndex = 0; |
| uint32_t trailingZeroIndex = 0; |
| |
| uint8_t collateVal = 0; |
| |
| UBool nonZeroValReached = FALSE; |
| |
| uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs. |
| /* |
| We parse the source string until we hit a char that's NOT a digit. |
| Use this u_charDigitValue. This might be slow because we have to |
| handle surrogates... |
| */ |
| /* |
| if (U16_IS_LEAD(ch)){ |
| if (!collIter_eos(source)) { |
| backupState(source, &digitState); |
| UChar trail = getNextNormalizedChar(source); |
| if(U16_IS_TRAIL(trail)) { |
| char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
| } else { |
| loadState(source, &digitState, TRUE); |
| char32 = ch; |
| } |
| } else { |
| char32 = ch; |
| } |
| } else { |
| char32 = ch; |
| } |
| digVal = u_charDigitValue(char32); |
| */ |
| digVal = u_charDigitValue(cp); // if we have arrived here, we have |
| // already processed possible supplementaries that trigered the digit tag - |
| // all supplementaries are marked in the UCA. |
| /* |
| We pad a zero in front of the first element anyways. This takes |
| care of the (probably) most common case where people are sorting things followed |
| by a single digit |
| */ |
| digIndx++; |
| for(;;){ |
| // Make sure we have enough space. No longer needed; |
| // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER |
| // (it has been pre-incremented) so we just ensure that numTempBuf is big enough |
| // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3). |
| |
| // Skipping over leading zeroes. |
| if (digVal != 0) { |
| nonZeroValReached = TRUE; |
| } |
| if (nonZeroValReached) { |
| /* |
| We parse the digit string into base 100 numbers (this fits into a byte). |
| We only add to the buffer in twos, thus if we are parsing an odd character, |
| that serves as the 'tens' digit while the if we are parsing an even one, that |
| is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
| a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
| overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
| than all the other bytes. |
| */ |
| |
| if (digIndx % 2 == 1){ |
| collateVal += (uint8_t)digVal; |
| |
| // We don't enter the low-order-digit case unless we've already seen |
| // the high order, or for the first digit, which is always non-zero. |
| if (collateVal != 0) |
| trailingZeroIndex = 0; |
| |
| numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
| collateVal = 0; |
| } |
| else{ |
| // We drop the collation value into the buffer so if we need to do |
| // a "front patch" we don't have to check to see if we're hitting the |
| // last element. |
| collateVal = (uint8_t)(digVal * 10); |
| |
| // Check for trailing zeroes. |
| if (collateVal == 0) |
| { |
| if (!trailingZeroIndex) |
| trailingZeroIndex = (digIndx/2) + 2; |
| } |
| else |
| trailingZeroIndex = 0; |
| |
| numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
| } |
| digIndx++; |
| } |
| |
| // Get next character. |
| if (!collIter_eos(source)){ |
| ch = getNextNormalizedChar(source); |
| if (U16_IS_LEAD(ch)){ |
| if (!collIter_eos(source)) { |
| backupState(source, &digitState); |
| UChar trail = getNextNormalizedChar(source); |
| if(U16_IS_TRAIL(trail)) { |
| char32 = U16_GET_SUPPLEMENTARY(ch, trail); |
| } else { |
| loadState(source, &digitState, TRUE); |
| char32 = ch; |
| } |
| } |
| } else { |
| char32 = ch; |
| } |
| |
| if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){ |
| // Resetting position to point to the next unprocessed char. We |
| // overshot it when doing our test/set for numbers. |
| if (char32 > 0xFFFF) { // For surrogates. |
| loadState(source, &digitState, TRUE); |
| //goBackOne(source); |
| } |
| goBackOne(source); |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| |
| if (nonZeroValReached == FALSE){ |
| digIndx = 2; |
| numTempBuf[2] = 6; |
| } |
| |
| endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ; |
| if (digIndx % 2 != 0){ |
| /* |
| We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what |
| we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward. |
| Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a |
| single pass and optimizes for strings with single digits. I'm just assuming that's the more common case. |
| */ |
| |
| for(i = 2; i < endIndex; i++){ |
| numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) + |
| (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6; |
| } |
| --digIndx; |
| } |
| |
| // Subtract one off of the last byte. |
| numTempBuf[endIndex-1] -= 1; |
| |
| /* |
| We want to skip over the first two slots in the buffer. The first slot |
| is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
| sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
| */ |
| numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
| numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F)); |
| |
| // Now transfer the collation key to our collIterate struct. |
| // The total size for our collation key is endIndx bumped up to the next largest even value divided by two. |
| //size = ((endIndex+1) & ~1)/2; |
| CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
| (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
| UCOL_BYTE_COMMON; // Tertiary weight. |
| i = 2; // Reset the index into the buffer. |
| while(i < endIndex) |
| { |
| uint32_t primWeight = numTempBuf[i++] << 8; |
| if ( i < endIndex) |
| primWeight |= numTempBuf[i++]; |
| *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
| } |
| |
| } else { |
| // no numeric mode, we'll just switch to whatever we stashed and continue |
| CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
| CE = *CEOffset++; |
| break; |
| } |
| return CE; |
| } |
| /* various implicits optimization */ |
| case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
| /* UCA is filled with these. Tailorings are NOT_FOUND */ |
| return getImplicit(cp, source); |
| case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
| // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit |
| return getImplicit(cp, source); |
| case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
| { |
| static const uint32_t |
| SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
| //const uint32_t LCount = 19; |
| static const uint32_t VCount = 21; |
| static const uint32_t TCount = 28; |
| //const uint32_t NCount = VCount * TCount; // 588 |
| //const uint32_t SCount = LCount * NCount; // 11172 |
| uint32_t L = ch - SBase; |
| |
| // divide into pieces |
| |
| uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation |
| L /= TCount; |
| uint32_t V = L % VCount; |
| L /= VCount; |
| |
| // offset them |
| |
| L += LBase; |
| V += VBase; |
| T += TBase; |
| |
| // return the first CE, but first put the rest into the expansion buffer |
| if (!source->coll->image->jamoSpecial) { // FAST PATH |
| |
| *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
| if (T != TBase) { |
| *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
| } |
| |
| return UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
| |
| } else { // Jamo is Special |
| // Since Hanguls pass the FCD check, it is |
| // guaranteed that we won't be in |
| // the normalization buffer if something like this happens |
| |
| // However, if we are using a uchar iterator and normalization |
| // is ON, the Hangul that lead us here is going to be in that |
| // normalization buffer. Here we want to restore the uchar |
| // iterator state and pull out of the normalization buffer |
| if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) { |
| source->flags = source->origFlags; // restore the iterator |
| source->pos = NULL; |
| } |
| |
| // Move Jamos into normalization buffer |
| UChar *buffer = source->writableBuffer.getBuffer(4); |
| int32_t bufferLength; |
| buffer[0] = (UChar)L; |
| buffer[1] = (UChar)V; |
| if (T != TBase) { |
| buffer[2] = (UChar)T; |
| bufferLength = 3; |
| } else { |
| bufferLength = 2; |
| } |
| source->writableBuffer.releaseBuffer(bufferLength); |
| |
| // Indicate where to continue in main input string after exhausting the writableBuffer |
| source->fcdPosition = source->pos; |
| |
| source->pos = source->writableBuffer.getTerminatedBuffer(); |
| source->origFlags = source->flags; |
| source->flags |= UCOL_ITER_INNORMBUF; |
| source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
| |
| return(UCOL_IGNORABLE); |
| } |
| } |
| case SURROGATE_TAG: |
| /* we encountered a leading surrogate. We shall get the CE by using the following code unit */ |
| /* two things can happen here: next code point can be a trailing surrogate - we will use it */ |
| /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */ |
| /* we treat it like an unassigned code point. */ |
| { |
| UChar trail; |
| collIterateState state; |
| backupState(source, &state); |
| if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) { |
| // we chould have stepped one char forward and it might have turned that it |
| // was not a trail surrogate. In that case, we have to backup. |
| loadState(source, &state, TRUE); |
| return UCOL_NOT_FOUND; |
| } else { |
| /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */ |
| CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail); |
| if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one. |
| // We need to backup |
| loadState(source, &state, TRUE); |
| return CE; |
| } |
| // calculate the supplementary code point value, if surrogate was not tailored |
| cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
| } |
| } |
| break; |
| case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
| UChar nextChar; |
| if( source->flags & UCOL_USE_ITERATOR) { |
| if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) { |
| cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
| source->iterator->next(source->iterator); |
| return getImplicit(cp, source); |
| } |
| } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) && |
| U_IS_TRAIL((nextChar=*source->pos))) { |
| cp = U16_GET_SUPPLEMENTARY(ch, nextChar); |
| source->pos++; |
| return getImplicit(cp, source); |
| } |
| return UCOL_NOT_FOUND; |
| case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
| return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
| case CHARSET_TAG: |
| /* not yet implemented */ |
| /* probably after 1.8 */ |
| return UCOL_NOT_FOUND; |
| default: |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| CE=0; |
| break; |
| } |
| if (CE <= UCOL_NOT_FOUND) break; |
| } |
| return CE; |
| } |
| |
| |
| /* now uses Mark's getImplicitPrimary code */ |
| static |
| inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) { |
| uint32_t r = uprv_uca_getImplicitPrimary(cp); |
| |
| *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505; |
| collationSource->toReturn = collationSource->CEpos; |
| |
| // **** doesn't work if using iterator **** |
| if (collationSource->flags & UCOL_ITER_INNORMBUF) { |
| collationSource->offsetRepeatCount = 1; |
| } else { |
| int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string); |
| |
| UErrorCode errorCode = U_ZERO_ERROR; |
| collationSource->appendOffset(firstOffset, errorCode); |
| collationSource->appendOffset(firstOffset + 1, errorCode); |
| |
| collationSource->offsetReturn = collationSource->offsetStore - 1; |
| *(collationSource->offsetBuffer) = firstOffset; |
| if (collationSource->offsetReturn == collationSource->offsetBuffer) { |
| collationSource->offsetStore = collationSource->offsetBuffer; |
| } |
| } |
| |
| return ((r & 0x0000FFFF)<<16) | 0x000000C0; |
| } |
| |
| /** |
| * This function handles the special CEs like contractions, expansions, |
| * surrogates, Thai. |
| * It is called by both getPrevCE |
| */ |
| uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE, |
| collIterate *source, |
| UErrorCode *status) |
| { |
| const uint32_t *CEOffset = NULL; |
| UChar *UCharOffset = NULL; |
| UChar schar; |
| const UChar *constart = NULL; |
| uint32_t size; |
| UChar buffer[UCOL_MAX_BUFFER]; |
| uint32_t *endCEBuffer; |
| UChar *strbuffer; |
| int32_t noChars = 0; |
| int32_t CECount = 0; |
| |
| for(;;) |
| { |
| /* the only ces that loops are thai and contractions */ |
| switch (getCETag(CE)) |
| { |
| case NOT_FOUND_TAG: /* this tag always returns */ |
| return CE; |
| |
| case SPEC_PROC_TAG: |
| { |
| // Special processing is getting a CE that is preceded by a certain prefix |
| // Currently this is only needed for optimizing Japanese length and iteration marks. |
| // When we encouter a special processing tag, we go backwards and try to see if |
| // we have a match. |
| // Contraction tables are used - so the whole process is not unlike contraction. |
| // prefix data is stored backwards in the table. |
| const UChar *UCharOffset; |
| UChar schar, tchar; |
| collIterateState prefixState; |
| backupState(source, &prefixState); |
| for(;;) { |
| // This loop will run once per source string character, for as long as we |
| // are matching a potential contraction sequence |
| |
| // First we position ourselves at the begining of contraction sequence |
| const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
| |
| if (collIter_bos(source)) { |
| CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); |
| break; |
| } |
| schar = getPrevNormalizedChar(source, status); |
| goBackOne(source); |
| |
| while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
| UCharOffset++; |
| } |
| |
| if (schar == tchar) { |
| // Found the source string char in the table. |
| // Pick up the corresponding CE from the table. |
| CE = *(coll->contractionCEs + |
| (UCharOffset - coll->contractionIndex)); |
| } |
| else |
| { |
| // if there is a completely ignorable code point in the middle of |
| // a prefix, we need to act as if it's not there |
| // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero) |
| // lone surrogates cannot be set to zero as it would break other processing |
| uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
| // it's easy for BMP code points |
| if(isZeroCE == 0) { |
| continue; |
| } else if(U16_IS_SURROGATE(schar)) { |
| // for supplementary code points, we have to check the next one |
| // situations where we are going to ignore |
| // 1. beginning of the string: schar is a lone surrogate |
| // 2. schar is a lone surrogate |
| // 3. schar is a trail surrogate in a valid surrogate sequence |
| // that is explicitly set to zero. |
| if (!collIter_bos(source)) { |
| UChar lead; |
| if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) { |
| isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead); |
| if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) { |
| uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar); |
| if(finalCE == 0) { |
| // this is a real, assigned completely ignorable code point |
| goBackOne(source); |
| continue; |
| } |
| } |
| } else { |
| // lone surrogate, treat like unassigned |
| return UCOL_NOT_FOUND; |
| } |
| } else { |
| // lone surrogate at the beggining, treat like unassigned |
| return UCOL_NOT_FOUND; |
| } |
| } |
| // Source string char was not in the table. |
| // We have not found the prefix. |
| CE = *(coll->contractionCEs + |
| (ContractionStart - coll->contractionIndex)); |
| } |
| |
| if(!isPrefix(CE)) { |
| // The source string char was in the contraction table, and the corresponding |
| // CE is not a prefix CE. We found the prefix, break |
| // out of loop, this CE will end up being returned. This is the normal |
| // way out of prefix handling when the source actually contained |
| // the prefix. |
| break; |
| } |
| } |
| loadState(source, &prefixState, TRUE); |
| break; |
| } |
| |
| case CONTRACTION_TAG: { |
| /* to ensure that the backwards and forwards iteration matches, we |
| take the current region of most possible match and pass it through |
| the forward iteration. this will ensure that the obstinate problem of |
| overlapping contractions will not occur. |
| */ |
| schar = peekCodeUnit(source, 0); |
| constart = (UChar *)coll->image + getContractOffset(CE); |
| if (isAtStartPrevIterate(source) |
| /* commented away contraction end checks after adding the checks |
| in getPrevCE */) { |
| /* start of string or this is not the end of any contraction */ |
| CE = *(coll->contractionCEs + |
| (constart - coll->contractionIndex)); |
| break; |
| } |
| strbuffer = buffer; |
| UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1); |
| *(UCharOffset --) = 0; |
| noChars = 0; |
| // have to swap thai characters |
| while (ucol_unsafeCP(schar, coll)) { |
| *(UCharOffset) = schar; |
| noChars++; |
| UCharOffset --; |
| schar = getPrevNormalizedChar(source, status); |
| goBackOne(source); |
| // TODO: when we exhaust the contraction buffer, |
| // it needs to get reallocated. The problem is |
| // that the size depends on the string which is |
| // not iterated over. However, since we're travelling |
| // backwards, we already had to set the iterator at |
| // the end - so we might as well know where we are? |
| if (UCharOffset + 1 == buffer) { |
| /* we have exhausted the buffer */ |
| int32_t newsize = 0; |
| if(source->pos) { // actually dealing with a position |
| newsize = (int32_t)(source->pos - source->string + 1); |
| } else { // iterator |
| newsize = 4 * UCOL_MAX_BUFFER; |
| } |
| strbuffer = (UChar *)uprv_malloc(sizeof(UChar) * |
| (newsize + UCOL_MAX_BUFFER)); |
| /* test for NULL */ |
| if (strbuffer == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return UCOL_NO_MORE_CES; |
| } |
| UCharOffset = strbuffer + newsize; |
| uprv_memcpy(UCharOffset, buffer, |
| UCOL_MAX_BUFFER * sizeof(UChar)); |
| UCharOffset --; |
| } |
| if ((source->pos && (source->pos == source->string || |
| ((source->flags & UCOL_ITER_INNORMBUF) && |
| *(source->pos - 1) == 0 && source->fcdPosition == NULL))) |
| || (source->iterator && !source->iterator->hasPrevious(source->iterator))) { |
| break; |
| } |
| } |
| /* adds the initial base character to the string */ |
| *(UCharOffset) = schar; |
| noChars++; |
| |
| int32_t offsetBias; |
| |
| // **** doesn't work if using iterator **** |
| if (source->flags & UCOL_ITER_INNORMBUF) { |
| offsetBias = -1; |
| } else { |
| offsetBias = (int32_t)(source->pos - source->string); |
| } |
| |
| /* a new collIterate is used to simplify things, since using the current |
| collIterate will mean that the forward and backwards iteration will |
| share and change the same buffers. we don't want to get into that. */ |
| collIterate temp; |
| int32_t rawOffset; |
| |
| IInit_collIterate(coll, UCharOffset, noChars, &temp, status); |
| if(U_FAILURE(*status)) { |
| return UCOL_NULLORDER; |
| } |
| temp.flags &= ~UCOL_ITER_NORM; |
| temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT; |
| |
| rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero? |
| CE = ucol_IGetNextCE(coll, &temp, status); |
| |
| if (source->extendCEs) { |
| endCEBuffer = source->extendCEs + source->extendCEsSize; |
| CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t)); |
| } else { |
| endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE; |
| CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t)); |
| } |
| |
| while (CE != UCOL_NO_MORE_CES) { |
| *(source->CEpos ++) = CE; |
| |
| if (offsetBias >= 0) { |
| source->appendOffset(rawOffset + offsetBias, *status); |
| } |
| |
| CECount++; |
| if (source->CEpos == endCEBuffer) { |
| /* ran out of CE space, reallocate to new buffer. |
| If reallocation fails, reset pointers and bail out, |
| there's no guarantee of the right character position after |
| this bail*/ |
| if (!increaseCEsCapacity(source)) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| break; |
| } |
| |
| endCEBuffer = source->extendCEs + source->extendCEsSize; |
| } |
| |
| if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) { |
| rawOffset = (int32_t)(temp.fcdPosition - temp.string); |
| } else { |
| rawOffset = (int32_t)(temp.pos - temp.string); |
| } |
| |
| CE = ucol_IGetNextCE(coll, &temp, status); |
| } |
| |
| if (strbuffer != buffer) { |
| uprv_free(strbuffer); |
| } |
| if (U_FAILURE(*status)) { |
| return (uint32_t)UCOL_NULLORDER; |
| } |
| |
| if (source->offsetRepeatValue != 0) { |
| if (CECount > noChars) { |
| source->offsetRepeatCount += temp.offsetRepeatCount; |
| } else { |
| // **** does this really skip the right offsets? **** |
| source->offsetReturn -= (noChars - CECount); |
| } |
| } |
| |
| if (offsetBias >= 0) { |
| source->offsetReturn = source->offsetStore - 1; |
| if (source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| } |
| } |
| |
| source->toReturn = source->CEpos - 1; |
| if (source->toReturn == source->CEs) { |
| source->CEpos = source->CEs; |
| } |
| |
| return *(source->toReturn); |
| } |
| case LONG_PRIMARY_TAG: |
| { |
| *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; |
| *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; |
| source->toReturn = source->CEpos - 1; |
| |
| if (source->flags & UCOL_ITER_INNORMBUF) { |
| source->offsetRepeatCount = 1; |
| } else { |
| int32_t firstOffset = (int32_t)(source->pos - source->string); |
| |
| source->appendOffset(firstOffset, *status); |
| source->appendOffset(firstOffset + 1, *status); |
| |
| source->offsetReturn = source->offsetStore - 1; |
| *(source->offsetBuffer) = firstOffset; |
| if (source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| } |
| } |
| |
| |
| return *(source->toReturn); |
| } |
| |
| case EXPANSION_TAG: /* this tag always returns */ |
| { |
| /* |
| This should handle expansion. |
| NOTE: we can encounter both continuations and expansions in an expansion! |
| I have to decide where continuations are going to be dealt with |
| */ |
| int32_t firstOffset = (int32_t)(source->pos - source->string); |
| |
| // **** doesn't work if using iterator **** |
| if (source->offsetReturn != NULL) { |
| if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| }else { |
| firstOffset = -1; |
| } |
| } |
| |
| /* find the offset to expansion table */ |
| CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
| size = getExpansionCount(CE); |
| if (size != 0) { |
| /* |
| if there are less than 16 elements in expansion, we don't terminate |
| */ |
| uint32_t count; |
| |
| for (count = 0; count < size; count++) { |
| *(source->CEpos ++) = *CEOffset++; |
| |
| if (firstOffset >= 0) { |
| source->appendOffset(firstOffset + 1, *status); |
| } |
| } |
| } else { |
| /* else, we do */ |
| while (*CEOffset != 0) { |
| *(source->CEpos ++) = *CEOffset ++; |
| |
| if (firstOffset >= 0) { |
| source->appendOffset(firstOffset + 1, *status); |
| } |
| } |
| } |
| |
| if (firstOffset >= 0) { |
| source->offsetReturn = source->offsetStore - 1; |
| *(source->offsetBuffer) = firstOffset; |
| if (source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| } |
| } else { |
| source->offsetRepeatCount += size - 1; |
| } |
| |
| source->toReturn = source->CEpos - 1; |
| // in case of one element expansion, we |
| // want to immediately return CEpos |
| if(source->toReturn == source->CEs) { |
| source->CEpos = source->CEs; |
| } |
| |
| return *(source->toReturn); |
| } |
| |
| case DIGIT_TAG: |
| { |
| /* |
| We do a check to see if we want to collate digits as numbers; if so we generate |
| a custom collation key. Otherwise we pull out the value stored in the expansion table. |
| */ |
| uint32_t i; /* general counter */ |
| |
| if (source->coll->numericCollation == UCOL_ON){ |
| uint32_t digIndx = 0; |
| uint32_t endIndex = 0; |
| uint32_t leadingZeroIndex = 0; |
| uint32_t trailingZeroCount = 0; |
| |
| uint8_t collateVal = 0; |
| |
| UBool nonZeroValReached = FALSE; |
| |
| uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs. |
| /* |
| We parse the source string until we hit a char that's NOT a digit. |
| Use this u_charDigitValue. This might be slow because we have to |
| handle surrogates... |
| */ |
| /* |
| We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less, |
| with any chunks smaller than that being on the right end of the digit string - i.e. the first collation |
| element we process when going backward. To determine how long that chunk might be, we may need to make |
| two passes through the loop that collects digits - one to see how long the string is (and how much is |
| leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has |
| more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation |
| element chunk after resetting the state to the initialState at the right side of the digit string. |
| */ |
| uint32_t ceLimit = 0; |
| UChar initial_ch = ch; |
| collIterateState initialState = {0,0,0,0,0,0,0,0,0}; |
| backupState(source, &initialState); |
| |
| for(;;) { |
| collIterateState state = {0,0,0,0,0,0,0,0,0}; |
| UChar32 char32 = 0; |
| int32_t digVal = 0; |
| |
| if (U16_IS_TRAIL (ch)) { |
| if (!collIter_bos(source)){ |
| UChar lead = getPrevNormalizedChar(source, status); |
| if(U16_IS_LEAD(lead)) { |
| char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
| goBackOne(source); |
| } else { |
| char32 = ch; |
| } |
| } else { |
| char32 = ch; |
| } |
| } else { |
| char32 = ch; |
| } |
| digVal = u_charDigitValue(char32); |
| |
| for(;;) { |
| // Make sure we have enough space. No longer needed; |
| // at this point the largest value of digIndx when we need to save data in numTempBuf |
| // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure |
| // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2). |
| |
| // Skip over trailing zeroes, and keep a count of them. |
| if (digVal != 0) |
| nonZeroValReached = TRUE; |
| |
| if (nonZeroValReached) { |
| /* |
| We parse the digit string into base 100 numbers (this fits into a byte). |
| We only add to the buffer in twos, thus if we are parsing an odd character, |
| that serves as the 'tens' digit while the if we are parsing an even one, that |
| is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into |
| a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid |
| overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less |
| than all the other bytes. |
| |
| Since we're doing in this reverse we want to put the first digit encountered into the |
| ones place and the second digit encountered into the tens place. |
| */ |
| |
| if ((digIndx + trailingZeroCount) % 2 == 1) { |
| // High-order digit case (tens place) |
| collateVal += (uint8_t)(digVal * 10); |
| |
| // We cannot set leadingZeroIndex unless it has been set for the |
| // low-order digit. Therefore, all we can do for the high-order |
| // digit is turn it off, never on. |
| // The only time we will have a high digit without a low is for |
| // the very first non-zero digit, so no zero check is necessary. |
| if (collateVal != 0) |
| leadingZeroIndex = 0; |
| |
| // The first pass through, digIndx may exceed the limit, but in that case |
| // we no longer care about numTempBuf contents since they will be discarded |
| if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) { |
| numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; |
| } |
| collateVal = 0; |
| } else { |
| // Low-order digit case (ones place) |
| collateVal = (uint8_t)digVal; |
| |
| // Check for leading zeroes. |
| if (collateVal == 0) { |
| if (!leadingZeroIndex) |
| leadingZeroIndex = (digIndx/2) + 2; |
| } else |
| leadingZeroIndex = 0; |
| |
| // No need to write to buffer; the case of a last odd digit |
| // is handled below. |
| } |
| ++digIndx; |
| } else |
| ++trailingZeroCount; |
| |
| if (!collIter_bos(source)) { |
| ch = getPrevNormalizedChar(source, status); |
| //goBackOne(source); |
| if (U16_IS_TRAIL(ch)) { |
| backupState(source, &state); |
| if (!collIter_bos(source)) { |
| goBackOne(source); |
| UChar lead = getPrevNormalizedChar(source, status); |
| |
| if(U16_IS_LEAD(lead)) { |
| char32 = U16_GET_SUPPLEMENTARY(lead,ch); |
| } else { |
| loadState(source, &state, FALSE); |
| char32 = ch; |
| } |
| } |
| } else |
| char32 = ch; |
| |
| if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) { |
| if (char32 > 0xFFFF) {// For surrogates. |
| loadState(source, &state, FALSE); |
| } |
| // Don't need to "reverse" the goBackOne call, |
| // as this points to the next position to process.. |
| //if (char32 > 0xFFFF) // For surrogates. |
| //getNextNormalizedChar(source); |
| break; |
| } |
| |
| goBackOne(source); |
| }else |
| break; |
| } |
| |
| if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) { |
| // our collation element is not too big, go ahead and finish with it |
| break; |
| } |
| // our digit string is too long for a collation element; |
| // set the limit for it, reset the state and begin again |
| ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER; |
| if ( ceLimit == 0 ) { |
| ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER; |
| } |
| ch = initial_ch; |
| loadState(source, &initialState, FALSE); |
| digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0; |
| collateVal = 0; |
| nonZeroValReached = FALSE; |
| } |
| |
| if (! nonZeroValReached) { |
| digIndx = 2; |
| trailingZeroCount = 0; |
| numTempBuf[2] = 6; |
| } |
| |
| if ((digIndx + trailingZeroCount) % 2 != 0) { |
| numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6; |
| digIndx += 1; // The implicit leading zero |
| } |
| if (trailingZeroCount % 2 != 0) { |
| // We had to consume one trailing zero for the low digit |
| // of the least significant byte |
| digIndx += 1; // The trailing zero not in the exponent |
| trailingZeroCount -= 1; |
| } |
| |
| endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ; |
| |
| // Subtract one off of the last byte. Really the first byte here, but it's reversed... |
| numTempBuf[2] -= 1; |
| |
| /* |
| We want to skip over the first two slots in the buffer. The first slot |
| is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the |
| sign/exponent byte: 0x80 + (decimalPos/2) & 7f. |
| The exponent must be adjusted by the number of leading zeroes, and the number of |
| trailing zeroes. |
| */ |
| numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; |
| uint32_t exponent = (digIndx+trailingZeroCount)/2; |
| if (leadingZeroIndex) |
| exponent -= ((digIndx/2) + 2 - leadingZeroIndex); |
| numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F)); |
| |
| // Now transfer the collation key to our collIterate struct. |
| // The total size for our collation key is half of endIndex, rounded up. |
| int32_t size = (endIndex+1)/2; |
| if(!ensureCEsCapacity(source, size)) { |
| return UCOL_NULLORDER; |
| } |
| *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight |
| (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight |
| UCOL_BYTE_COMMON; // Tertiary weight. |
| i = endIndex - 1; // Reset the index into the buffer. |
| while(i >= 2) { |
| uint32_t primWeight = numTempBuf[i--] << 8; |
| if ( i >= 2) |
| primWeight |= numTempBuf[i--]; |
| *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; |
| } |
| |
| source->toReturn = source->CEpos -1; |
| return *(source->toReturn); |
| } else { |
| CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); |
| CE = *(CEOffset++); |
| break; |
| } |
| } |
| |
| case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ |
| { |
| static const uint32_t |
| SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; |
| //const uint32_t LCount = 19; |
| static const uint32_t VCount = 21; |
| static const uint32_t TCount = 28; |
| //const uint32_t NCount = VCount * TCount; /* 588 */ |
| //const uint32_t SCount = LCount * NCount; /* 11172 */ |
| |
| uint32_t L = ch - SBase; |
| /* |
| divide into pieces. |
| we do it in this order since some compilers can do % and / in one |
| operation |
| */ |
| uint32_t T = L % TCount; |
| L /= TCount; |
| uint32_t V = L % VCount; |
| L /= VCount; |
| |
| /* offset them */ |
| L += LBase; |
| V += VBase; |
| T += TBase; |
| |
| int32_t firstOffset = (int32_t)(source->pos - source->string); |
| source->appendOffset(firstOffset, *status); |
| |
| /* |
| * return the first CE, but first put the rest into the expansion buffer |
| */ |
| if (!source->coll->image->jamoSpecial) { |
| *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L); |
| *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); |
| source->appendOffset(firstOffset + 1, *status); |
| |
| if (T != TBase) { |
| *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); |
| source->appendOffset(firstOffset + 1, *status); |
| } |
| |
| source->toReturn = source->CEpos - 1; |
| |
| source->offsetReturn = source->offsetStore - 1; |
| if (source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| } |
| |
| return *(source->toReturn); |
| } else { |
| // Since Hanguls pass the FCD check, it is |
| // guaranteed that we won't be in |
| // the normalization buffer if something like this happens |
| |
| // Move Jamos into normalization buffer |
| UChar *tempbuffer = source->writableBuffer.getBuffer(5); |
| int32_t tempbufferLength, jamoOffset; |
| tempbuffer[0] = 0; |
| tempbuffer[1] = (UChar)L; |
| tempbuffer[2] = (UChar)V; |
| if (T != TBase) { |
| tempbuffer[3] = (UChar)T; |
| tempbufferLength = 4; |
| } else { |
| tempbufferLength = 3; |
| } |
| source->writableBuffer.releaseBuffer(tempbufferLength); |
| |
| // Indicate where to continue in main input string after exhausting the writableBuffer |
| if (source->pos == source->string) { |
| jamoOffset = 0; |
| source->fcdPosition = NULL; |
| } else { |
| jamoOffset = source->pos - source->string; |
| source->fcdPosition = source->pos-1; |
| } |
| |
| // Append offsets for the additional chars |
| // (not the 0, and not the L whose offsets match the original Hangul) |
| int32_t jamoRemaining = tempbufferLength - 2; |
| jamoOffset++; // appended offsets should match end of original Hangul |
| while (jamoRemaining-- > 0) { |
| source->appendOffset(jamoOffset, *status); |
| } |
| |
| source->offsetRepeatValue = jamoOffset; |
| |
| source->offsetReturn = source->offsetStore - 1; |
| if (source->offsetReturn == source->offsetBuffer) { |
| source->offsetStore = source->offsetBuffer; |
| } |
| |
| source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength; |
| source->origFlags = source->flags; |
| source->flags |= UCOL_ITER_INNORMBUF; |
| source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); |
| |
| return(UCOL_IGNORABLE); |
| } |
| } |
| |
| case IMPLICIT_TAG: /* everything that is not defined otherwise */ |
| return getPrevImplicit(ch, source); |
| |
| // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function |
| case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ |
| return getPrevImplicit(ch, source); |
| |
| case SURROGATE_TAG: /* This is a surrogate pair */ |
| /* essentially an engaged lead surrogate. */ |
| /* if you have encountered it here, it means that a */ |
| /* broken sequence was encountered and this is an error */ |
| return UCOL_NOT_FOUND; |
| |
| case LEAD_SURROGATE_TAG: /* D800-DBFF*/ |
| return UCOL_NOT_FOUND; /* broken surrogate sequence */ |
| |
| case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ |
| { |
| UChar32 cp = 0; |
| UChar prevChar; |
| const UChar *prev; |
| if (isAtStartPrevIterate(source)) { |
| /* we are at the start of the string, wrong place to be at */ |
| return UCOL_NOT_FOUND; |
| } |
| if (source->pos != source->writableBuffer.getBuffer()) { |
| prev = source->pos - 1; |
| } else { |
| prev = source->fcdPosition; |
| } |
| prevChar = *prev; |
| |
| /* Handles Han and Supplementary characters here.*/ |
| if (U16_IS_LEAD(prevChar)) { |
| cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); |
| source->pos = prev; |
| } else { |
| return UCOL_NOT_FOUND; /* like unassigned */ |
| } |
| |
| return getPrevImplicit(cp, source); |
| } |
| |
| /* UCA is filled with these. Tailorings are NOT_FOUND */ |
| /* not yet implemented */ |
| case CHARSET_TAG: /* this tag always returns */ |
| /* probably after 1.8 */ |
| return UCOL_NOT_FOUND; |
| |
| default: /* this tag always returns */ |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| CE=0; |
| break; |
| } |
| |
| if (CE <= UCOL_NOT_FOUND) { |
| break; |
| } |
| } |
| |
| return CE; |
| } |
| |
| /* This should really be a macro */ |
| /* However, it is used only when stack buffers are not sufficiently big, and then we're messed up performance wise */ |
| /* anyway */ |
| static |
| uint8_t *reallocateBuffer(uint8_t **secondaries, uint8_t *secStart, uint8_t *second, uint32_t *secSize, uint32_t newSize, UErrorCode *status) { |
| #ifdef UCOL_DEBUG |
| fprintf(stderr, "."); |
| #endif |
| uint8_t *newStart = NULL; |
| uint32_t offset = (uint32_t)(*secondaries-secStart); |
| |
| if(secStart==second) { |
| newStart=(uint8_t*)uprv_malloc(newSize); |
| if(newStart==NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memcpy(newStart, secStart, *secondaries-secStart); |
| } else { |
| newStart=(uint8_t*)uprv_realloc(secStart, newSize); |
| if(newStart==NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| /* Since we're reallocating, return original reference so we don't loose it. */ |
| return secStart; |
| } |
| } |
| *secondaries=newStart+offset; |
| *secSize=newSize; |
| return newStart; |
| } |
| |
| |
| /* This should really be a macro */ |
| /* This function is used to reverse parts of a buffer. We need this operation when doing continuation */ |
| /* secondaries in French */ |
| /* |
| void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) { |
| uint8_t temp; |
| while(start<end) { |
| temp = *start; |
| *start++ = *end; |
| *end-- = temp; |
| } |
| } |
| */ |
| |
| #define uprv_ucol_reverse_buffer(TYPE, start, end) { \ |
| TYPE tempA; \ |
| while((start)<(end)) { \ |
| tempA = *(start); \ |
| *(start)++ = *(end); \ |
| *(end)-- = tempA; \ |
| } \ |
| } |
| |
| /****************************************************************************/ |
| /* Following are the sortkey generation functions */ |
| /* */ |
| /****************************************************************************/ |
| |
| /** |
| * Merge two sort keys. |
| * This is useful, for example, to combine sort keys from first and last names |
| * to sort such pairs. |
| * Merged sort keys consider on each collation level the first part first entirely, |
| * then the second one. |
| * It is possible to merge multiple sort keys by consecutively merging |
| * another one with the intermediate result. |
| * |
| * The length of the merge result is the sum of the lengths of the input sort keys |
| * minus 1. |
| * |
| * @param src1 the first sort key |
| * @param src1Length the length of the first sort key, including the zero byte at the end; |
| * can be -1 if the function is to find the length |
| * @param src2 the second sort key |
| * @param src2Length the length of the second sort key, including the zero byte at the end; |
| * can be -1 if the function is to find the length |
| * @param dest the buffer where the merged sort key is written, |
| * can be NULL if destCapacity==0 |
| * @param destCapacity the number of bytes in the dest buffer |
| * @return the length of the merged sort key, src1Length+src2Length-1; |
| * can be larger than destCapacity, or 0 if an error occurs (only for illegal arguments), |
| * in which cases the contents of dest is undefined |
| * |
| * @draft |
| */ |
| U_CAPI int32_t U_EXPORT2 |
| ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, |
| const uint8_t *src2, int32_t src2Length, |
| uint8_t *dest, int32_t destCapacity) { |
| int32_t destLength; |
| uint8_t b; |
| |
| /* check arguments */ |
| if( src1==NULL || src1Length<-2 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || |
| src2==NULL || src2Length<-2 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || |
| destCapacity<0 || (destCapacity>0 && dest==NULL) |
| ) { |
| /* error, attempt to write a zero byte and return 0 */ |
| if(dest!=NULL && destCapacity>0) { |
| *dest=0; |
| } |
| return 0; |
| } |
| |
| /* check lengths and capacity */ |
| if(src1Length<0) { |
| src1Length=(int32_t)uprv_strlen((const char *)src1)+1; |
| } |
| if(src2Length<0) { |
| src2Length=(int32_t)uprv_strlen((const char *)src2)+1; |
| } |
| |
| destLength=src1Length+src2Length-1; |
| if(destLength>destCapacity) { |
| /* the merged sort key does not fit into the destination */ |
| return destLength; |
| } |
| |
| /* merge the sort keys with the same number of levels */ |
| while(*src1!=0 && *src2!=0) { /* while both have another level */ |
| /* copy level from src1 not including 00 or 01 */ |
| while((b=*src1)>=2) { |
| ++src1; |
| *dest++=b; |
| } |
| |
| /* add a 02 merge separator */ |
| *dest++=2; |
| |
| /* copy level from src2 not including 00 or 01 */ |
| while((b=*src2)>=2) { |
| ++src2; |
| *dest++=b; |
| } |
| |
| /* if both sort keys have another level, then add a 01 level separator and continue */ |
| if(*src1==1 && *src2==1) { |
| ++src1; |
| ++src2; |
| *dest++=1; |
| } |
| } |
| |
| /* |
| * here, at least one sort key is finished now, but the other one |
| * might have some contents left from containing more levels; |
| * that contents is just appended to the result |
| */ |
| if(*src1!=0) { |
| /* src1 is not finished, therefore *src2==0, and src1 is appended */ |
| src2=src1; |
| } |
| /* append src2, "the other, unfinished sort key" */ |
| uprv_strcpy((char *)dest, (const char *)src2); |
| |
| /* trust that neither sort key contained illegally embedded zero bytes */ |
| return destLength; |
| } |
| |
| /* sortkey API */ |
| U_CAPI int32_t U_EXPORT2 |
| ucol_getSortKey(const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| uint8_t *result, |
| int32_t resultLength) |
| { |
| UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); |
| if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
| UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, |
| ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); |
| } |
| |
| UErrorCode status = U_ZERO_ERROR; |
| int32_t keySize = 0; |
| |
| if(source != NULL) { |
| // source == NULL is actually an error situation, but we would need to |
| // have an error code to return it. Until we introduce a new |
| // API, it stays like this |
| |
| /* this uses the function pointer that is set in updateinternalstate */ |
| /* currently, there are two funcs: */ |
| /*ucol_calcSortKey(...);*/ |
| /*ucol_calcSortKeySimpleTertiary(...);*/ |
| |
| keySize = coll->sortKeyGen(coll, source, sourceLength, &result, resultLength, FALSE, &status); |
| //if (U_FAILURE(status) && status != U_BUFFER_OVERFLOW_ERROR && result && resultLength > 0) { |
| // That's not good. Something unusual happened. |
| // We don't know how much we initialized before we failed. |
| // NULL terminate for safety. |
| // We have no way say that we have generated a partial sort key. |
| //result[0] = 0; |
| //keySize = 0; |
| //} |
| } |
| UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); |
| UTRACE_EXIT_STATUS(status); |
| return keySize; |
| } |
| |
| /* this function is called by the C++ API for sortkey generation */ |
| U_CFUNC int32_t |
| ucol_getSortKeyWithAllocation(const UCollator *coll, |
| const UChar *source, int32_t sourceLength, |
| uint8_t **pResult, |
| UErrorCode *pErrorCode) { |
| *pResult = 0; |
| return coll->sortKeyGen(coll, source, sourceLength, pResult, 0, TRUE, pErrorCode); |
| } |
| |
| #define UCOL_FSEC_BUF_SIZE 256 |
| |
| // Is this primary weight compressible? |
| // Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit). |
| // TODO: This should use per-lead-byte flags from FractionalUCA.txt. |
| static inline UBool |
| isCompressible(const UCollator * /*coll*/, uint8_t primary1) { |
| return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary; |
| } |
| |
| /* This function tries to get the size of a sortkey. It will be invoked if the size of resulting buffer is 0 */ |
| /* or if we run out of space while making a sortkey and want to return ASAP */ |
| int32_t ucol_getSortKeySize(const UCollator *coll, collIterate *s, int32_t currentSize, UColAttributeValue strength, int32_t len) { |
| UErrorCode status = U_ZERO_ERROR; |
| //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts); |
| uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); |
| uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); |
| uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); |
| UBool compareIdent = (strength == UCOL_IDENTICAL); |
| UBool doCase = (coll->caseLevel == UCOL_ON); |
| UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
| //UBool qShifted = shifted && (compareQuad == 0); |
| UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); |
| UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); |
| uint8_t fSecsBuff[UCOL_FSEC_BUF_SIZE]; |
| uint8_t *fSecs = fSecsBuff; |
| uint32_t fSecsLen = 0, fSecsMaxLen = UCOL_FSEC_BUF_SIZE; |
| uint8_t *frenchStartPtr = NULL, *frenchEndPtr = NULL; |
| |
| uint32_t variableTopValue = coll->variableTopValue; |
| uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); |
| if(doHiragana) { |
| UCOL_COMMON_BOT4++; |
| /* allocate one more space for hiragana */ |
| } |
| uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); |
| |
| uint32_t order = UCOL_NO_MORE_CES; |
| uint8_t primary1 = 0; |
| uint8_t primary2 = 0; |
| uint8_t secondary = 0; |
| uint8_t tertiary = 0; |
| int32_t caseShift = 0; |
| uint32_t c2 = 0, c3 = 0, c4 = 0; /* variables for compression */ |
| |
| uint8_t caseSwitch = coll->caseSwitch; |
| uint8_t tertiaryMask = coll->tertiaryMask; |
| uint8_t tertiaryCommon = coll->tertiaryCommon; |
| |
| UBool wasShifted = FALSE; |
| UBool notIsContinuation = FALSE; |
| uint8_t leadPrimary = 0; |
| |
| |
| for(;;) { |
| order = ucol_IGetNextCE(coll, s, &status); |
| if(order == UCOL_NO_MORE_CES) { |
| break; |
| } |
| |
| if(order == 0) { |
| continue; |
| } |
| |
| notIsContinuation = !isContinuation(order); |
| |
| |
| if(notIsContinuation) { |
| tertiary = (uint8_t)((order & UCOL_BYTE_SIZE_MASK)); |
| } else { |
| tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
| } |
| secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary1 = (uint8_t)(order >> 8); |
| |
| /* no need to permute since the actual code values don't matter |
| if (coll->leadBytePermutationTable != NULL && notIsContinuation) { |
| primary1 = coll->leadBytePermutationTable[primary1]; |
| } |
| */ |
| |
| if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) |
| || (!notIsContinuation && wasShifted))) |
| || (wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */ |
| /* and other ignorables should be removed if following a shifted code point */ |
| if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ |
| /* we should just completely ignore it */ |
| continue; |
| } |
| if(compareQuad == 0) { |
| if(c4 > 0) { |
| currentSize += (c2/UCOL_BOT_COUNT4)+1; |
| c4 = 0; |
| } |
| currentSize++; |
| if(primary2 != 0) { |
| currentSize++; |
| } |
| } |
| wasShifted = TRUE; |
| } else { |
| wasShifted = FALSE; |
| /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
| /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
| /* calculate sortkey size */ |
| if(primary1 != UCOL_IGNORABLE) { |
| if(notIsContinuation) { |
| if(leadPrimary == primary1) { |
| currentSize++; |
| } else { |
| if(leadPrimary != 0) { |
| currentSize++; |
| } |
| if(primary2 == UCOL_IGNORABLE) { |
| /* one byter, not compressed */ |
| currentSize++; |
| leadPrimary = 0; |
| } else if(isCompressible(coll, primary1)) { |
| /* compress */ |
| leadPrimary = primary1; |
| currentSize+=2; |
| } else { |
| leadPrimary = 0; |
| currentSize+=2; |
| } |
| } |
| } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
| currentSize++; |
| if(primary2 != UCOL_IGNORABLE) { |
| currentSize++; |
| } |
| } |
| } |
| |
| if(secondary > compareSec) { /* I think that != 0 test should be != IGNORABLE */ |
| if(!isFrenchSec){ |
| if (secondary == UCOL_COMMON2 && notIsContinuation) { |
| c2++; |
| } else { |
| if(c2 > 0) { |
| if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
| currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+1; |
| } else { |
| currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+1; |
| } |
| c2 = 0; |
| } |
| currentSize++; |
| } |
| } else { |
| fSecs[fSecsLen++] = secondary; |
| if(fSecsLen == fSecsMaxLen) { |
| uint8_t *fSecsTemp; |
| if(fSecs == fSecsBuff) { |
| fSecsTemp = (uint8_t *)uprv_malloc(2*fSecsLen); |
| } else { |
| fSecsTemp = (uint8_t *)uprv_realloc(fSecs, 2*fSecsLen); |
| } |
| if(fSecsTemp == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| fSecs = fSecsTemp; |
| fSecsMaxLen *= 2; |
| } |
| if(notIsContinuation) { |
| if (frenchStartPtr != NULL) { |
| /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
| uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
| frenchStartPtr = NULL; |
| } |
| } else { |
| if (frenchStartPtr == NULL) { |
| frenchStartPtr = fSecs+fSecsLen-2; |
| } |
| frenchEndPtr = fSecs+fSecsLen-1; |
| } |
| } |
| } |
| |
| if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { |
| // do the case level if we need to do it. We don't want to calculate |
| // case level for primary ignorables if we have only primary strength and case level |
| // otherwise we would break well formedness of CEs |
| if (caseShift == 0) { |
| currentSize++; |
| caseShift = UCOL_CASE_SHIFT_START; |
| } |
| if((tertiary&0x3F) > 0 && notIsContinuation) { |
| caseShift--; |
| if((tertiary &0xC0) != 0) { |
| if (caseShift == 0) { |
| currentSize++; |
| caseShift = UCOL_CASE_SHIFT_START; |
| } |
| caseShift--; |
| } |
| } |
| } else { |
| if(notIsContinuation) { |
| tertiary ^= caseSwitch; |
| } |
| } |
| |
| tertiary &= tertiaryMask; |
| if(tertiary > compareTer) { /* I think that != 0 test should be != IGNORABLE */ |
| if (tertiary == tertiaryCommon && notIsContinuation) { |
| c3++; |
| } else { |
| if(c3 > 0) { |
| if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) |
| || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) { |
| currentSize += (c3/(uint32_t)coll->tertiaryTopCount)+1; |
| } else { |
| currentSize += (c3/(uint32_t)coll->tertiaryBottomCount)+1; |
| } |
| c3 = 0; |
| } |
| currentSize++; |
| } |
| } |
| |
| if(/*qShifted*/(compareQuad==0) && notIsContinuation) { |
| if(s->flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
| if(c4>0) { // Close this part |
| currentSize += (c4/UCOL_BOT_COUNT4)+1; |
| c4 = 0; |
| } |
| currentSize++; // Add the Hiragana |
| } else { // This wasn't Hiragana, so we can continue adding stuff |
| c4++; |
| } |
| } |
| } |
| } |
| |
| if(!isFrenchSec){ |
| if(c2 > 0) { |
| currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0); |
| } |
| } else { |
| uint32_t i = 0; |
| if(frenchStartPtr != NULL) { |
| uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
| } |
| for(i = 0; i<fSecsLen; i++) { |
| secondary = *(fSecs+fSecsLen-i-1); |
| /* This is compression code. */ |
| if (secondary == UCOL_COMMON2) { |
| ++c2; |
| } else { |
| if(c2 > 0) { |
| if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
| currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+((c2%(uint32_t)UCOL_TOP_COUNT2 != 0)?1:0); |
| } else { |
| currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0); |
| } |
| c2 = 0; |
| } |
| currentSize++; |
| } |
| } |
| if(c2 > 0) { |
| currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0); |
| } |
| if(fSecs != fSecsBuff) { |
| uprv_free(fSecs); |
| } |
| } |
| |
| if(c3 > 0) { |
| currentSize += (c3/(uint32_t)coll->tertiaryBottomCount) + ((c3%(uint32_t)coll->tertiaryBottomCount != 0)?1:0); |
| } |
| |
| if(c4 > 0 && compareQuad == 0) { |
| currentSize += (c4/(uint32_t)UCOL_BOT_COUNT4)+((c4%(uint32_t)UCOL_BOT_COUNT4 != 0)?1:0); |
| } |
| |
| if(compareIdent) { |
| currentSize += u_lengthOfIdenticalLevelRun(s->string, len); |
| } |
| return currentSize; |
| } |
| |
| static |
| inline void doCaseShift(uint8_t **cases, uint32_t &caseShift) { |
| if (caseShift == 0) { |
| *(*cases)++ = UCOL_CASE_BYTE_START; |
| caseShift = UCOL_CASE_SHIFT_START; |
| } |
| } |
| |
| // Adds a value to the buffer if it's safe to add. Increments the number of added values, so that we |
| // know how many values we wanted to add, even if we didn't add them all |
| static |
| inline void addWithIncrement(uint8_t *&primaries, uint8_t *limit, uint32_t &size, const uint8_t value) { |
| size++; |
| if(primaries < limit) { |
| *(primaries)++ = value; |
| } |
| } |
| |
| // Packs the secondary buffer when processing French locale. Adds the terminator. |
| static |
| inline uint8_t *packFrench(uint8_t *primaries, uint8_t *primEnd, uint8_t *secondaries, uint32_t *secsize, uint8_t *frenchStartPtr, uint8_t *frenchEndPtr) { |
| uint8_t secondary; |
| int32_t count2 = 0; |
| uint32_t i = 0, size = 0; |
| // we use i here since the key size already accounts for terminators, so we'll discard the increment |
| addWithIncrement(primaries, primEnd, i, UCOL_LEVELTERMINATOR); |
| /* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */ |
| if(frenchStartPtr != NULL) { |
| uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
| } |
| for(i = 0; i<*secsize; i++) { |
| secondary = *(secondaries-i-1); |
| /* This is compression code. */ |
| if (secondary == UCOL_COMMON2) { |
| ++count2; |
| } else { |
| if (count2 > 0) { |
| if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
| while (count2 > UCOL_TOP_COUNT2) { |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2)); |
| count2 -= (uint32_t)UCOL_TOP_COUNT2; |
| } |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - (count2-1))); |
| } else { |
| while (count2 > UCOL_BOT_COUNT2) { |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); |
| } |
| count2 = 0; |
| } |
| addWithIncrement(primaries, primEnd, size, secondary); |
| } |
| } |
| if (count2 > 0) { |
| while (count2 > UCOL_BOT_COUNT2) { |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); |
| } |
| *secsize = size; |
| return primaries; |
| } |
| |
| #define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0 |
| |
| /* This is the sortkey work horse function */ |
| U_CFUNC int32_t U_CALLCONV |
| ucol_calcSortKey(const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| uint8_t **result, |
| uint32_t resultLength, |
| UBool allocateSKBuffer, |
| UErrorCode *status) |
| { |
| //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts); |
| |
| uint32_t i = 0; /* general purpose counter */ |
| |
| /* Stack allocated buffers for buffers we use */ |
| uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER], caseB[UCOL_CASE_MAX_BUFFER], quad[UCOL_QUAD_MAX_BUFFER]; |
| |
| uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert, *cases = caseB, *quads = quad; |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| if(primaries == NULL && allocateSKBuffer == TRUE) { |
| primaries = *result = prim; |
| resultLength = UCOL_PRIMARY_MAX_BUFFER; |
| } |
| |
| uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER, |
| caseSize = UCOL_CASE_MAX_BUFFER, quadSize = UCOL_QUAD_MAX_BUFFER; |
| |
| uint32_t sortKeySize = 1; /* it is always \0 terminated */ |
| |
| UnicodeString normSource; |
| |
| int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength); |
| |
| UColAttributeValue strength = coll->strength; |
| |
| uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); |
| uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); |
| uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); |
| UBool compareIdent = (strength == UCOL_IDENTICAL); |
| UBool doCase = (coll->caseLevel == UCOL_ON); |
| UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); |
| UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
| //UBool qShifted = shifted && (compareQuad == 0); |
| UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); |
| |
| uint32_t variableTopValue = coll->variableTopValue; |
| // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no |
| // qShifted, we don't need to set UCOL_COMMON_BOT4 so high. |
| uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); |
| uint8_t UCOL_HIRAGANA_QUAD = 0; |
| if(doHiragana) { |
| UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++; |
| /* allocate one more space for hiragana, value for hiragana */ |
| } |
| uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); |
| |
| /* support for special features like caselevel and funky secondaries */ |
| uint8_t *frenchStartPtr = NULL; |
| uint8_t *frenchEndPtr = NULL; |
| uint32_t caseShift = 0; |
| |
| sortKeySize += ((compareSec?0:1) + (compareTer?0:1) + (doCase?1:0) + /*(qShifted?1:0)*/(compareQuad?0:1) + (compareIdent?1:0)); |
| |
| /* If we need to normalize, we'll do it all at once at the beginning! */ |
| const Normalizer2 *norm2; |
| if(compareIdent) { |
| norm2 = Normalizer2Factory::getNFDInstance(*status); |
| } else if(coll->normalizationMode != UCOL_OFF) { |
| norm2 = Normalizer2Factory::getFCDInstance(*status); |
| } else { |
| norm2 = NULL; |
| } |
| if(norm2 != NULL) { |
| normSource.setTo(FALSE, source, len); |
| int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
| if(qcYesLength != len) { |
| UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
| normSource.truncate(qcYesLength); |
| norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
| source = normSource.getBuffer(); |
| len = normSource.length(); |
| } |
| } |
| collIterate s; |
| IInit_collIterate(coll, source, len, &s, status); |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
| |
| if(resultLength == 0 || primaries == NULL) { |
| return ucol_getSortKeySize(coll, &s, sortKeySize, strength, len); |
| } |
| uint8_t *primarySafeEnd = primaries + resultLength - 1; |
| if(strength > UCOL_PRIMARY) { |
| primarySafeEnd--; |
| } |
| |
| uint32_t minBufferSize = UCOL_MAX_BUFFER; |
| |
| uint8_t *primStart = primaries; |
| uint8_t *secStart = secondaries; |
| uint8_t *terStart = tertiaries; |
| uint8_t *caseStart = cases; |
| uint8_t *quadStart = quads; |
| |
| uint32_t order = 0; |
| |
| uint8_t primary1 = 0; |
| uint8_t primary2 = 0; |
| uint8_t secondary = 0; |
| uint8_t tertiary = 0; |
| uint8_t caseSwitch = coll->caseSwitch; |
| uint8_t tertiaryMask = coll->tertiaryMask; |
| int8_t tertiaryAddition = coll->tertiaryAddition; |
| uint8_t tertiaryTop = coll->tertiaryTop; |
| uint8_t tertiaryBottom = coll->tertiaryBottom; |
| uint8_t tertiaryCommon = coll->tertiaryCommon; |
| uint8_t caseBits = 0; |
| |
| UBool finished = FALSE; |
| UBool wasShifted = FALSE; |
| UBool notIsContinuation = FALSE; |
| |
| uint32_t prevBuffSize = 0; |
| |
| uint32_t count2 = 0, count3 = 0, count4 = 0; |
| uint8_t leadPrimary = 0; |
| |
| for(;;) { |
| for(i=prevBuffSize; i<minBufferSize; ++i) { |
| |
| order = ucol_IGetNextCE(coll, &s, status); |
| if(order == UCOL_NO_MORE_CES) { |
| finished = TRUE; |
| break; |
| } |
| |
| if(order == 0) { |
| continue; |
| } |
| |
| notIsContinuation = !isContinuation(order); |
| |
| if(notIsContinuation) { |
| tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK); |
| } else { |
| tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
| } |
| |
| secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary1 = (uint8_t)(order >> 8); |
| |
| uint8_t originalPrimary1 = primary1; |
| if(notIsContinuation && coll->leadBytePermutationTable != NULL) { |
| primary1 = coll->leadBytePermutationTable[primary1]; |
| } |
| |
| if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) |
| || (!notIsContinuation && wasShifted))) |
| || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
| { |
| /* and other ignorables should be removed if following a shifted code point */ |
| if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ |
| /* we should just completely ignore it */ |
| continue; |
| } |
| if(compareQuad == 0) { |
| if(count4 > 0) { |
| while (count4 > UCOL_BOT_COUNT4) { |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
| count4 -= UCOL_BOT_COUNT4; |
| } |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1)); |
| count4 = 0; |
| } |
| /* We are dealing with a variable and we're treating them as shifted */ |
| /* This is a shifted ignorable */ |
| if(primary1 != 0) { /* we need to check this since we could be in continuation */ |
| *quads++ = primary1; |
| } |
| if(primary2 != 0) { |
| *quads++ = primary2; |
| } |
| } |
| wasShifted = TRUE; |
| } else { |
| wasShifted = FALSE; |
| /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
| /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
| /* regular and simple sortkey calc */ |
| if(primary1 != UCOL_IGNORABLE) { |
| if(notIsContinuation) { |
| if(leadPrimary == primary1) { |
| *primaries++ = primary2; |
| } else { |
| if(leadPrimary != 0) { |
| *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
| } |
| if(primary2 == UCOL_IGNORABLE) { |
| /* one byter, not compressed */ |
| *primaries++ = primary1; |
| leadPrimary = 0; |
| } else if(isCompressible(coll, originalPrimary1)) { |
| /* compress */ |
| *primaries++ = leadPrimary = primary1; |
| if(primaries <= primarySafeEnd) { |
| *primaries++ = primary2; |
| } |
| } else { |
| leadPrimary = 0; |
| *primaries++ = primary1; |
| if(primaries <= primarySafeEnd) { |
| *primaries++ = primary2; |
| } |
| } |
| } |
| } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
| *primaries++ = primary1; |
| if((primary2 != UCOL_IGNORABLE) && (primaries <= primarySafeEnd)) { |
| *primaries++ = primary2; /* second part */ |
| } |
| } |
| } |
| |
| if(secondary > compareSec) { |
| if(!isFrenchSec) { |
| /* This is compression code. */ |
| if (secondary == UCOL_COMMON2 && notIsContinuation) { |
| ++count2; |
| } else { |
| if (count2 > 0) { |
| if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
| while (count2 > UCOL_TOP_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
| count2 -= (uint32_t)UCOL_TOP_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)); |
| } else { |
| while (count2 > UCOL_BOT_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)); |
| } |
| count2 = 0; |
| } |
| *secondaries++ = secondary; |
| } |
| } else { |
| *secondaries++ = secondary; |
| /* Do the special handling for French secondaries */ |
| /* We need to get continuation elements and do intermediate restore */ |
| /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */ |
| if(notIsContinuation) { |
| if (frenchStartPtr != NULL) { |
| /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ |
| uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); |
| frenchStartPtr = NULL; |
| } |
| } else { |
| if (frenchStartPtr == NULL) { |
| frenchStartPtr = secondaries - 2; |
| } |
| frenchEndPtr = secondaries-1; |
| } |
| } |
| } |
| |
| if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { |
| // do the case level if we need to do it. We don't want to calculate |
| // case level for primary ignorables if we have only primary strength and case level |
| // otherwise we would break well formedness of CEs |
| doCaseShift(&cases, caseShift); |
| if(notIsContinuation) { |
| caseBits = (uint8_t)(tertiary & 0xC0); |
| |
| if(tertiary != 0) { |
| if(coll->caseFirst == UCOL_UPPER_FIRST) { |
| if((caseBits & 0xC0) == 0) { |
| *(cases-1) |= 1 << (--caseShift); |
| } else { |
| *(cases-1) |= 0 << (--caseShift); |
| /* second bit */ |
| doCaseShift(&cases, caseShift); |
| *(cases-1) |= ((caseBits>>6)&1) << (--caseShift); |
| } |
| } else { |
| if((caseBits & 0xC0) == 0) { |
| *(cases-1) |= 0 << (--caseShift); |
| } else { |
| *(cases-1) |= 1 << (--caseShift); |
| /* second bit */ |
| doCaseShift(&cases, caseShift); |
| *(cases-1) |= ((caseBits>>7)&1) << (--caseShift); |
| } |
| } |
| } |
| |
| } |
| } else { |
| if(notIsContinuation) { |
| tertiary ^= caseSwitch; |
| } |
| } |
| |
| tertiary &= tertiaryMask; |
| if(tertiary > compareTer) { |
| /* This is compression code. */ |
| /* sequence size check is included in the if clause */ |
| if (tertiary == tertiaryCommon && notIsContinuation) { |
| ++count3; |
| } else { |
| if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
| tertiary += tertiaryAddition; |
| } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
| tertiary -= tertiaryAddition; |
| } |
| if (count3 > 0) { |
| if ((tertiary > tertiaryCommon)) { |
| while (count3 > coll->tertiaryTopCount) { |
| *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount); |
| count3 -= (uint32_t)coll->tertiaryTopCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1)); |
| } else { |
| while (count3 > coll->tertiaryBottomCount) { |
| *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount); |
| count3 -= (uint32_t)coll->tertiaryBottomCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1)); |
| } |
| count3 = 0; |
| } |
| *tertiaries++ = tertiary; |
| } |
| } |
| |
| if(/*qShifted*/(compareQuad==0) && notIsContinuation) { |
| if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
| if(count4>0) { // Close this part |
| while (count4 > UCOL_BOT_COUNT4) { |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
| count4 -= UCOL_BOT_COUNT4; |
| } |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1)); |
| count4 = 0; |
| } |
| *quads++ = UCOL_HIRAGANA_QUAD; // Add the Hiragana |
| } else { // This wasn't Hiragana, so we can continue adding stuff |
| count4++; |
| } |
| } |
| } |
| |
| if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */ |
| if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */ |
| IInit_collIterate(coll, (UChar *)source, len, &s, status); |
| if(U_FAILURE(*status)) { |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| finished = TRUE; |
| break; |
| } |
| s.flags &= ~UCOL_ITER_NORM; |
| sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len); |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| finished = TRUE; |
| break; |
| } else { /* It's much nicer if we can actually reallocate */ |
| int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart)); |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| primarySafeEnd = primStart + resultLength - 1; |
| if(strength > UCOL_PRIMARY) { |
| primarySafeEnd--; |
| } |
| } else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| finished = TRUE; |
| break; |
| } |
| } |
| } |
| } |
| if(finished) { |
| break; |
| } else { |
| prevBuffSize = minBufferSize; |
| |
| uint32_t frenchStartOffset = 0, frenchEndOffset = 0; |
| if (frenchStartPtr != NULL) { |
| frenchStartOffset = (uint32_t)(frenchStartPtr - secStart); |
| frenchEndOffset = (uint32_t)(frenchEndPtr - secStart); |
| } |
| secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status); |
| terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status); |
| caseStart = reallocateBuffer(&cases, caseStart, caseB, &caseSize, 2*caseSize, status); |
| quadStart = reallocateBuffer(&quads, quadStart, quad, &quadSize, 2*quadSize, status); |
| if(U_FAILURE(*status)) { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| break; |
| } |
| if (frenchStartPtr != NULL) { |
| frenchStartPtr = secStart + frenchStartOffset; |
| frenchEndPtr = secStart + frenchEndOffset; |
| } |
| minBufferSize *= 2; |
| } |
| } |
| |
| /* Here, we are generally done with processing */ |
| /* bailing out would not be too productive */ |
| |
| if(U_SUCCESS(*status)) { |
| sortKeySize += (uint32_t)(primaries - primStart); |
| /* we have done all the CE's, now let's put them together to form a key */ |
| if(compareSec == 0) { |
| if (count2 > 0) { |
| while (count2 > UCOL_BOT_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)); |
| } |
| uint32_t secsize = (uint32_t)(secondaries-secStart); |
| if(!isFrenchSec) { // Regular situation, we know the length of secondaries |
| sortKeySize += secsize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, secStart, secsize); |
| primaries += secsize; |
| } else { |
| if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */ |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, secStart, secsize); |
| primaries += secsize; |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| } else { // French secondary is on. We will need to pack French. packFrench will add the level terminator |
| uint8_t *newPrim = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr); |
| sortKeySize += secsize; |
| if(sortKeySize <= resultLength) { // if we managed to pack fine |
| primaries = newPrim; // update the primary pointer |
| } else { // overflow, need to reallocate and redo |
| if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */ |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| primaries = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| } |
| } |
| |
| if(doCase) { |
| uint32_t casesize = (uint32_t)(cases - caseStart); |
| sortKeySize += casesize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, caseStart, casesize); |
| primaries += casesize; |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, caseStart, casesize); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| } |
| |
| if(compareTer == 0) { |
| if (count3 > 0) { |
| if (coll->tertiaryCommon != UCOL_COMMON_BOT3) { |
| while (count3 >= coll->tertiaryTopCount) { |
| *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount); |
| count3 -= (uint32_t)coll->tertiaryTopCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryTop - count3); |
| } else { |
| while (count3 > coll->tertiaryBottomCount) { |
| *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount); |
| count3 -= (uint32_t)coll->tertiaryBottomCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1)); |
| } |
| } |
| uint32_t tersize = (uint32_t)(tertiaries - terStart); |
| sortKeySize += tersize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, terStart, tersize); |
| primaries += tersize; |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, terStart, tersize); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| |
| if(compareQuad == 0/*qShifted == TRUE*/) { |
| if(count4 > 0) { |
| while (count4 > UCOL_BOT_COUNT4) { |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4); |
| count4 -= UCOL_BOT_COUNT4; |
| } |
| *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1)); |
| } |
| uint32_t quadsize = (uint32_t)(quads - quadStart); |
| sortKeySize += quadsize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, quadStart, quadsize); |
| primaries += quadsize; |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, quadStart, quadsize); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| } |
| |
| if(compareIdent) { |
| sortKeySize += u_lengthOfIdenticalLevelRun(s.string, len); |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| primaries += u_writeIdenticalLevelRun(s.string, len, primaries); |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| u_writeIdenticalLevelRun(s.string, len, primaries); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| } |
| } |
| *(primaries++) = '\0'; |
| } |
| |
| if(allocateSKBuffer == TRUE) { |
| *result = (uint8_t*)uprv_malloc(sortKeySize); |
| /* test for NULL */ |
| if (*result == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| goto cleanup; |
| } |
| uprv_memcpy(*result, primStart, sortKeySize); |
| if(primStart != prim) { |
| uprv_free(primStart); |
| } |
| } |
| |
| cleanup: |
| if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) { |
| /* NULL terminate for safety */ |
| **result = 0; |
| } |
| if(terStart != tert) { |
| uprv_free(terStart); |
| uprv_free(secStart); |
| uprv_free(caseStart); |
| uprv_free(quadStart); |
| } |
| |
| /* To avoid memory leak, free the offset buffer if necessary. */ |
| ucol_freeOffsetBuffer(&s); |
| |
| return sortKeySize; |
| } |
| |
| |
| U_CFUNC int32_t U_CALLCONV |
| ucol_calcSortKeySimpleTertiary(const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| uint8_t **result, |
| uint32_t resultLength, |
| UBool allocateSKBuffer, |
| UErrorCode *status) |
| { |
| U_ALIGN_CODE(16); |
| |
| //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts); |
| uint32_t i = 0; /* general purpose counter */ |
| |
| /* Stack allocated buffers for buffers we use */ |
| uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER]; |
| |
| uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert; |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| if(primaries == NULL && allocateSKBuffer == TRUE) { |
| primaries = *result = prim; |
| resultLength = UCOL_PRIMARY_MAX_BUFFER; |
| } |
| |
| uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER; |
| |
| uint32_t sortKeySize = 3; /* it is always \0 terminated plus separators for secondary and tertiary */ |
| |
| UnicodeString normSource; |
| |
| int32_t len = sourceLength; |
| |
| /* If we need to normalize, we'll do it all at once at the beginning! */ |
| if(coll->normalizationMode != UCOL_OFF) { |
| normSource.setTo(len < 0, source, len); |
| const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status); |
| int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); |
| if(qcYesLength != normSource.length()) { |
| UnicodeString unnormalized = normSource.tempSubString(qcYesLength); |
| normSource.truncate(qcYesLength); |
| norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); |
| source = normSource.getBuffer(); |
| len = normSource.length(); |
| } |
| } |
| collIterate s; |
| IInit_collIterate(coll, (UChar *)source, len, &s, status); |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. |
| |
| if(resultLength == 0 || primaries == NULL) { |
| return ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len); |
| } |
| |
| uint8_t *primarySafeEnd = primaries + resultLength - 2; |
| |
| uint32_t minBufferSize = UCOL_MAX_BUFFER; |
| |
| uint8_t *primStart = primaries; |
| uint8_t *secStart = secondaries; |
| uint8_t *terStart = tertiaries; |
| |
| uint32_t order = 0; |
| |
| uint8_t primary1 = 0; |
| uint8_t primary2 = 0; |
| uint8_t secondary = 0; |
| uint8_t tertiary = 0; |
| uint8_t caseSwitch = coll->caseSwitch; |
| uint8_t tertiaryMask = coll->tertiaryMask; |
| int8_t tertiaryAddition = coll->tertiaryAddition; |
| uint8_t tertiaryTop = coll->tertiaryTop; |
| uint8_t tertiaryBottom = coll->tertiaryBottom; |
| uint8_t tertiaryCommon = coll->tertiaryCommon; |
| |
| uint32_t prevBuffSize = 0; |
| |
| UBool finished = FALSE; |
| UBool notIsContinuation = FALSE; |
| |
| uint32_t count2 = 0, count3 = 0; |
| uint8_t leadPrimary = 0; |
| |
| for(;;) { |
| for(i=prevBuffSize; i<minBufferSize; ++i) { |
| |
| order = ucol_IGetNextCE(coll, &s, status); |
| |
| if(order == 0) { |
| continue; |
| } |
| |
| if(order == UCOL_NO_MORE_CES) { |
| finished = TRUE; |
| break; |
| } |
| |
| notIsContinuation = !isContinuation(order); |
| |
| if(notIsContinuation) { |
| tertiary = (uint8_t)((order & tertiaryMask)); |
| } else { |
| tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); |
| } |
| |
| secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary1 = (uint8_t)(order >> 8); |
| |
| uint8_t originalPrimary1 = primary1; |
| if (coll->leadBytePermutationTable != NULL && notIsContinuation) { |
| primary1 = coll->leadBytePermutationTable[primary1]; |
| } |
| |
| /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ |
| /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ |
| /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */ |
| /* regular and simple sortkey calc */ |
| if(primary1 != UCOL_IGNORABLE) { |
| if(notIsContinuation) { |
| if(leadPrimary == primary1) { |
| *primaries++ = primary2; |
| } else { |
| if(leadPrimary != 0) { |
| *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN); |
| } |
| if(primary2 == UCOL_IGNORABLE) { |
| /* one byter, not compressed */ |
| *primaries++ = primary1; |
| leadPrimary = 0; |
| } else if(isCompressible(coll, originalPrimary1)) { |
| /* compress */ |
| *primaries++ = leadPrimary = primary1; |
| *primaries++ = primary2; |
| } else { |
| leadPrimary = 0; |
| *primaries++ = primary1; |
| *primaries++ = primary2; |
| } |
| } |
| } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ |
| *primaries++ = primary1; |
| if(primary2 != UCOL_IGNORABLE) { |
| *primaries++ = primary2; /* second part */ |
| } |
| } |
| } |
| |
| if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */ |
| /* This is compression code. */ |
| if (secondary == UCOL_COMMON2 && notIsContinuation) { |
| ++count2; |
| } else { |
| if (count2 > 0) { |
| if (secondary > UCOL_COMMON2) { // not necessary for 4th level. |
| while (count2 > UCOL_TOP_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2); |
| count2 -= (uint32_t)UCOL_TOP_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)); |
| } else { |
| while (count2 > UCOL_BOT_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)); |
| } |
| count2 = 0; |
| } |
| *secondaries++ = secondary; |
| } |
| } |
| |
| if(notIsContinuation) { |
| tertiary ^= caseSwitch; |
| } |
| |
| if(tertiary > 0) { |
| /* This is compression code. */ |
| /* sequence size check is included in the if clause */ |
| if (tertiary == tertiaryCommon && notIsContinuation) { |
| ++count3; |
| } else { |
| if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { |
| tertiary += tertiaryAddition; |
| } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { |
| tertiary -= tertiaryAddition; |
| } |
| if (count3 > 0) { |
| if ((tertiary > tertiaryCommon)) { |
| while (count3 > coll->tertiaryTopCount) { |
| *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount); |
| count3 -= (uint32_t)coll->tertiaryTopCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1)); |
| } else { |
| while (count3 > coll->tertiaryBottomCount) { |
| *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount); |
| count3 -= (uint32_t)coll->tertiaryBottomCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1)); |
| } |
| count3 = 0; |
| } |
| *tertiaries++ = tertiary; |
| } |
| } |
| |
| if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */ |
| if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */ |
| IInit_collIterate(coll, (UChar *)source, len, &s, status); |
| if(U_FAILURE(*status)) { |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| finished = TRUE; |
| break; |
| } |
| s.flags &= ~UCOL_ITER_NORM; |
| sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len); |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| finished = TRUE; |
| break; |
| } else { /* It's much nicer if we can actually reallocate */ |
| int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)); |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| primarySafeEnd = primStart + resultLength - 2; |
| } else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| finished = TRUE; |
| break; |
| } |
| } |
| } |
| } |
| if(finished) { |
| break; |
| } else { |
| prevBuffSize = minBufferSize; |
| secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status); |
| terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status); |
| minBufferSize *= 2; |
| if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| break; |
| } |
| } |
| } |
| |
| if(U_SUCCESS(*status)) { |
| sortKeySize += (uint32_t)(primaries - primStart); |
| /* we have done all the CE's, now let's put them together to form a key */ |
| if (count2 > 0) { |
| while (count2 > UCOL_BOT_COUNT2) { |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2); |
| count2 -= (uint32_t)UCOL_BOT_COUNT2; |
| } |
| *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)); |
| } |
| uint32_t secsize = (uint32_t)(secondaries-secStart); |
| sortKeySize += secsize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, secStart, secsize); |
| primaries += secsize; |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| *result = primStart; |
| uprv_memcpy(primaries, secStart, secsize); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| |
| if (count3 > 0) { |
| if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) { |
| while (count3 >= coll->tertiaryTopCount) { |
| *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount); |
| count3 -= (uint32_t)coll->tertiaryTopCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryTop - count3); |
| } else { |
| while (count3 > coll->tertiaryBottomCount) { |
| *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount); |
| count3 -= (uint32_t)coll->tertiaryBottomCount; |
| } |
| *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1)); |
| } |
| } |
| uint32_t tersize = (uint32_t)(tertiaries - terStart); |
| sortKeySize += tersize; |
| if(sortKeySize <= resultLength) { |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, terStart, tersize); |
| primaries += tersize; |
| } else { |
| if(allocateSKBuffer == TRUE) { |
| primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status); |
| if(U_SUCCESS(*status)) { |
| *result = primStart; |
| *(primaries++) = UCOL_LEVELTERMINATOR; |
| uprv_memcpy(primaries, terStart, tersize); |
| } |
| else { |
| /* We ran out of memory!? We can't recover. */ |
| sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY; |
| goto cleanup; |
| } |
| } else { |
| *status = U_BUFFER_OVERFLOW_ERROR; |
| } |
| } |
| |
| *(primaries++) = '\0'; |
| } |
| |
| if(allocateSKBuffer == TRUE) { |
| *result = (uint8_t*)uprv_malloc(sortKeySize); |
| /* test for NULL */ |
| if (*result == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| goto cleanup; |
| } |
| uprv_memcpy(*result, primStart, sortKeySize); |
| if(primStart != prim) { |
| uprv_free(primStart); |
| } |
| } |
| |
| cleanup: |
| if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) { |
| /* NULL terminate for safety */ |
| **result = 0; |
| } |
| if(terStart != tert) { |
| uprv_free(terStart); |
| uprv_free(secStart); |
| } |
| |
| /* To avoid memory leak, free the offset buffer if necessary. */ |
| ucol_freeOffsetBuffer(&s); |
| |
| return sortKeySize; |
| } |
| |
| static inline |
| UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) { |
| UBool notIsContinuation = !isContinuation(CE); |
| uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF); |
| if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0) |
| || (!notIsContinuation && *wasShifted))) |
| || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ |
| { |
| // The stuff below should probably be in the sortkey code... maybe not... |
| if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */ |
| /* we should just completely ignore it */ |
| *wasShifted = TRUE; |
| //continue; |
| } |
| //*wasShifted = TRUE; |
| return TRUE; |
| } else { |
| *wasShifted = FALSE; |
| return FALSE; |
| } |
| } |
| static inline |
| void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) { |
| if(level < maxLevel) { |
| dest[i++] = UCOL_LEVELTERMINATOR; |
| } else { |
| dest[i++] = 0; |
| } |
| } |
| |
| /** enumeration of level identifiers for partial sort key generation */ |
| enum { |
| UCOL_PSK_PRIMARY = 0, |
| UCOL_PSK_SECONDARY = 1, |
| UCOL_PSK_CASE = 2, |
| UCOL_PSK_TERTIARY = 3, |
| UCOL_PSK_QUATERNARY = 4, |
| UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */ |
| UCOL_PSK_IDENTICAL = 6, |
| UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */ |
| UCOL_PSK_LIMIT |
| }; |
| |
| /** collation state enum. *_SHIFT value is how much to shift right |
| * to get the state piece to the right. *_MASK value should be |
| * ANDed with the shifted state. This data is stored in state[1] |
| * field. |
| */ |
| enum { |
| UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */ |
| UCOL_PSK_LEVEL_MASK = 7, /** three bits */ |
| UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */ |
| UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1, |
| /** can be only 0 or 1, since we get up to two bytes from primary or quaternary |
| * This field is also used to denote that the French secondary level is finished |
| */ |
| UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */ |
| UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */ |
| UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */ |
| UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */ |
| /** When we do French we need to reverse secondary values. However, continuations |
| * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba |
| */ |
| UCOL_PSK_BOCSU_BYTES_SHIFT = 7, |
| UCOL_PSK_BOCSU_BYTES_MASK = 3, |
| UCOL_PSK_CONSUMED_CES_SHIFT = 9, |
| UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF |
| }; |
| |
| // macro calculating the number of expansion CEs available |
| #define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn |
| |
| |
| /** main sortkey part procedure. On the first call, |
| * you should pass in a collator, an iterator, empty state |
| * state[0] == state[1] == 0, a buffer to hold results |
| * number of bytes you need and an error code pointer. |
| * Make sure your buffer is big enough to hold the wanted |
| * number of sortkey bytes. I don't check. |
| * The only meaningful status you can get back is |
| * U_BUFFER_OVERFLOW_ERROR, which basically means that you |
| * have been dealt a raw deal and that you probably won't |
| * be able to use partial sortkey generation for this |
| * particular combination of string and collator. This |
| * is highly unlikely, but you should still check the error code. |
| * Any other status means that you're not in a sane situation |
| * anymore. After the first call, preserve state values and |
| * use them on subsequent calls to obtain more bytes of a sortkey. |
| * Use until the number of bytes written is smaller than the requested |
| * number of bytes. Generated sortkey is not compatible with the |
| * one generated by ucol_getSortKey, as we don't do any compression. |
| * However, levels are still terminated by a 1 (one) and the sortkey |
| * is terminated by a 0 (zero). Identical level is the same as in the |
| * regular sortkey - internal bocu-1 implementation is used. |
| * For curious, although you cannot do much about this, here is |
| * the structure of state words. |
| * state[0] - iterator state. Depends on the iterator implementation, |
| * but allows the iterator to continue where it stopped in |
| * the last iteration. |
| * state[1] - collation processing state. Here is the distribution |
| * of the bits: |
| * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary |
| * quaternary, quin (we don't use this one), identical and |
| * null (producing only zeroes - first one to terminate the |
| * sortkey and subsequent to fill the buffer). |
| * 3 - byte count. Number of bytes written on the primary level. |
| * 4 - was shifted. Whether the previous iteration finished in the |
| * shifted state. |
| * 5, 6 - French continuation bytes written. See the comment in the enum |
| * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on |
| * the identical level. |
| * 9..31 - CEs consumed. Number of getCE or next32 operations performed |
| * since thes last successful update of the iterator state. |
| */ |
| U_CAPI int32_t U_EXPORT2 |
| ucol_nextSortKeyPart(const UCollator *coll, |
| UCharIterator *iter, |
| uint32_t state[2], |
| uint8_t *dest, int32_t count, |
| UErrorCode *status) |
| { |
| /* error checking */ |
| if(status==NULL || U_FAILURE(*status)) { |
| return 0; |
| } |
| UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); |
| if( coll==NULL || iter==NULL || |
| state==NULL || |
| count<0 || (count>0 && dest==NULL) |
| ) { |
| *status=U_ILLEGAL_ARGUMENT_ERROR; |
| UTRACE_EXIT_STATUS(status); |
| return 0; |
| } |
| |
| UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", |
| coll, iter, state[0], state[1], dest, count); |
| |
| if(count==0) { |
| /* nothing to do */ |
| UTRACE_EXIT_VALUE(0); |
| return 0; |
| } |
| /** Setting up situation according to the state we got from the previous iteration */ |
| // The state of the iterator from the previous invocation |
| uint32_t iterState = state[0]; |
| // Has the last iteration ended in the shifted state |
| UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE; |
| // What is the current level of the sortkey? |
| int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK; |
| // Have we written only one byte from a two byte primary in the previous iteration? |
| // Also on secondary level - have we finished with the French secondary? |
| int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK; |
| // number of bytes in the continuation buffer for French |
| int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK; |
| // Number of bytes already written from a bocsu sequence. Since |
| // the longes bocsu sequence is 4 long, this can be up to 3. |
| int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK; |
| // Number of elements that need to be consumed in this iteration because |
| // the iterator returned UITER_NO_STATE at the end of the last iteration, |
| // so we had to save the last valid state. |
| int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK; |
| |
| /** values that depend on the collator attributes */ |
| // strength of the collator. |
| int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status); |
| // maximal level of the partial sortkey. Need to take whether case level is done |
| int32_t maxLevel = 0; |
| if(strength < UCOL_TERTIARY) { |
| if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
| maxLevel = UCOL_PSK_CASE; |
| } else { |
| maxLevel = strength; |
| } |
| } else { |
| if(strength == UCOL_TERTIARY) { |
| maxLevel = UCOL_PSK_TERTIARY; |
| } else if(strength == UCOL_QUATERNARY) { |
| maxLevel = UCOL_PSK_QUATERNARY; |
| } else { // identical |
| maxLevel = UCOL_IDENTICAL; |
| } |
| } |
| // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation |
| uint8_t UCOL_HIRAGANA_QUAD = |
| (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF; |
| // Boundary value that decides whether a CE is shifted or not |
| uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0; |
| // Are we doing French collation? |
| UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON); |
| |
| /** initializing the collation state */ |
| UBool notIsContinuation = FALSE; |
| uint32_t CE = UCOL_NO_MORE_CES; |
| |
| collIterate s; |
| IInit_collIterate(coll, NULL, -1, &s, status); |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| s.iterator = iter; |
| s.flags |= UCOL_USE_ITERATOR; |
| // This variable tells us whether we have produced some other levels in this iteration |
| // before we moved to the identical level. In that case, we need to switch the |
| // type of the iterator. |
| UBool doingIdenticalFromStart = FALSE; |
| // Normalizing iterator |
| // The division for the array length may truncate the array size to |
| // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
| // for all platforms anyway. |
| UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
| UNormIterator *normIter = NULL; |
| // If the normalization is turned on for the collator and we are below identical level |
| // we will use a FCD normalizing iterator |
| if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) { |
| normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
| s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status); |
| s.flags &= ~UCOL_ITER_NORM; |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| } else if(level == UCOL_PSK_IDENTICAL) { |
| // for identical level, we need a NFD iterator. We need to instantiate it here, since we |
| // will be updating the state - and this cannot be done on an ordinary iterator. |
| normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
| s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
| s.flags &= ~UCOL_ITER_NORM; |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| doingIdenticalFromStart = TRUE; |
| } |
| |
| // This is the tentative new state of the iterator. The problem |
| // is that the iterator might return an undefined state, in |
| // which case we should save the last valid state and increase |
| // the iterator skip value. |
| uint32_t newState = 0; |
| |
| // First, we set the iterator to the last valid position |
| // from the last iteration. This was saved in state[0]. |
| if(iterState == 0) { |
| /* initial state */ |
| if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) { |
| s.iterator->move(s.iterator, 0, UITER_LIMIT); |
| } else { |
| s.iterator->move(s.iterator, 0, UITER_START); |
| } |
| } else { |
| /* reset to previous state */ |
| s.iterator->setState(s.iterator, iterState, status); |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| } |
| |
| |
| |
| // This variable tells us whether we can attempt to update the state |
| // of iterator. Situations where we don't want to update iterator state |
| // are the existence of expansion CEs that are not yet processed, and |
| // finishing the case level without enough space in the buffer to insert |
| // a level terminator. |
| UBool canUpdateState = TRUE; |
| |
| // Consume all the CEs that were consumed at the end of the previous |
| // iteration without updating the iterator state. On identical level, |
| // consume the code points. |
| int32_t counter = cces; |
| if(level < UCOL_PSK_IDENTICAL) { |
| while(counter-->0) { |
| // If we're doing French and we are on the secondary level, |
| // we go backwards. |
| if(level == UCOL_PSK_SECONDARY && doingFrench) { |
| CE = ucol_IGetPrevCE(coll, &s, status); |
| } else { |
| CE = ucol_IGetNextCE(coll, &s, status); |
| } |
| if(CE==UCOL_NO_MORE_CES) { |
| /* should not happen */ |
| *status=U_INTERNAL_PROGRAM_ERROR; |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } |
| } |
| } else { |
| while(counter-->0) { |
| uiter_next32(s.iterator); |
| } |
| } |
| |
| // French secondary needs to know whether the iterator state of zero came from previous level OR |
| // from a new invocation... |
| UBool wasDoingPrimary = FALSE; |
| // destination buffer byte counter. When this guy |
| // gets to count, we're done with the iteration |
| int32_t i = 0; |
| // used to count the zero bytes written after we |
| // have finished with the sort key |
| int32_t j = 0; |
| |
| |
| // Hm.... I think we're ready to plunge in. Basic story is as following: |
| // we have a fall through case based on level. This is used for initial |
| // positioning on iteration start. Every level processor contains a |
| // for(;;) which will be broken when we exhaust all the CEs. Other |
| // way to exit is a goto saveState, which happens when we have filled |
| // out our buffer. |
| switch(level) { |
| case UCOL_PSK_PRIMARY: |
| wasDoingPrimary = TRUE; |
| for(;;) { |
| if(i==count) { |
| goto saveState; |
| } |
| // We should save the state only if we |
| // are sure that we are done with the |
| // previous iterator state |
| if(canUpdateState && byteCountOrFrenchDone == 0) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetNextCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| byteCountOrFrenchDone=0; |
| // Restart the iteration an move to the |
| // second level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| cces = 0; |
| level = UCOL_PSK_SECONDARY; |
| break; |
| } |
| if(!isContinuation(CE)){ |
| if(coll->leadBytePermutationTable != NULL){ |
| CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF); |
| } |
| } |
| if(!isShiftedCE(CE, LVT, &wasShifted)) { |
| CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */ |
| if(CE != 0) { |
| if(byteCountOrFrenchDone == 0) { |
| // get the second byte of primary |
| dest[i++]=(uint8_t)(CE >> 8); |
| } else { |
| byteCountOrFrenchDone = 0; |
| } |
| if((CE &=0xff)!=0) { |
| if(i==count) { |
| /* overflow */ |
| byteCountOrFrenchDone = 1; |
| cces--; |
| goto saveState; |
| } |
| dest[i++]=(uint8_t)CE; |
| } |
| } |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_SECONDARY: |
| if(strength >= UCOL_SECONDARY) { |
| if(!doingFrench) { |
| for(;;) { |
| if(i == count) { |
| goto saveState; |
| } |
| // We should save the state only if we |
| // are sure that we are done with the |
| // previous iterator state |
| if(canUpdateState) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetNextCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| byteCountOrFrenchDone = 0; |
| // Restart the iteration an move to the |
| // second level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| cces = 0; |
| level = UCOL_PSK_CASE; |
| break; |
| } |
| if(!isShiftedCE(CE, LVT, &wasShifted)) { |
| CE >>= 8; /* get secondary */ |
| if(CE != 0) { |
| dest[i++]=(uint8_t)CE; |
| } |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| } else { // French secondary processing |
| uint8_t frenchBuff[UCOL_MAX_BUFFER]; |
| int32_t frenchIndex = 0; |
| // Here we are going backwards. |
| // If the iterator is at the beggining, it should be |
| // moved to end. |
| if(wasDoingPrimary) { |
| s.iterator->move(s.iterator, 0, UITER_LIMIT); |
| cces = 0; |
| } |
| for(;;) { |
| if(i == count) { |
| goto saveState; |
| } |
| if(canUpdateState) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetPrevCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| byteCountOrFrenchDone = 0; |
| // Restart the iteration an move to the next level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| level = UCOL_PSK_CASE; |
| break; |
| } |
| if(isContinuation(CE)) { // if it's a continuation, we want to save it and |
| // reverse when we get a first non-continuation CE. |
| CE >>= 8; |
| frenchBuff[frenchIndex++] = (uint8_t)CE; |
| } else if(!isShiftedCE(CE, LVT, &wasShifted)) { |
| CE >>= 8; /* get secondary */ |
| if(!frenchIndex) { |
| if(CE != 0) { |
| dest[i++]=(uint8_t)CE; |
| } |
| } else { |
| frenchBuff[frenchIndex++] = (uint8_t)CE; |
| frenchIndex -= usedFrench; |
| usedFrench = 0; |
| while(i < count && frenchIndex) { |
| dest[i++] = frenchBuff[--frenchIndex]; |
| usedFrench++; |
| } |
| } |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| } |
| } else { |
| level = UCOL_PSK_CASE; |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_CASE: |
| if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { |
| uint32_t caseShift = UCOL_CASE_SHIFT_START; |
| uint8_t caseByte = UCOL_CASE_BYTE_START; |
| uint8_t caseBits = 0; |
| |
| for(;;) { |
| U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START); |
| if(i == count) { |
| goto saveState; |
| } |
| // We should save the state only if we |
| // are sure that we are done with the |
| // previous iterator state |
| if(canUpdateState) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetNextCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // On the case level we might have an unfinished |
| // case byte. Add one if it's started. |
| if(caseShift != UCOL_CASE_SHIFT_START) { |
| dest[i++] = caseByte; |
| } |
| cces = 0; |
| // We have finished processing CEs on this level. |
| // However, we don't know if we have enough space |
| // to add a case level terminator. |
| if(i < count) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| // Restart the iteration and move to the |
| // next level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| level = UCOL_PSK_TERTIARY; |
| } else { |
| canUpdateState = FALSE; |
| } |
| break; |
| } |
| |
| if(!isShiftedCE(CE, LVT, &wasShifted)) { |
| if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) { |
| // do the case level if we need to do it. We don't want to calculate |
| // case level for primary ignorables if we have only primary strength and case level |
| // otherwise we would break well formedness of CEs |
| CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
| caseBits = (uint8_t)(CE & 0xC0); |
| // this copies the case level logic from the |
| // sort key generation code |
| if(CE != 0) { |
| if (caseShift == 0) { |
| dest[i++] = caseByte; |
| caseShift = UCOL_CASE_SHIFT_START; |
| caseByte = UCOL_CASE_BYTE_START; |
| } |
| if(coll->caseFirst == UCOL_UPPER_FIRST) { |
| if((caseBits & 0xC0) == 0) { |
| caseByte |= 1 << (--caseShift); |
| } else { |
| caseByte |= 0 << (--caseShift); |
| /* second bit */ |
| if(caseShift == 0) { |
| dest[i++] = caseByte; |
| caseShift = UCOL_CASE_SHIFT_START; |
| caseByte = UCOL_CASE_BYTE_START; |
| } |
| caseByte |= ((caseBits>>6)&1) << (--caseShift); |
| } |
| } else { |
| if((caseBits & 0xC0) == 0) { |
| caseByte |= 0 << (--caseShift); |
| } else { |
| caseByte |= 1 << (--caseShift); |
| /* second bit */ |
| if(caseShift == 0) { |
| dest[i++] = caseByte; |
| caseShift = UCOL_CASE_SHIFT_START; |
| caseByte = UCOL_CASE_BYTE_START; |
| } |
| caseByte |= ((caseBits>>7)&1) << (--caseShift); |
| } |
| } |
| } |
| |
| } |
| } |
| // Not sure this is correct for the case level - revisit |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| } else { |
| level = UCOL_PSK_TERTIARY; |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_TERTIARY: |
| if(strength >= UCOL_TERTIARY) { |
| for(;;) { |
| if(i == count) { |
| goto saveState; |
| } |
| // We should save the state only if we |
| // are sure that we are done with the |
| // previous iterator state |
| if(canUpdateState) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetNextCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| byteCountOrFrenchDone = 0; |
| // Restart the iteration an move to the |
| // second level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| cces = 0; |
| level = UCOL_PSK_QUATERNARY; |
| break; |
| } |
| if(!isShiftedCE(CE, LVT, &wasShifted)) { |
| notIsContinuation = !isContinuation(CE); |
| |
| if(notIsContinuation) { |
| CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); |
| CE ^= coll->caseSwitch; |
| CE &= coll->tertiaryMask; |
| } else { |
| CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
| } |
| |
| if(CE != 0) { |
| dest[i++]=(uint8_t)CE; |
| } |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| } else { |
| // if we're not doing tertiary |
| // skip to the end |
| level = UCOL_PSK_NULL; |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_QUATERNARY: |
| if(strength >= UCOL_QUATERNARY) { |
| for(;;) { |
| if(i == count) { |
| goto saveState; |
| } |
| // We should save the state only if we |
| // are sure that we are done with the |
| // previous iterator state |
| if(canUpdateState) { |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| } |
| CE = ucol_IGetNextCE(coll, &s, status); |
| cces++; |
| if(CE==UCOL_NO_MORE_CES) { |
| // Add the level separator |
| terminatePSKLevel(level, maxLevel, i, dest); |
| //dest[i++] = UCOL_LEVELTERMINATOR; |
| byteCountOrFrenchDone = 0; |
| // Restart the iteration an move to the |
| // second level |
| s.iterator->move(s.iterator, 0, UITER_START); |
| cces = 0; |
| level = UCOL_PSK_QUIN; |
| break; |
| } |
| if(CE==0) |
| continue; |
| if(isShiftedCE(CE, LVT, &wasShifted)) { |
| CE >>= 16; /* get primary */ |
| if(CE != 0) { |
| if(byteCountOrFrenchDone == 0) { |
| dest[i++]=(uint8_t)(CE >> 8); |
| } else { |
| byteCountOrFrenchDone = 0; |
| } |
| if((CE &=0xff)!=0) { |
| if(i==count) { |
| /* overflow */ |
| byteCountOrFrenchDone = 1; |
| goto saveState; |
| } |
| dest[i++]=(uint8_t)CE; |
| } |
| } |
| } else { |
| notIsContinuation = !isContinuation(CE); |
| if(notIsContinuation) { |
| if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it |
| dest[i++] = UCOL_HIRAGANA_QUAD; |
| } else { |
| dest[i++] = 0xFF; |
| } |
| } |
| } |
| if(uprv_numAvailableExpCEs(s)) { |
| canUpdateState = FALSE; |
| } else { |
| canUpdateState = TRUE; |
| } |
| } |
| } else { |
| // if we're not doing quaternary |
| // skip to the end |
| level = UCOL_PSK_NULL; |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_QUIN: |
| level = UCOL_PSK_IDENTICAL; |
| /* fall through to next level */ |
| case UCOL_PSK_IDENTICAL: |
| if(strength >= UCOL_IDENTICAL) { |
| UChar32 first, second; |
| int32_t bocsuBytesWritten = 0; |
| // We always need to do identical on |
| // the NFD form of the string. |
| if(normIter == NULL) { |
| // we arrived from the level below and |
| // normalization was not turned on. |
| // therefore, we need to make a fresh NFD iterator |
| normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); |
| s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
| } else if(!doingIdenticalFromStart) { |
| // there is an iterator, but we did some other levels. |
| // therefore, we have a FCD iterator - need to make |
| // a NFD one. |
| // normIter being at the beginning does not guarantee |
| // that the underlying iterator is at the beginning |
| iter->move(iter, 0, UITER_START); |
| s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); |
| } |
| // At this point we have a NFD iterator that is positioned |
| // in the right place |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| first = uiter_previous32(s.iterator); |
| // maybe we're at the start of the string |
| if(first == U_SENTINEL) { |
| first = 0; |
| } else { |
| uiter_next32(s.iterator); |
| } |
| |
| j = 0; |
| for(;;) { |
| if(i == count) { |
| if(j+1 < bocsuBytesWritten) { |
| bocsuBytesUsed = j+1; |
| } |
| goto saveState; |
| } |
| |
| // On identical level, we will always save |
| // the state if we reach this point, since |
| // we don't depend on getNextCE for content |
| // all the content is in our buffer and we |
| // already either stored the full buffer OR |
| // otherwise we won't arrive here. |
| newState = s.iterator->getState(s.iterator); |
| if(newState != UITER_NO_STATE) { |
| iterState = newState; |
| cces = 0; |
| } |
| |
| uint8_t buff[4]; |
| second = uiter_next32(s.iterator); |
| cces++; |
| |
| // end condition for identical level |
| if(second == U_SENTINEL) { |
| terminatePSKLevel(level, maxLevel, i, dest); |
| level = UCOL_PSK_NULL; |
| break; |
| } |
| bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff); |
| first = second; |
| |
| j = 0; |
| if(bocsuBytesUsed != 0) { |
| while(bocsuBytesUsed-->0) { |
| j++; |
| } |
| } |
| |
| while(i < count && j < bocsuBytesWritten) { |
| dest[i++] = buff[j++]; |
| } |
| } |
| |
| } else { |
| level = UCOL_PSK_NULL; |
| } |
| /* fall through to next level */ |
| case UCOL_PSK_NULL: |
| j = i; |
| while(j<count) { |
| dest[j++]=0; |
| } |
| break; |
| default: |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| UTRACE_EXIT_STATUS(*status); |
| return 0; |
| } |
| |
| saveState: |
| // Now we need to return stuff. First we want to see whether we have |
| // done everything for the current state of iterator. |
| if(byteCountOrFrenchDone |
| || canUpdateState == FALSE |
| || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE) |
| { |
| // Any of above mean that the previous transaction |
| // wasn't finished and that we should store the |
| // previous iterator state. |
| state[0] = iterState; |
| } else { |
| // The transaction is complete. We will continue in the next iteration. |
| state[0] = s.iterator->getState(s.iterator); |
| cces = 0; |
| } |
| // Store the number of bocsu bytes written. |
| if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) { |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| } |
| state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT; |
| |
| // Next we put in the level of comparison |
| state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT); |
| |
| // If we are doing French, we need to store whether we have just finished the French level |
| if(level == UCOL_PSK_SECONDARY && doingFrench) { |
| state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
| } else { |
| state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); |
| } |
| |
| // Was the latest CE shifted |
| if(wasShifted) { |
| state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT; |
| } |
| // Check for cces overflow |
| if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) { |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| } |
| // Store cces |
| state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT); |
| |
| // Check for French overflow |
| if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) { |
| *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| } |
| // Store number of bytes written in the French secondary continuation sequence |
| state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT); |
| |
| |
| // If we have used normalizing iterator, get rid of it |
| if(normIter != NULL) { |
| unorm_closeIter(normIter); |
| } |
| |
| /* To avoid memory leak, free the offset buffer if necessary. */ |
| ucol_freeOffsetBuffer(&s); |
| |
| // Return number of meaningful sortkey bytes. |
| UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", |
| dest,i, state[0], state[1]); |
| UTRACE_EXIT_VALUE(i); |
| return i; |
| } |
| |
| /** |
| * Produce a bound for a given sortkey and a number of levels. |
| */ |
| U_CAPI int32_t U_EXPORT2 |
| ucol_getBound(const uint8_t *source, |
| int32_t sourceLength, |
| UColBoundMode boundType, |
| uint32_t noOfLevels, |
| uint8_t *result, |
| int32_t resultLength, |
| UErrorCode *status) |
| { |
| // consistency checks |
| if(status == NULL || U_FAILURE(*status)) { |
| return 0; |
| } |
| if(source == NULL) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| int32_t sourceIndex = 0; |
| // Scan the string until we skip enough of the key OR reach the end of the key |
| do { |
| sourceIndex++; |
| if(source[sourceIndex] == UCOL_LEVELTERMINATOR) { |
| noOfLevels--; |
| } |
| } while (noOfLevels > 0 |
| && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); |
| |
| if((source[sourceIndex] == 0 || sourceIndex == sourceLength) |
| && noOfLevels > 0) { |
| *status = U_SORT_KEY_TOO_SHORT_WARNING; |
| } |
| |
| |
| // READ ME: this code assumes that the values for boundType |
| // enum will not changes. They are set so that the enum value |
| // corresponds to the number of extra bytes each bound type |
| // needs. |
| if(result != NULL && resultLength >= sourceIndex+boundType) { |
| uprv_memcpy(result, source, sourceIndex); |
| switch(boundType) { |
| // Lower bound just gets terminated. No extra bytes |
| case UCOL_BOUND_LOWER: // = 0 |
| break; |
| // Upper bound needs one extra byte |
| case UCOL_BOUND_UPPER: // = 1 |
| result[sourceIndex++] = 2; |
| break; |
| // Upper long bound needs two extra bytes |
| case UCOL_BOUND_UPPER_LONG: // = 2 |
| result[sourceIndex++] = 0xFF; |
| result[sourceIndex++] = 0xFF; |
| break; |
| default: |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| result[sourceIndex++] = 0; |
| |
| return sourceIndex; |
| } else { |
| return sourceIndex+boundType+1; |
| } |
| } |
| |
| /****************************************************************************/ |
| /* Following are the functions that deal with the properties of a collator */ |
| /* there are new APIs and some compatibility APIs */ |
| /****************************************************************************/ |
| |
| static inline void |
| ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE, |
| int32_t *primShift, int32_t *secShift, int32_t *terShift) |
| { |
| uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0; |
| UBool reverseSecondary = FALSE; |
| UBool continuation = isContinuation(CE); |
| if(!continuation) { |
| tertiary = (uint8_t)((CE & coll->tertiaryMask)); |
| tertiary ^= coll->caseSwitch; |
| reverseSecondary = TRUE; |
| } else { |
| tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); |
| tertiary &= UCOL_REMOVE_CASE; |
| reverseSecondary = FALSE; |
| } |
| |
| secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); |
| primary1 = (uint8_t)(CE >> 8); |
| |
| if(primary1 != 0) { |
| if (coll->leadBytePermutationTable != NULL && !continuation) { |
| primary1 = coll->leadBytePermutationTable[primary1]; |
| } |
| |
| coll->latinOneCEs[ch] |= (primary1 << *primShift); |
| *primShift -= 8; |
| } |
| if(primary2 != 0) { |
| if(*primShift < 0) { |
| coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
| return; |
| } |
| coll->latinOneCEs[ch] |= (primary2 << *primShift); |
| *primShift -= 8; |
| } |
| if(secondary != 0) { |
| if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary |
| coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary |
| coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24); |
| } else { // normal case |
| coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift); |
| } |
| *secShift -= 8; |
| } |
| if(tertiary != 0) { |
| coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift); |
| *terShift -= 8; |
| } |
| } |
| |
| static inline UBool |
| ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) { |
| uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3); |
| if(newTable == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| coll->latinOneFailed = TRUE; |
| return FALSE; |
| } |
| int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t); |
| uprv_memset(newTable, 0, size*sizeof(uint32_t)*3); |
| uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy); |
| uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy); |
| uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy); |
| coll->latinOneTableLen = size; |
| uprv_free(coll->latinOneCEs); |
| coll->latinOneCEs = newTable; |
| return TRUE; |
| } |
| |
| static UBool |
| ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) { |
| UBool result = TRUE; |
| if(coll->latinOneCEs == NULL) { |
| coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3); |
| if(coll->latinOneCEs == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| coll->latinOneTableLen = UCOL_LATINONETABLELEN; |
| } |
| UChar ch = 0; |
| UCollationElements *it = ucol_openElements(coll, &ch, 1, status); |
| // Check for null pointer |
| if (U_FAILURE(*status)) { |
| return FALSE; |
| } |
| uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3); |
| |
| int32_t primShift = 24, secShift = 24, terShift = 24; |
| uint32_t CE = 0; |
| int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1; |
| |
| // TODO: make safe if you get more than you wanted... |
| for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) { |
| primShift = 24; secShift = 24; terShift = 24; |
| if(ch < 0x100) { |
| CE = coll->latinOneMapping[ch]; |
| } else { |
| CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); |
| if(CE == UCOL_NOT_FOUND && coll->UCA) { |
| CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); |
| } |
| } |
| if(CE < UCOL_NOT_FOUND) { |
| ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
| } else { |
| switch (getCETag(CE)) { |
| case EXPANSION_TAG: |
| case DIGIT_TAG: |
| ucol_setText(it, &ch, 1, status); |
| while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) { |
| if(primShift < 0 || secShift < 0 || terShift < 0) { |
| coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; |
| break; |
| } |
| ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
| } |
| break; |
| case CONTRACTION_TAG: |
| // here is the trick |
| // F2 is contraction. We do something very similar to contractions |
| // but have two indices, one in the real contraction table and the |
| // other to where we stuffed things. This hopes that we don't have |
| // many contractions (this should work for latin-1 tables). |
| { |
| if((CE & 0x00FFF000) != 0) { |
| *status = U_UNSUPPORTED_ERROR; |
| goto cleanup_after_failure; |
| } |
| |
| const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE); |
| |
| CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table |
| |
| coll->latinOneCEs[ch] = CE; |
| coll->latinOneCEs[coll->latinOneTableLen+ch] = CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE; |
| |
| // We're going to jump into contraction table, pick the elements |
| // and use them |
| do { |
| CE = *(coll->contractionCEs + |
| (UCharOffset - coll->contractionIndex)); |
| if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) { |
| uint32_t size; |
| uint32_t i; /* general counter */ |
| uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ |
| size = getExpansionCount(CE); |
| //CE = *CEOffset++; |
| if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ |
| for(i = 0; i<size; i++) { |
| if(primShift < 0 || secShift < 0 || terShift < 0) { |
| coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| break; |
| } |
| ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
| } |
| } else { /* else, we do */ |
| while(*CEOffset != 0) { |
| if(primShift < 0 || secShift < 0 || terShift < 0) { |
| coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| break; |
| } |
| ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); |
| } |
| } |
| contractionOffset++; |
| } else if(CE < UCOL_NOT_FOUND) { |
| ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift); |
| } else { |
| coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; |
| contractionOffset++; |
| } |
| UCharOffset++; |
| primShift = 24; secShift = 24; terShift = 24; |
| if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate |
| if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) { |
| goto cleanup_after_failure; |
| } |
| } |
| } while(*UCharOffset != 0xFFFF); |
| } |
| break;; |
| case SPEC_PROC_TAG: |
| { |
| // 0xB7 is a precontext character defined in UCA5.1, a special |
| // handle is implemeted in order to save LatinOne table for |
| // most locales. |
| if (ch==0xb7) { |
| ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); |
| } |
| else { |
| goto cleanup_after_failure; |
| } |
| } |
| break; |
| default: |
| goto cleanup_after_failure; |
| } |
| } |
| } |
| // compact table |
| if(contractionOffset < coll->latinOneTableLen) { |
| if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) { |
| goto cleanup_after_failure; |
| } |
| } |
| ucol_closeElements(it); |
| return result; |
| |
| cleanup_after_failure: |
| // status should already be set before arriving here. |
| coll->latinOneFailed = TRUE; |
| ucol_closeElements(it); |
| return FALSE; |
| } |
| |
| void ucol_updateInternalState(UCollator *coll, UErrorCode *status) { |
| if(U_SUCCESS(*status)) { |
| if(coll->caseFirst == UCOL_UPPER_FIRST) { |
| coll->caseSwitch = UCOL_CASE_SWITCH; |
| } else { |
| coll->caseSwitch = UCOL_NO_CASE_SWITCH; |
| } |
| |
| if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) { |
| coll->tertiaryMask = UCOL_REMOVE_CASE; |
| coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
| coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */ |
| coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF; |
| coll->tertiaryBottom = UCOL_COMMON_BOT3; |
| } else { |
| coll->tertiaryMask = UCOL_KEEP_CASE; |
| coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON; |
| if(coll->caseFirst == UCOL_UPPER_FIRST) { |
| coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST; |
| coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER; |
| coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER; |
| } else { |
| coll->tertiaryCommon = UCOL_COMMON3_NORMAL; |
| coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER; |
| coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER; |
| } |
| } |
| |
| /* Set the compression values */ |
| uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - UCOL_COMMON_BOT3-1); |
| coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */ |
| coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount); |
| |
| if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY |
| && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) |
| { |
| coll->sortKeyGen = ucol_calcSortKeySimpleTertiary; |
| } else { |
| coll->sortKeyGen = ucol_calcSortKey; |
| } |
| if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF |
| && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) |
| { |
| if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) { |
| if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it |
| //fprintf(stderr, "F"); |
| coll->latinOneUse = TRUE; |
| } else { |
| coll->latinOneUse = FALSE; |
| } |
| if(*status == U_UNSUPPORTED_ERROR) { |
| *status = U_ZERO_ERROR; |
| } |
| } else { // latin1Table exists and it doesn't need to be regenerated, just use it |
| coll->latinOneUse = TRUE; |
| } |
| } else { |
| coll->latinOneUse = FALSE; |
| } |
| } |
| } |
| |
| U_CAPI uint32_t U_EXPORT2 |
| ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL) { |
| return 0; |
| } |
| if(len == -1) { |
| len = u_strlen(varTop); |
| } |
| if(len == 0) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| collIterate s; |
| IInit_collIterate(coll, varTop, len, &s, status); |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| uint32_t CE = ucol_IGetNextCE(coll, &s, status); |
| |
| /* here we check if we have consumed all characters */ |
| /* you can put in either one character or a contraction */ |
| /* you shouldn't put more... */ |
| if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) { |
| *status = U_CE_NOT_FOUND_ERROR; |
| return 0; |
| } |
| |
| uint32_t nextCE = ucol_IGetNextCE(coll, &s, status); |
| |
| if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) { |
| *status = U_PRIMARY_TOO_LONG_ERROR; |
| return 0; |
| } |
| if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) { |
| coll->variableTopValueisDefault = FALSE; |
| coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16; |
| } |
| |
| /* To avoid memory leak, free the offset buffer if necessary. */ |
| ucol_freeOffsetBuffer(&s); |
| |
| return CE & UCOL_PRIMARYMASK; |
| } |
| |
| U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL) { |
| return 0; |
| } |
| return coll->variableTopValue<<16; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL) { |
| return; |
| } |
| |
| if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) { |
| coll->variableTopValueisDefault = FALSE; |
| coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16; |
| } |
| } |
| /* Attribute setter API */ |
| U_CAPI void U_EXPORT2 |
| ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL) { |
| return; |
| } |
| UColAttributeValue oldFrench = coll->frenchCollation; |
| UColAttributeValue oldCaseFirst = coll->caseFirst; |
| switch(attr) { |
| case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */ |
| if(value == UCOL_ON) { |
| coll->numericCollation = UCOL_ON; |
| coll->numericCollationisDefault = FALSE; |
| } else if (value == UCOL_OFF) { |
| coll->numericCollation = UCOL_OFF; |
| coll->numericCollationisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->numericCollationisDefault = TRUE; |
| coll->numericCollation = (UColAttributeValue)coll->options->numericCollation; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| break; |
| case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */ |
| if(value == UCOL_ON) { |
| coll->hiraganaQ = UCOL_ON; |
| coll->hiraganaQisDefault = FALSE; |
| } else if (value == UCOL_OFF) { |
| coll->hiraganaQ = UCOL_OFF; |
| coll->hiraganaQisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->hiraganaQisDefault = TRUE; |
| coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| break; |
| case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
| if(value == UCOL_ON) { |
| coll->frenchCollation = UCOL_ON; |
| coll->frenchCollationisDefault = FALSE; |
| } else if (value == UCOL_OFF) { |
| coll->frenchCollation = UCOL_OFF; |
| coll->frenchCollationisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->frenchCollationisDefault = TRUE; |
| coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
| if(value == UCOL_SHIFTED) { |
| coll->alternateHandling = UCOL_SHIFTED; |
| coll->alternateHandlingisDefault = FALSE; |
| } else if (value == UCOL_NON_IGNORABLE) { |
| coll->alternateHandling = UCOL_NON_IGNORABLE; |
| coll->alternateHandlingisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->alternateHandlingisDefault = TRUE; |
| coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
| if(value == UCOL_LOWER_FIRST) { |
| coll->caseFirst = UCOL_LOWER_FIRST; |
| coll->caseFirstisDefault = FALSE; |
| } else if (value == UCOL_UPPER_FIRST) { |
| coll->caseFirst = UCOL_UPPER_FIRST; |
| coll->caseFirstisDefault = FALSE; |
| } else if (value == UCOL_OFF) { |
| coll->caseFirst = UCOL_OFF; |
| coll->caseFirstisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->caseFirst = (UColAttributeValue)coll->options->caseFirst; |
| coll->caseFirstisDefault = TRUE; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
| if(value == UCOL_ON) { |
| coll->caseLevel = UCOL_ON; |
| coll->caseLevelisDefault = FALSE; |
| } else if (value == UCOL_OFF) { |
| coll->caseLevel = UCOL_OFF; |
| coll->caseLevelisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->caseLevel = (UColAttributeValue)coll->options->caseLevel; |
| coll->caseLevelisDefault = TRUE; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
| if(value == UCOL_ON) { |
| coll->normalizationMode = UCOL_ON; |
| coll->normalizationModeisDefault = FALSE; |
| initializeFCD(status); |
| } else if (value == UCOL_OFF) { |
| coll->normalizationMode = UCOL_OFF; |
| coll->normalizationModeisDefault = FALSE; |
| } else if (value == UCOL_DEFAULT) { |
| coll->normalizationModeisDefault = TRUE; |
| coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode; |
| if(coll->normalizationMode == UCOL_ON) { |
| initializeFCD(status); |
| } |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_STRENGTH: /* attribute for strength */ |
| if (value == UCOL_DEFAULT) { |
| coll->strengthisDefault = TRUE; |
| coll->strength = (UColAttributeValue)coll->options->strength; |
| } else if (value <= UCOL_IDENTICAL) { |
| coll->strengthisDefault = FALSE; |
| coll->strength = value; |
| } else { |
| *status = U_ILLEGAL_ARGUMENT_ERROR ; |
| } |
| break; |
| case UCOL_ATTRIBUTE_COUNT: |
| default: |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| break; |
| } |
| if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) { |
| coll->latinOneRegenTable = TRUE; |
| } else { |
| coll->latinOneRegenTable = FALSE; |
| } |
| ucol_updateInternalState(coll, status); |
| } |
| |
| U_CAPI UColAttributeValue U_EXPORT2 |
| ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL) { |
| return UCOL_DEFAULT; |
| } |
| switch(attr) { |
| case UCOL_NUMERIC_COLLATION: |
| return coll->numericCollation; |
| case UCOL_HIRAGANA_QUATERNARY_MODE: |
| return coll->hiraganaQ; |
| case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ |
| return coll->frenchCollation; |
| case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ |
| return coll->alternateHandling; |
| case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ |
| return coll->caseFirst; |
| case UCOL_CASE_LEVEL: /* do we have an extra case level */ |
| return coll->caseLevel; |
| case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ |
| return coll->normalizationMode; |
| case UCOL_STRENGTH: /* attribute for strength */ |
| return coll->strength; |
| case UCOL_ATTRIBUTE_COUNT: |
| default: |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| break; |
| } |
| return UCOL_DEFAULT; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| ucol_setStrength( UCollator *coll, |
| UCollationStrength strength) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); |
| } |
| |
| U_CAPI UCollationStrength U_EXPORT2 |
| ucol_getStrength(const UCollator *coll) |
| { |
| UErrorCode status = U_ZERO_ERROR; |
| return ucol_getAttribute(coll, UCOL_STRENGTH, &status); |
| } |
| |
| U_INTERNAL int32_t U_EXPORT2 |
| ucol_getReorderCodes(const UCollator *coll, |
| int32_t *dest, |
| int32_t destCapacity, |
| UErrorCode *pErrorCode) { |
| if (U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| |
| if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { |
| *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| if (coll->reorderCodesLength > destCapacity) { |
| *pErrorCode = U_BUFFER_OVERFLOW_ERROR; |
| return coll->reorderCodesLength; |
| } |
| for (int32_t i = 0; i < coll->reorderCodesLength; i++) { |
| dest[i] = coll->reorderCodes[i]; |
| } |
| return coll->reorderCodesLength; |
| } |
| |
| U_INTERNAL void U_EXPORT2 |
| ucol_setReorderCodes(UCollator *coll, |
| const int32_t *reorderCodes, |
| int32_t reorderCodesLength, |
| UErrorCode *pErrorCode) { |
| if (U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| |
| if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) { |
| *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| |
| uprv_free(coll->reorderCodes); |
| coll->reorderCodes = NULL; |
| coll->reorderCodesLength = 0; |
| if (reorderCodesLength == 0) { |
| uprv_free(coll->leadBytePermutationTable); |
| coll->leadBytePermutationTable = NULL; |
| return; |
| } |
| coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t)); |
| if (coll->reorderCodes == NULL) { |
| *pErrorCode = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| for (int32_t i = 0; i < reorderCodesLength; i++) { |
| coll->reorderCodes[i] = reorderCodes[i]; |
| } |
| coll->reorderCodesLength = reorderCodesLength; |
| ucol_buildPermutationTable(coll, pErrorCode); |
| if (U_FAILURE(*pErrorCode)) { |
| uprv_free(coll->reorderCodes); |
| coll->reorderCodes = NULL; |
| coll->reorderCodesLength = 0; |
| } |
| } |
| |
| |
| /****************************************************************************/ |
| /* Following are misc functions */ |
| /* there are new APIs and some compatibility APIs */ |
| /****************************************************************************/ |
| |
| U_CAPI void U_EXPORT2 |
| ucol_getVersion(const UCollator* coll, |
| UVersionInfo versionInfo) |
| { |
| /* RunTime version */ |
| uint8_t rtVersion = UCOL_RUNTIME_VERSION; |
| /* Builder version*/ |
| uint8_t bdVersion = coll->image->version[0]; |
| |
| /* Charset Version. Need to get the version from cnv files |
| * makeconv should populate cnv files with version and |
| * an api has to be provided in ucnv.h to obtain this version |
| */ |
| uint8_t csVersion = 0; |
| |
| /* combine the version info */ |
| uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion)); |
| |
| /* Tailoring rules */ |
| versionInfo[0] = (uint8_t)(cmbVersion>>8); |
| versionInfo[1] = (uint8_t)cmbVersion; |
| versionInfo[2] = coll->image->version[1]; |
| if(coll->UCA) { |
| /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */ |
| versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07); |
| } else { |
| versionInfo[3] = 0; |
| } |
| } |
| |
| |
| /* This internal API checks whether a character is tailored or not */ |
| U_CAPI UBool U_EXPORT2 |
| ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) { |
| if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) { |
| return FALSE; |
| } |
| |
| uint32_t CE = UCOL_NOT_FOUND; |
| const UChar *ContractionStart = NULL; |
| if(u < 0x100) { /* latin-1 */ |
| CE = coll->latinOneMapping[u]; |
| if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) { |
| return FALSE; |
| } |
| } else { /* regular */ |
| CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u); |
| } |
| |
| if(isContraction(CE)) { |
| ContractionStart = (UChar *)coll->image+getContractOffset(CE); |
| CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex)); |
| } |
| |
| return (UBool)(CE != UCOL_NOT_FOUND); |
| } |
| |
| |
| /****************************************************************************/ |
| /* Following are the string compare functions */ |
| /* */ |
| /****************************************************************************/ |
| |
| |
| /* ucol_checkIdent internal function. Does byte level string compare. */ |
| /* Used by strcoll if strength == identical and strings */ |
| /* are otherwise equal. */ |
| /* */ |
| /* Comparison must be done on NFD normalized strings. */ |
| /* FCD is not good enough. */ |
| |
| static |
| UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status) |
| { |
| // When we arrive here, we can have normal strings or UCharIterators. Currently they are both |
| // of same type, but that doesn't really mean that it will stay that way. |
| int32_t comparison; |
| |
| if (sColl->flags & UCOL_USE_ITERATOR) { |
| // The division for the array length may truncate the array size to |
| // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
| // for all platforms anyway. |
| UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
| UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
| UNormIterator *sNIt = NULL, *tNIt = NULL; |
| sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
| tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
| sColl->iterator->move(sColl->iterator, 0, UITER_START); |
| tColl->iterator->move(tColl->iterator, 0, UITER_START); |
| UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status); |
| UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status); |
| comparison = u_strCompareIter(sIt, tIt, TRUE); |
| unorm_closeIter(sNIt); |
| unorm_closeIter(tNIt); |
| } else { |
| int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1; |
| const UChar *sBuf = sColl->string; |
| int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1; |
| const UChar *tBuf = tColl->string; |
| |
| if (normalize) { |
| *status = U_ZERO_ERROR; |
| // Note: We could use Normalizer::compare() or similar, but for short strings |
| // which may not be in FCD it might be faster to just NFD them. |
| // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than |
| // NFD'ing immediately might be faster for long strings, |
| // but string comparison is usually done on relatively short strings. |
| sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen), |
| sColl->writableBuffer, |
| *status); |
| tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen), |
| tColl->writableBuffer, |
| *status); |
| if(U_FAILURE(*status)) { |
| return UCOL_LESS; |
| } |
| comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer); |
| } else { |
| comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE); |
| } |
| } |
| |
| if (comparison < 0) { |
| return UCOL_LESS; |
| } else if (comparison == 0) { |
| return UCOL_EQUAL; |
| } else /* comparison > 0 */ { |
| return UCOL_GREATER; |
| } |
| } |
| |
| /* CEBuf - A struct and some inline functions to handle the saving */ |
| /* of CEs in a buffer within ucol_strcoll */ |
| |
| #define UCOL_CEBUF_SIZE 512 |
| typedef struct ucol_CEBuf { |
| uint32_t *buf; |
| uint32_t *endp; |
| uint32_t *pos; |
| uint32_t localArray[UCOL_CEBUF_SIZE]; |
| } ucol_CEBuf; |
| |
| |
| static |
| inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) { |
| (b)->buf = (b)->pos = (b)->localArray; |
| (b)->endp = (b)->buf + UCOL_CEBUF_SIZE; |
| } |
| |
| static |
| void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) { |
| uint32_t oldSize; |
| uint32_t newSize; |
| uint32_t *newBuf; |
| |
| ci->flags |= UCOL_ITER_ALLOCATED; |
| oldSize = (uint32_t)(b->pos - b->buf); |
| newSize = oldSize * 2; |
| newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t)); |
| if(newBuf == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| } |
| else { |
| uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t)); |
| if (b->buf != b->localArray) { |
| uprv_free(b->buf); |
| } |
| b->buf = newBuf; |
| b->endp = b->buf + newSize; |
| b->pos = b->buf + oldSize; |
| } |
| } |
| |
| static |
| inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) { |
| if (b->pos == b->endp) { |
| ucol_CEBuf_Expand(b, ci, status); |
| } |
| if (U_SUCCESS(*status)) { |
| *(b)->pos++ = ce; |
| } |
| } |
| |
| /* This is a trick string compare function that goes in and uses sortkeys to compare */ |
| /* It is used when compare gets in trouble and needs to bail out */ |
| static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl, |
| collIterate *tColl, |
| UErrorCode *status) |
| { |
| uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER]; |
| uint8_t *sourceKeyP = sourceKey; |
| uint8_t *targetKeyP = targetKey; |
| int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER; |
| const UCollator *coll = sColl->coll; |
| const UChar *source = NULL; |
| const UChar *target = NULL; |
| int32_t result = UCOL_EQUAL; |
| UnicodeString sourceString, targetString; |
| int32_t sourceLength; |
| int32_t targetLength; |
| |
| if(sColl->flags & UCOL_USE_ITERATOR) { |
| sColl->iterator->move(sColl->iterator, 0, UITER_START); |
| tColl->iterator->move(tColl->iterator, 0, UITER_START); |
| UChar32 c; |
| while((c=sColl->iterator->next(sColl->iterator))>=0) { |
| sourceString.append((UChar)c); |
| } |
| while((c=tColl->iterator->next(tColl->iterator))>=0) { |
| targetString.append((UChar)c); |
| } |
| source = sourceString.getBuffer(); |
| sourceLength = sourceString.length(); |
| target = targetString.getBuffer(); |
| targetLength = targetString.length(); |
| } else { // no iterators |
| sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1; |
| targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1; |
| source = sColl->string; |
| target = tColl->string; |
| } |
| |
| |
| |
| sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
| if(sourceKeyLen > UCOL_MAX_BUFFER) { |
| sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t)); |
| if(sourceKeyP == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| goto cleanup_and_do_compare; |
| } |
| sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); |
| } |
| |
| targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
| if(targetKeyLen > UCOL_MAX_BUFFER) { |
| targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t)); |
| if(targetKeyP == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| goto cleanup_and_do_compare; |
| } |
| targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); |
| } |
| |
| result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP); |
| |
| cleanup_and_do_compare: |
| if(sourceKeyP != NULL && sourceKeyP != sourceKey) { |
| uprv_free(sourceKeyP); |
| } |
| |
| if(targetKeyP != NULL && targetKeyP != targetKey) { |
| uprv_free(targetKeyP); |
| } |
| |
| if(result<0) { |
| return UCOL_LESS; |
| } else if(result>0) { |
| return UCOL_GREATER; |
| } else { |
| return UCOL_EQUAL; |
| } |
| } |
| |
| |
| static UCollationResult |
| ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status) |
| { |
| U_ALIGN_CODE(16); |
| |
| const UCollator *coll = sColl->coll; |
| |
| |
| // setting up the collator parameters |
| UColAttributeValue strength = coll->strength; |
| UBool initialCheckSecTer = (strength >= UCOL_SECONDARY); |
| |
| UBool checkSecTer = initialCheckSecTer; |
| UBool checkTertiary = (strength >= UCOL_TERTIARY); |
| UBool checkQuad = (strength >= UCOL_QUATERNARY); |
| UBool checkIdent = (strength == UCOL_IDENTICAL); |
| UBool checkCase = (coll->caseLevel == UCOL_ON); |
| UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer; |
| UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); |
| UBool qShifted = shifted && checkQuad; |
| UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad; |
| |
| if(doHiragana && shifted) { |
| return (ucol_compareUsingSortKeys(sColl, tColl, status)); |
| } |
| uint8_t caseSwitch = coll->caseSwitch; |
| uint8_t tertiaryMask = coll->tertiaryMask; |
| |
| // This is the lowest primary value that will not be ignored if shifted |
| uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0; |
| |
| UCollationResult result = UCOL_EQUAL; |
| UCollationResult hirResult = UCOL_EQUAL; |
| |
| // Preparing the CE buffers. They will be filled during the primary phase |
| ucol_CEBuf sCEs; |
| ucol_CEBuf tCEs; |
| UCOL_INIT_CEBUF(&sCEs); |
| UCOL_INIT_CEBUF(&tCEs); |
| |
| uint32_t secS = 0, secT = 0; |
| uint32_t sOrder=0, tOrder=0; |
| |
| // Non shifted primary processing is quite simple |
| if(!shifted) { |
| for(;;) { |
| |
| // We fetch CEs until we hit a non ignorable primary or end. |
| do { |
| // We get the next CE |
| sOrder = ucol_IGetNextCE(coll, sColl, status); |
| // Stuff it in the buffer |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| // And keep just the primary part. |
| sOrder &= UCOL_PRIMARYMASK; |
| } while(sOrder == 0); |
| |
| // see the comments on the above block |
| do { |
| tOrder = ucol_IGetNextCE(coll, tColl, status); |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| tOrder &= UCOL_PRIMARYMASK; |
| } while(tOrder == 0); |
| |
| // if both primaries are the same |
| if(sOrder == tOrder) { |
| // and there are no more CEs, we advance to the next level |
| if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { |
| break; |
| } |
| if(doHiragana && hirResult == UCOL_EQUAL) { |
| if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) { |
| hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA)) |
| ? UCOL_LESS:UCOL_GREATER; |
| } |
| } |
| } else { |
| // only need to check one for continuation |
| // if one is then the other must be or the preceding CE would be a prefix of the other |
| if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) { |
| sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); |
| tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); |
| } |
| // if two primaries are different, we are done |
| result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER; |
| goto commonReturn; |
| } |
| } // no primary difference... do the rest from the buffers |
| } else { // shifted - do a slightly more complicated processing :) |
| for(;;) { |
| UBool sInShifted = FALSE; |
| UBool tInShifted = FALSE; |
| // This version of code can be refactored. However, it seems easier to understand this way. |
| // Source loop. Sam as the target loop. |
| for(;;) { |
| sOrder = ucol_IGetNextCE(coll, sColl, status); |
| if(sOrder == UCOL_NO_MORE_CES) { |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| break; |
| } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) { |
| /* UCA amendment - ignore ignorables that follow shifted code points */ |
| continue; |
| } else if(isContinuation(sOrder)) { |
| if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
| if(sInShifted) { |
| sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| break; |
| } |
| } else { /* Just lower level values */ |
| if(sInShifted) { |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| continue; |
| } |
| } |
| } else { /* regular */ |
| if(coll->leadBytePermutationTable != NULL){ |
| sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); |
| } |
| if((sOrder & UCOL_PRIMARYMASK) > LVT) { |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| break; |
| } else { |
| if((sOrder & UCOL_PRIMARYMASK) > 0) { |
| sInShifted = TRUE; |
| sOrder &= UCOL_PRIMARYMASK; |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); |
| sInShifted = FALSE; |
| continue; |
| } |
| } |
| } |
| } |
| sOrder &= UCOL_PRIMARYMASK; |
| sInShifted = FALSE; |
| |
| for(;;) { |
| tOrder = ucol_IGetNextCE(coll, tColl, status); |
| if(tOrder == UCOL_NO_MORE_CES) { |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| break; |
| } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) { |
| /* UCA amendment - ignore ignorables that follow shifted code points */ |
| continue; |
| } else if(isContinuation(tOrder)) { |
| if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ |
| if(tInShifted) { |
| tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| break; |
| } |
| } else { /* Just lower level values */ |
| if(tInShifted) { |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| continue; |
| } |
| } |
| } else { /* regular */ |
| if(coll->leadBytePermutationTable != NULL){ |
| tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); |
| } |
| if((tOrder & UCOL_PRIMARYMASK) > LVT) { |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| break; |
| } else { |
| if((tOrder & UCOL_PRIMARYMASK) > 0) { |
| tInShifted = TRUE; |
| tOrder &= UCOL_PRIMARYMASK; |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| continue; |
| } else { |
| UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); |
| tInShifted = FALSE; |
| continue; |
| } |
| } |
| } |
| } |
| tOrder &= UCOL_PRIMARYMASK; |
| tInShifted = FALSE; |
| |
| if(sOrder == tOrder) { |
| /* |
| if(doHiragana && hirResult == UCOL_EQUAL) { |
| if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) { |
| hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA)) |
| ? UCOL_LESS:UCOL_GREATER; |
| } |
| } |
| */ |
| if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { |
| break; |
| } else { |
| sOrder = 0; |
| tOrder = 0; |
| continue; |
| } |
| } else { |
| result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER; |
| goto commonReturn; |
| } |
| } /* no primary difference... do the rest from the buffers */ |
| } |
| |
| /* now, we're gonna reexamine collected CEs */ |
| uint32_t *sCE; |
| uint32_t *tCE; |
| |
| /* This is the secondary level of comparison */ |
| if(checkSecTer) { |
| if(!isFrenchSec) { /* normal */ |
| sCE = sCEs.buf; |
| tCE = tCEs.buf; |
| for(;;) { |
| while (secS == 0) { |
| secS = *(sCE++) & UCOL_SECONDARYMASK; |
| } |
| |
| while(secT == 0) { |
| secT = *(tCE++) & UCOL_SECONDARYMASK; |
| } |
| |
| if(secS == secT) { |
| if(secS == UCOL_NO_MORE_CES_SECONDARY) { |
| break; |
| } else { |
| secS = 0; secT = 0; |
| continue; |
| } |
| } else { |
| result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
| goto commonReturn; |
| } |
| } |
| } else { /* do the French */ |
| uint32_t *sCESave = NULL; |
| uint32_t *tCESave = NULL; |
| sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */ |
| tCE = tCEs.pos-2; |
| for(;;) { |
| while (secS == 0 && sCE >= sCEs.buf) { |
| if(sCESave == NULL) { |
| secS = *(sCE--); |
| if(isContinuation(secS)) { |
| while(isContinuation(secS = *(sCE--))) |
| ; |
| /* after this, secS has the start of continuation, and sCEs points before that */ |
| sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
| sCE+=2; /* need to point to the first continuation CP */ |
| /* However, now you can just continue doing stuff */ |
| } |
| } else { |
| secS = *(sCE++); |
| if(!isContinuation(secS)) { /* This means we have finished with this cont */ |
| sCE = sCESave; /* reset the pointer to before continuation */ |
| sCESave = NULL; |
| secS = 0; /* Fetch a fresh CE before the continuation sequence. */ |
| continue; |
| } |
| } |
| secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
| } |
| |
| while(secT == 0 && tCE >= tCEs.buf) { |
| if(tCESave == NULL) { |
| secT = *(tCE--); |
| if(isContinuation(secT)) { |
| while(isContinuation(secT = *(tCE--))) |
| ; |
| /* after this, secS has the start of continuation, and sCEs points before that */ |
| tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */ |
| tCE+=2; /* need to point to the first continuation CP */ |
| /* However, now you can just continue doing stuff */ |
| } |
| } else { |
| secT = *(tCE++); |
| if(!isContinuation(secT)) { /* This means we have finished with this cont */ |
| tCE = tCESave; /* reset the pointer to before continuation */ |
| tCESave = NULL; |
| secT = 0; /* Fetch a fresh CE before the continuation sequence. */ |
| continue; |
| } |
| } |
| secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */ |
| } |
| |
| if(secS == secT) { |
| if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) { |
| break; |
| } else { |
| secS = 0; secT = 0; |
| continue; |
| } |
| } else { |
| result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
| goto commonReturn; |
| } |
| } |
| } |
| } |
| |
| /* doing the case bit */ |
| if(checkCase) { |
| sCE = sCEs.buf; |
| tCE = tCEs.buf; |
| for(;;) { |
| while((secS & UCOL_REMOVE_CASE) == 0) { |
| if(!isContinuation(*sCE++)) { |
| secS =*(sCE-1); |
| if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
| // primary ignorables should not be considered on the case level when the strength is primary |
| // otherwise, the CEs stop being well-formed |
| secS &= UCOL_TERT_CASE_MASK; |
| secS ^= caseSwitch; |
| } else { |
| secS = 0; |
| } |
| } else { |
| secS = 0; |
| } |
| } |
| |
| while((secT & UCOL_REMOVE_CASE) == 0) { |
| if(!isContinuation(*tCE++)) { |
| secT = *(tCE-1); |
| if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { |
| // primary ignorables should not be considered on the case level when the strength is primary |
| // otherwise, the CEs stop being well-formed |
| secT &= UCOL_TERT_CASE_MASK; |
| secT ^= caseSwitch; |
| } else { |
| secT = 0; |
| } |
| } else { |
| secT = 0; |
| } |
| } |
| |
| if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) { |
| result = UCOL_LESS; |
| goto commonReturn; |
| } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) { |
| result = UCOL_GREATER; |
| goto commonReturn; |
| } |
| |
| if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) { |
| break; |
| } else { |
| secS = 0; |
| secT = 0; |
| } |
| } |
| } |
| |
| /* Tertiary level */ |
| if(checkTertiary) { |
| secS = 0; |
| secT = 0; |
| sCE = sCEs.buf; |
| tCE = tCEs.buf; |
| for(;;) { |
| while((secS & UCOL_REMOVE_CASE) == 0) { |
| secS = *(sCE++) & tertiaryMask; |
| if(!isContinuation(secS)) { |
| secS ^= caseSwitch; |
| } else { |
| secS &= UCOL_REMOVE_CASE; |
| } |
| } |
| |
| while((secT & UCOL_REMOVE_CASE) == 0) { |
| secT = *(tCE++) & tertiaryMask; |
| if(!isContinuation(secT)) { |
| secT ^= caseSwitch; |
| } else { |
| secT &= UCOL_REMOVE_CASE; |
| } |
| } |
| |
| if(secS == secT) { |
| if((secS & UCOL_REMOVE_CASE) == 1) { |
| break; |
| } else { |
| secS = 0; secT = 0; |
| continue; |
| } |
| } else { |
| result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
| goto commonReturn; |
| } |
| } |
| } |
| |
| |
| if(qShifted /*checkQuad*/) { |
| UBool sInShifted = TRUE; |
| UBool tInShifted = TRUE; |
| secS = 0; |
| secT = 0; |
| sCE = sCEs.buf; |
| tCE = tCEs.buf; |
| for(;;) { |
| while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) { |
| secS = *(sCE++); |
| if(isContinuation(secS)) { |
| if(!sInShifted) { |
| continue; |
| } |
| } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */ |
| secS = UCOL_PRIMARYMASK; |
| sInShifted = FALSE; |
| } else { |
| sInShifted = TRUE; |
| } |
| } |
| secS &= UCOL_PRIMARYMASK; |
| |
| |
| while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) { |
| secT = *(tCE++); |
| if(isContinuation(secT)) { |
| if(!tInShifted) { |
| continue; |
| } |
| } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) { |
| secT = UCOL_PRIMARYMASK; |
| tInShifted = FALSE; |
| } else { |
| tInShifted = TRUE; |
| } |
| } |
| secT &= UCOL_PRIMARYMASK; |
| |
| if(secS == secT) { |
| if(secS == UCOL_NO_MORE_CES_PRIMARY) { |
| break; |
| } else { |
| secS = 0; secT = 0; |
| continue; |
| } |
| } else { |
| result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; |
| goto commonReturn; |
| } |
| } |
| } else if(doHiragana && hirResult != UCOL_EQUAL) { |
| // If we're fine on quaternaries, we might be different |
| // on Hiragana. This, however, might fail us in shifted. |
| result = hirResult; |
| goto commonReturn; |
| } |
| |
| /* For IDENTICAL comparisons, we use a bitwise character comparison */ |
| /* as a tiebreaker if all else is equal. */ |
| /* Getting here should be quite rare - strings are not identical - */ |
| /* that is checked first, but compared == through all other checks. */ |
| if(checkIdent) |
| { |
| //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON); |
| result = ucol_checkIdent(sColl, tColl, TRUE, status); |
| } |
| |
| commonReturn: |
| if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) { |
| if (sCEs.buf != sCEs.localArray ) { |
| uprv_free(sCEs.buf); |
| } |
| if (tCEs.buf != tCEs.localArray ) { |
| uprv_free(tCEs.buf); |
| } |
| } |
| |
| return result; |
| } |
| |
| static UCollationResult |
| ucol_strcollRegular(const UCollator *coll, |
| const UChar *source, int32_t sourceLength, |
| const UChar *target, int32_t targetLength, |
| UErrorCode *status) { |
| collIterate sColl, tColl; |
| // Preparing the context objects for iterating over strings |
| IInit_collIterate(coll, source, sourceLength, &sColl, status); |
| IInit_collIterate(coll, target, targetLength, &tColl, status); |
| if(U_FAILURE(*status)) { |
| return UCOL_LESS; |
| } |
| return ucol_strcollRegular(&sColl, &tColl, status); |
| } |
| |
| static inline uint32_t |
| ucol_getLatinOneContraction(const UCollator *coll, int32_t strength, |
| uint32_t CE, const UChar *s, int32_t *index, int32_t len) |
| { |
| const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); |
| int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; |
| int32_t offset = 1; |
| UChar schar = 0, tchar = 0; |
| |
| for(;;) { |
| if(len == -1) { |
| if(s[*index] == 0) { // end of string |
| return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
| } else { |
| schar = s[*index]; |
| } |
| } else { |
| if(*index == len) { |
| return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
| } else { |
| schar = s[*index]; |
| } |
| } |
| |
| while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ |
| offset++; |
| } |
| |
| if (schar == tchar) { |
| (*index)++; |
| return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); |
| } |
| else |
| { |
| if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { |
| return UCOL_BAIL_OUT_CE; |
| } |
| // skip completely ignorables |
| uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); |
| if(isZeroCE == 0) { // we have to ignore completely ignorables |
| (*index)++; |
| continue; |
| } |
| |
| return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); |
| } |
| } |
| } |
| |
| |
| /** |
| * This is a fast strcoll, geared towards text in Latin-1. |
| * It supports contractions of size two, French secondaries |
| * and case switching. You can use it with strengths primary |
| * to tertiary. It does not support shifted and case level. |
| * It relies on the table build by setupLatin1Table. If it |
| * doesn't understand something, it will go to the regular |
| * strcoll. |
| */ |
| static UCollationResult |
| ucol_strcollUseLatin1( const UCollator *coll, |
| const UChar *source, |
| int32_t sLen, |
| const UChar *target, |
| int32_t tLen, |
| UErrorCode *status) |
| { |
| U_ALIGN_CODE(16); |
| int32_t strength = coll->strength; |
| |
| int32_t sIndex = 0, tIndex = 0; |
| UChar sChar = 0, tChar = 0; |
| uint32_t sOrder=0, tOrder=0; |
| |
| UBool endOfSource = FALSE; |
| |
| uint32_t *elements = coll->latinOneCEs; |
| |
| UBool haveContractions = FALSE; // if we have contractions in our string |
| // we cannot do French secondary |
| |
| // Do the primary level |
| for(;;) { |
| while(sOrder==0) { // this loop skips primary ignorables |
| // sOrder=getNextlatinOneCE(source); |
| if(sLen==-1) { // handling zero terminated strings |
| sChar=source[sIndex++]; |
| if(sChar==0) { |
| endOfSource = TRUE; |
| break; |
| } |
| } else { // handling strings with known length |
| if(sIndex==sLen) { |
| endOfSource = TRUE; |
| break; |
| } |
| sChar=source[sIndex++]; |
| } |
| if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
| //fprintf(stderr, "R"); |
| return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
| } |
| sOrder = elements[sChar]; |
| if(sOrder >= UCOL_NOT_FOUND) { // if we got a special |
| // specials can basically be either contractions or bail-out signs. If we get anything |
| // else, we'll bail out anywasy |
| if(getCETag(sOrder) == CONTRACTION_TAG) { |
| sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); |
| haveContractions = TRUE; // if there are contractions, we cannot do French secondary |
| // However, if there are contractions in the table, but we always use just one char, |
| // we might be able to do French. This should be checked out. |
| } |
| if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
| //fprintf(stderr, "S"); |
| return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
| } |
| } |
| } |
| |
| while(tOrder==0) { // this loop skips primary ignorables |
| // tOrder=getNextlatinOneCE(target); |
| if(tLen==-1) { // handling zero terminated strings |
| tChar=target[tIndex++]; |
| if(tChar==0) { |
| if(endOfSource) { // this is different than source loop, |
| // as we already know that source loop is done here, |
| // so we can either finish the primary loop if both |
| // strings are done or anounce the result if only |
| // target is done. Same below. |
| goto endOfPrimLoop; |
| } else { |
| return UCOL_GREATER; |
| } |
| } |
| } else { // handling strings with known length |
| if(tIndex==tLen) { |
| if(endOfSource) { |
| goto endOfPrimLoop; |
| } else { |
| return UCOL_GREATER; |
| } |
| } |
| tChar=target[tIndex++]; |
| } |
| if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) |
| //fprintf(stderr, "R"); |
| return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
| } |
| tOrder = elements[tChar]; |
| if(tOrder >= UCOL_NOT_FOUND) { |
| // Handling specials, see the comments for source |
| if(getCETag(tOrder) == CONTRACTION_TAG) { |
| tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); |
| haveContractions = TRUE; |
| } |
| if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { |
| //fprintf(stderr, "S"); |
| return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
| } |
| } |
| } |
| if(endOfSource) { // source is finished, but target is not, say the result. |
| return UCOL_LESS; |
| } |
| |
| if(sOrder == tOrder) { // if we have same CEs, we continue the loop |
| sOrder = 0; tOrder = 0; |
| continue; |
| } else { |
| // compare current top bytes |
| if(((sOrder^tOrder)&0xFF000000)!=0) { |
| // top bytes differ, return difference |
| if(sOrder < tOrder) { |
| return UCOL_LESS; |
| } else if(sOrder > tOrder) { |
| return UCOL_GREATER; |
| } |
| // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); |
| // since we must return enum value |
| } |
| |
| // top bytes match, continue with following bytes |
| sOrder<<=8; |
| tOrder<<=8; |
| } |
| } |
| |
| endOfPrimLoop: |
| // after primary loop, we definitely know the sizes of strings, |
| // so we set it and use simpler loop for secondaries and tertiaries |
| sLen = sIndex; tLen = tIndex; |
| if(strength >= UCOL_SECONDARY) { |
| // adjust the table beggining |
| elements += coll->latinOneTableLen; |
| endOfSource = FALSE; |
| |
| if(coll->frenchCollation == UCOL_OFF) { // non French |
| // This loop is a simplified copy of primary loop |
| // at this point we know that whole strings are latin-1, so we don't |
| // check for that. We also know that we only have contractions as |
| // specials. |
| sIndex = 0; tIndex = 0; |
| for(;;) { |
| while(sOrder==0) { |
| if(sIndex==sLen) { |
| endOfSource = TRUE; |
| break; |
| } |
| sChar=source[sIndex++]; |
| sOrder = elements[sChar]; |
| if(sOrder > UCOL_NOT_FOUND) { |
| sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); |
| } |
| } |
| |
| while(tOrder==0) { |
| if(tIndex==tLen) { |
| if(endOfSource) { |
| goto endOfSecLoop; |
| } else { |
| return UCOL_GREATER; |
| } |
| } |
| tChar=target[tIndex++]; |
| tOrder = elements[tChar]; |
| if(tOrder > UCOL_NOT_FOUND) { |
| tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); |
| } |
| } |
| if(endOfSource) { |
| return UCOL_LESS; |
| } |
| |
| if(sOrder == tOrder) { |
| sOrder = 0; tOrder = 0; |
| continue; |
| } else { |
| // see primary loop for comments on this |
| if(((sOrder^tOrder)&0xFF000000)!=0) { |
| if(sOrder < tOrder) { |
| return UCOL_LESS; |
| } else if(sOrder > tOrder) { |
| return UCOL_GREATER; |
| } |
| } |
| sOrder<<=8; |
| tOrder<<=8; |
| } |
| } |
| } else { // French |
| if(haveContractions) { // if we have contractions, we have to bail out |
| // since we don't really know how to handle them here |
| return ucol_strcollRegular(coll, source, sLen, target, tLen, status); |
| } |
| // For French, we go backwards |
| sIndex = sLen; tIndex = tLen; |
| for(;;) { |
| while(sOrder==0) { |
| if(sIndex==0) { |
| endOfSource = TRUE; |
| break; |
| } |
| sChar=source[--sIndex]; |
| sOrder = elements[sChar]; |
| // don't even look for contractions |
| } |
| |
| while(tOrder==0) { |
| if(tIndex==0) { |
| if(endOfSource) { |
| goto endOfSecLoop; |
| } else { |
| return UCOL_GREATER; |
| } |
| } |
| tChar=target[--tIndex]; |
| tOrder = elements[tChar]; |
| // don't even look for contractions |
| } |
| if(endOfSource) { |
| return UCOL_LESS; |
| } |
| |
| if(sOrder == tOrder) { |
| sOrder = 0; tOrder = 0; |
| continue; |
| } else { |
| // see the primary loop for comments |
| if(((sOrder^tOrder)&0xFF000000)!=0) { |
| if(sOrder < tOrder) { |
| return UCOL_LESS; |
| } else if(sOrder > tOrder) { |
| return UCOL_GREATER; |
| } |
| } |
| sOrder<<=8; |
| tOrder<<=8; |
| } |
| } |
| } |
| } |
| |
| endOfSecLoop: |
| if(strength >= UCOL_TERTIARY) { |
| // tertiary loop is the same as secondary (except no French) |
| elements += coll->latinOneTableLen; |
| sIndex = 0; tIndex = 0; |
| endOfSource = FALSE; |
| for(;;) { |
| while(sOrder==0) { |
| if(sIndex==sLen) { |
| endOfSource = TRUE; |
| break; |
| } |
| sChar=source[sIndex++]; |
| sOrder = elements[sChar]; |
| if(sOrder > UCOL_NOT_FOUND) { |
| sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); |
| } |
| } |
| while(tOrder==0) { |
| if(tIndex==tLen) { |
| if(endOfSource) { |
| return UCOL_EQUAL; // if both strings are at the end, they are equal |
| } else { |
| return UCOL_GREATER; |
| } |
| } |
| tChar=target[tIndex++]; |
| tOrder = elements[tChar]; |
| if(tOrder > UCOL_NOT_FOUND) { |
| tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); |
| } |
| } |
| if(endOfSource) { |
| return UCOL_LESS; |
| } |
| if(sOrder == tOrder) { |
| sOrder = 0; tOrder = 0; |
| continue; |
| } else { |
| if(((sOrder^tOrder)&0xff000000)!=0) { |
| if(sOrder < tOrder) { |
| return UCOL_LESS; |
| } else if(sOrder > tOrder) { |
| return UCOL_GREATER; |
| } |
| } |
| sOrder<<=8; |
| tOrder<<=8; |
| } |
| } |
| } |
| return UCOL_EQUAL; |
| } |
| |
| |
| U_CAPI UCollationResult U_EXPORT2 |
| ucol_strcollIter( const UCollator *coll, |
| UCharIterator *sIter, |
| UCharIterator *tIter, |
| UErrorCode *status) |
| { |
| if(!status || U_FAILURE(*status)) { |
| return UCOL_EQUAL; |
| } |
| |
| UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER); |
| UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter); |
| |
| if (sIter == tIter) { |
| UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
| return UCOL_EQUAL; |
| } |
| if(sIter == NULL || tIter == NULL || coll == NULL) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
| return UCOL_EQUAL; |
| } |
| |
| UCollationResult result = UCOL_EQUAL; |
| |
| // Preparing the context objects for iterating over strings |
| collIterate sColl, tColl; |
| IInit_collIterate(coll, NULL, -1, &sColl, status); |
| IInit_collIterate(coll, NULL, -1, &tColl, status); |
| if(U_FAILURE(*status)) { |
| UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) |
| return UCOL_EQUAL; |
| } |
| // The division for the array length may truncate the array size to |
| // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high |
| // for all platforms anyway. |
| UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
| UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; |
| UNormIterator *sNormIter = NULL, *tNormIter = NULL; |
| |
| sColl.iterator = sIter; |
| sColl.flags |= UCOL_USE_ITERATOR; |
| tColl.flags |= UCOL_USE_ITERATOR; |
| tColl.iterator = tIter; |
| |
| if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { |
| sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); |
| sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status); |
| sColl.flags &= ~UCOL_ITER_NORM; |
| |
| tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); |
| tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status); |
| tColl.flags &= ~UCOL_ITER_NORM; |
| } |
| |
| UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL; |
| |
| while((sChar = sColl.iterator->next(sColl.iterator)) == |
| (tChar = tColl.iterator->next(tColl.iterator))) { |
| if(sChar == U_SENTINEL) { |
| result = UCOL_EQUAL; |
| goto end_compare; |
| } |
| } |
| |
| if(sChar == U_SENTINEL) { |
| tChar = tColl.iterator->previous(tColl.iterator); |
| } |
| |
| if(tChar == U_SENTINEL) { |
| sChar = sColl.iterator->previous(sColl.iterator); |
| } |
| |
| sChar = sColl.iterator->previous(sColl.iterator); |
| tChar = tColl.iterator->previous(tColl.iterator); |
| |
| if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll)) |
| { |
| // We are stopped in the middle of a contraction. |
| // Scan backwards through the == part of the string looking for the start of the contraction. |
| // It doesn't matter which string we scan, since they are the same in this region. |
| do |
| { |
| sChar = sColl.iterator->previous(sColl.iterator); |
| tChar = tColl.iterator->previous(tColl.iterator); |
| } |
| while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll)); |
| } |
| |
| |
| if(U_SUCCESS(*status)) { |
| result = ucol_strcollRegular(&sColl, &tColl, status); |
| } |
| |
| end_compare: |
| if(sNormIter || tNormIter) { |
| unorm_closeIter(sNormIter); |
| unorm_closeIter(tNormIter); |
| } |
| |
| UTRACE_EXIT_VALUE_STATUS(result, *status) |
| return result; |
| } |
| |
| |
| /* */ |
| /* ucol_strcoll Main public API string comparison function */ |
| /* */ |
| U_CAPI UCollationResult U_EXPORT2 |
| ucol_strcoll( const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| const UChar *target, |
| int32_t targetLength) |
| { |
| U_ALIGN_CODE(16); |
| |
| UTRACE_ENTRY(UTRACE_UCOL_STRCOLL); |
| if (UTRACE_LEVEL(UTRACE_VERBOSE)) { |
| UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); |
| UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength); |
| UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength); |
| } |
| |
| if(source == NULL || target == NULL) { |
| // do not crash, but return. Should have |
| // status argument to return error. |
| UTRACE_EXIT_VALUE(UCOL_EQUAL); |
| return UCOL_EQUAL; |
| } |
| |
| /* Quick check if source and target are same strings. */ |
| /* They should either both be NULL terminated or the explicit length should be set on both. */ |
| if (source==target && sourceLength==targetLength) { |
| UTRACE_EXIT_VALUE(UCOL_EQUAL); |
| return UCOL_EQUAL; |
| } |
| |
| /* Scan the strings. Find: */ |
| /* The length of any leading portion that is equal */ |
| /* Whether they are exactly equal. (in which case we just return) */ |
| const UChar *pSrc = source; |
| const UChar *pTarg = target; |
| int32_t equalLength; |
| |
| if (sourceLength == -1 && targetLength == -1) { |
| // Both strings are null terminated. |
| // Scan through any leading equal portion. |
| while (*pSrc == *pTarg && *pSrc != 0) { |
| pSrc++; |
| pTarg++; |
| } |
| if (*pSrc == 0 && *pTarg == 0) { |
| UTRACE_EXIT_VALUE(UCOL_EQUAL); |
| return UCOL_EQUAL; |
| } |
| equalLength = (int32_t)(pSrc - source); |
| } |
| else |
| { |
| // One or both strings has an explicit length. |
| const UChar *pSrcEnd = source + sourceLength; |
| const UChar *pTargEnd = target + targetLength; |
| |
| // Scan while the strings are bitwise ==, or until one is exhausted. |
| for (;;) { |
| if (pSrc == pSrcEnd || pTarg == pTargEnd) { |
| break; |
| } |
| if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { |
| break; |
| } |
| if (*pSrc != *pTarg) { |
| break; |
| } |
| pSrc++; |
| pTarg++; |
| } |
| equalLength = (int32_t)(pSrc - source); |
| |
| // If we made it all the way through both strings, we are done. They are == |
| if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */ |
| (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */ |
| { |
| UTRACE_EXIT_VALUE(UCOL_EQUAL); |
| return UCOL_EQUAL; |
| } |
| } |
| if (equalLength > 0) { |
| /* There is an identical portion at the beginning of the two strings. */ |
| /* If the identical portion ends within a contraction or a comibining */ |
| /* character sequence, back up to the start of that sequence. */ |
| |
| // These values should already be set by the code above. |
| //pSrc = source + equalLength; /* point to the first differing chars */ |
| //pTarg = target + equalLength; |
| if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) || |
| (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))) |
| { |
| // We are stopped in the middle of a contraction. |
| // Scan backwards through the == part of the string looking for the start of the contraction. |
| // It doesn't matter which string we scan, since they are the same in this region. |
| do |
| { |
| equalLength--; |
| pSrc--; |
| } |
| while (equalLength>0 && ucol_unsafeCP(*pSrc, coll)); |
| } |
| |
| source += equalLength; |
| target += equalLength; |
| if (sourceLength > 0) { |
| sourceLength -= equalLength; |
| } |
| if (targetLength > 0) { |
| targetLength -= equalLength; |
| } |
| } |
| |
| UErrorCode status = U_ZERO_ERROR; |
| UCollationResult returnVal; |
| if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) { |
| returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status); |
| } else { |
| returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status); |
| } |
| UTRACE_EXIT_VALUE(returnVal); |
| return returnVal; |
| } |
| |
| /* convenience function for comparing strings */ |
| U_CAPI UBool U_EXPORT2 |
| ucol_greater( const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| const UChar *target, |
| int32_t targetLength) |
| { |
| return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
| == UCOL_GREATER); |
| } |
| |
| /* convenience function for comparing strings */ |
| U_CAPI UBool U_EXPORT2 |
| ucol_greaterOrEqual( const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| const UChar *target, |
| int32_t targetLength) |
| { |
| return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
| != UCOL_LESS); |
| } |
| |
| /* convenience function for comparing strings */ |
| U_CAPI UBool U_EXPORT2 |
| ucol_equal( const UCollator *coll, |
| const UChar *source, |
| int32_t sourceLength, |
| const UChar *target, |
| int32_t targetLength) |
| { |
| return (ucol_strcoll(coll, source, sourceLength, target, targetLength) |
| == UCOL_EQUAL); |
| } |
| |
| U_CAPI void U_EXPORT2 |
| ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) { |
| if(coll && coll->UCA) { |
| uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo)); |
| } |
| } |
| |
| #endif /* #if !UCONFIG_NO_COLLATION */ |