| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2000-2010, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: genmbcs.c |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2000jul06 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include <stdio.h> |
| #include "unicode/utypes.h" |
| #include "cstring.h" |
| #include "cmemory.h" |
| #include "unewdata.h" |
| #include "ucnv_cnv.h" |
| #include "ucnvmbcs.h" |
| #include "ucm.h" |
| #include "makeconv.h" |
| #include "genmbcs.h" |
| |
| /* |
| * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files. |
| * Reduce tests for maxCharLength. |
| */ |
| |
| struct MBCSData { |
| NewConverter newConverter; |
| |
| UCMFile *ucm; |
| |
| /* toUnicode (state table in ucm->states) */ |
| _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; |
| int32_t countToUFallbacks; |
| uint16_t *unicodeCodeUnits; |
| |
| /* fromUnicode */ |
| uint16_t stage1[MBCS_STAGE_1_SIZE]; |
| uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */ |
| uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ |
| uint8_t *fromUBytes; |
| uint32_t stage2Top, stage3Top; |
| |
| /* fromUTF8 */ |
| uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */ |
| |
| /* |
| * Maximum UTF-8-friendly code point. |
| * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. |
| * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. |
| */ |
| uint16_t utf8Max; |
| |
| UBool utf8Friendly; |
| UBool omitFromU; |
| }; |
| |
| /* prototypes */ |
| static void |
| MBCSClose(NewConverter *cnvData); |
| |
| static UBool |
| MBCSStartMappings(MBCSData *mbcsData); |
| |
| static UBool |
| MBCSAddToUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag); |
| |
| static UBool |
| MBCSIsValid(NewConverter *cnvData, |
| const uint8_t *bytes, int32_t length); |
| |
| static UBool |
| MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag); |
| |
| static UBool |
| MBCSAddFromUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag); |
| |
| static void |
| MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); |
| |
| static UBool |
| MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); |
| |
| static uint32_t |
| MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| UNewDataMemory *pData, int32_t tableType); |
| |
| /* helper ------------------------------------------------------------------- */ |
| |
| static U_INLINE char |
| hexDigit(uint8_t digit) { |
| return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); |
| } |
| |
| static U_INLINE char * |
| printBytes(char *buffer, const uint8_t *bytes, int32_t length) { |
| char *s=buffer; |
| while(length>0) { |
| *s++=hexDigit((uint8_t)(*bytes>>4)); |
| *s++=hexDigit((uint8_t)(*bytes&0xf)); |
| ++bytes; |
| --length; |
| } |
| |
| *s=0; |
| return buffer; |
| } |
| |
| /* implementation ----------------------------------------------------------- */ |
| |
| static MBCSData gDummy; |
| |
| U_CFUNC const MBCSData * |
| MBCSGetDummy() { |
| uprv_memset(&gDummy, 0, sizeof(MBCSData)); |
| |
| /* |
| * Set "pessimistic" values which may sometimes move too many |
| * mappings to the extension table (but never too few). |
| * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the |
| * largest set of mappings. |
| * Assume maxCharLength>1. |
| */ |
| gDummy.utf8Friendly=TRUE; |
| if(SMALL) { |
| gDummy.utf8Max=0xffff; |
| gDummy.omitFromU=TRUE; |
| } else { |
| gDummy.utf8Max=MBCS_UTF8_MAX; |
| } |
| return &gDummy; |
| } |
| |
| static void |
| MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { |
| uprv_memset(mbcsData, 0, sizeof(MBCSData)); |
| |
| mbcsData->ucm=ucm; /* aliased, not owned */ |
| |
| mbcsData->newConverter.close=MBCSClose; |
| mbcsData->newConverter.isValid=MBCSIsValid; |
| mbcsData->newConverter.addTable=MBCSAddTable; |
| mbcsData->newConverter.write=MBCSWrite; |
| } |
| |
| NewConverter * |
| MBCSOpen(UCMFile *ucm) { |
| MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); |
| if(mbcsData==NULL) { |
| printf("out of memory\n"); |
| exit(U_MEMORY_ALLOCATION_ERROR); |
| } |
| |
| MBCSInit(mbcsData, ucm); |
| return &mbcsData->newConverter; |
| } |
| |
| static void |
| MBCSDestruct(MBCSData *mbcsData) { |
| uprv_free(mbcsData->unicodeCodeUnits); |
| uprv_free(mbcsData->fromUBytes); |
| } |
| |
| static void |
| MBCSClose(NewConverter *cnvData) { |
| MBCSData *mbcsData=(MBCSData *)cnvData; |
| if(mbcsData!=NULL) { |
| MBCSDestruct(mbcsData); |
| uprv_free(mbcsData); |
| } |
| } |
| |
| static UBool |
| MBCSStartMappings(MBCSData *mbcsData) { |
| int32_t i, sum, maxCharLength, |
| stage2NullLength, stage2AllocLength, |
| stage3NullLength, stage3AllocLength; |
| |
| /* toUnicode */ |
| |
| /* allocate the code unit array and prefill it with "unassigned" values */ |
| sum=mbcsData->ucm->states.countToUCodeUnits; |
| if(VERBOSE) { |
| printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum); |
| } |
| |
| if(sum>0) { |
| mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t)); |
| if(mbcsData->unicodeCodeUnits==NULL) { |
| fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", |
| (long)sum); |
| return FALSE; |
| } |
| for(i=0; i<sum; ++i) { |
| mbcsData->unicodeCodeUnits[i]=0xfffe; |
| } |
| } |
| |
| /* fromUnicode */ |
| maxCharLength=mbcsData->ucm->states.maxCharLength; |
| |
| /* allocate the codepage mappings and preset the first 16 characters to 0 */ |
| if(maxCharLength==1) { |
| /* allocate 64k 16-bit results for single-byte codepages */ |
| sum=0x20000; |
| } else { |
| /* allocate 1M * maxCharLength bytes for at most 1M mappings */ |
| sum=0x100000*maxCharLength; |
| } |
| mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); |
| if(mbcsData->fromUBytes==NULL) { |
| fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum); |
| return FALSE; |
| } |
| uprv_memset(mbcsData->fromUBytes, 0, sum); |
| |
| /* |
| * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. |
| * See ucnvmbcs.h for details. |
| * |
| * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which |
| * assumes that the initial stage 2/3 blocks are the all-unassigned ones. |
| * Therefore, we refine the data structure while maintaining this placement |
| * even though it would be convenient to allocate the ASCII block at the |
| * beginning of stage 3, for example. |
| * |
| * UTF-8-friendly fromUnicode tries work from sorted tables and are built |
| * pre-compacted, overlapping adjacent stage 2/3 blocks. |
| * This is necessary because the block allocation and compaction changes |
| * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional |
| * stage table uses direct indexes into stage 3, without a multiplier and |
| * thus with a smaller reach. |
| * |
| * Non-UTF-8-friendly fromUnicode tries work from unsorted tables |
| * (because implicit precision is used), and are compacted |
| * in post-processing. |
| * |
| * Preallocation for UTF-8-friendly fromUnicode tries: |
| * |
| * Stage 3: |
| * 64-entry all-unassigned first block followed by ASCII (128 entries). |
| * |
| * Stage 2: |
| * 64-entry all-unassigned first block followed by preallocated |
| * 64-block for ASCII. |
| */ |
| |
| /* Preallocate ASCII as a linear 128-entry stage 3 block. */ |
| stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; |
| stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; |
| |
| stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| stage3AllocLength=128; /* ASCII U+0000..U+007f */ |
| |
| /* Initialize stage 1 for the preallocated blocks. */ |
| sum=stage2NullLength; |
| for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { |
| mbcsData->stage1[i]=sum; |
| sum+=MBCS_STAGE_2_BLOCK_SIZE; |
| } |
| mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ |
| |
| /* |
| * Stage 2 indexes count 16-blocks in stage 3 as follows: |
| * SBCS: directly, indexes increment by 16 |
| * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1 |
| * MBCS UTF-8: directly, indexes increment by 16 |
| */ |
| if(maxCharLength==1) { |
| sum=stage3NullLength; |
| for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
| mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; |
| sum+=MBCS_STAGE_3_BLOCK_SIZE; |
| } |
| } else { |
| sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; |
| for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
| mbcsData->stage2[mbcsData->stage1[0]+i]=sum; |
| sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; |
| } |
| } |
| |
| sum=stage3NullLength; |
| for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { |
| mbcsData->stageUTF8[i]=sum; |
| sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| } |
| |
| /* |
| * Allocate a 64-entry all-unassigned first stage 3 block, |
| * for UTF-8-friendly lookup with a trail byte, |
| * plus 128 entries for ASCII. |
| */ |
| mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */ |
| |
| return TRUE; |
| } |
| |
| /* return TRUE for success */ |
| static UBool |
| setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { |
| int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); |
| if(i>=0) { |
| /* if there is already a fallback for this offset, then overwrite it */ |
| mbcsData->toUFallbacks[i].codePoint=c; |
| return TRUE; |
| } else { |
| /* if there is no fallback for this offset, then add one */ |
| i=mbcsData->countToUFallbacks; |
| if(i>=MBCS_MAX_FALLBACK_COUNT) { |
| fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c); |
| return FALSE; |
| } else { |
| mbcsData->toUFallbacks[i].offset=offset; |
| mbcsData->toUFallbacks[i].codePoint=c; |
| mbcsData->countToUFallbacks=i+1; |
| return TRUE; |
| } |
| } |
| } |
| |
| /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */ |
| static int32_t |
| removeFallback(MBCSData *mbcsData, uint32_t offset) { |
| int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); |
| if(i>=0) { |
| _MBCSToUFallback *toUFallbacks; |
| int32_t limit, old; |
| |
| toUFallbacks=mbcsData->toUFallbacks; |
| limit=mbcsData->countToUFallbacks; |
| old=(int32_t)toUFallbacks[i].codePoint; |
| |
| /* copy the last fallback entry here to keep the list contiguous */ |
| toUFallbacks[i].offset=toUFallbacks[limit-1].offset; |
| toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; |
| mbcsData->countToUFallbacks=limit-1; |
| return old; |
| } else { |
| return -1; |
| } |
| } |
| |
| /* |
| * isFallback is almost a boolean: |
| * 1 (TRUE) this is a fallback mapping |
| * 0 (FALSE) this is a precise mapping |
| * -1 the precision of this mapping is not specified |
| */ |
| static UBool |
| MBCSAddToUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag) { |
| char buffer[10]; |
| uint32_t offset=0; |
| int32_t i=0, entry, old; |
| uint8_t state=0; |
| |
| if(mbcsData->ucm->states.countStates==0) { |
| fprintf(stderr, "error: there is no state information!\n"); |
| return FALSE; |
| } |
| |
| /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */ |
| if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { |
| state=1; |
| } |
| |
| /* |
| * Walk down the state table like in conversion, |
| * much like getNextUChar(). |
| * We assume that c<=0x10ffff. |
| */ |
| for(i=0;;) { |
| entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; |
| if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| if(i==length) { |
| fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n", |
| (short)state, printBytes(buffer, bytes, length), (int)c); |
| return FALSE; |
| } |
| state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| } else { |
| if(i<length) { |
| fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n", |
| (int)(length-i), state, printBytes(buffer, bytes, length), (int)c); |
| return FALSE; |
| } |
| switch(MBCS_ENTRY_FINAL_ACTION(entry)) { |
| case MBCS_STATE_ILLEGAL: |
| fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| case MBCS_STATE_CHANGE_ONLY: |
| fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| case MBCS_STATE_UNASSIGNED: |
| fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| case MBCS_STATE_FALLBACK_DIRECT_16: |
| case MBCS_STATE_VALID_DIRECT_16: |
| case MBCS_STATE_FALLBACK_DIRECT_20: |
| case MBCS_STATE_VALID_DIRECT_20: |
| if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) { |
| /* the "direct" action's value is not "valid-direct-16-unassigned" any more */ |
| if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { |
| old=MBCS_ENTRY_FINAL_VALUE(entry); |
| } else { |
| old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| } |
| if(flag>=0) { |
| fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| return FALSE; |
| } else if(VERBOSE) { |
| fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| } |
| /* |
| * Continue after the above warning |
| * if the precision of the mapping is unspecified. |
| */ |
| } |
| /* reassign the correct action code */ |
| entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); |
| |
| /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */ |
| if(c<=0xffff) { |
| entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); |
| } else { |
| entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); |
| } |
| mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; |
| break; |
| case MBCS_STATE_VALID_16: |
| /* bits 26..16 are not used, 0 */ |
| /* bits 15..7 contain the final offset delta to one 16-bit code unit */ |
| offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| /* check that this byte sequence is still unassigned */ |
| if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) { |
| if(flag>=0) { |
| fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| return FALSE; |
| } else if(VERBOSE) { |
| fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| } |
| } |
| if(c>=0x10000) { |
| fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| } |
| if(flag>0) { |
| /* assign only if there is no precise mapping */ |
| if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { |
| return setFallback(mbcsData, offset, c); |
| } |
| } else { |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| } |
| break; |
| case MBCS_STATE_VALID_16_PAIR: |
| /* bits 26..16 are not used, 0 */ |
| /* bits 15..7 contain the final offset delta to two 16-bit code units */ |
| offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| /* check that this byte sequence is still unassigned */ |
| old=mbcsData->unicodeCodeUnits[offset]; |
| if(old<0xfffe) { |
| int32_t real; |
| if(old<0xd800) { |
| real=old; |
| } else if(old<=0xdfff) { |
| real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff); |
| } else /* old<=0xe001 */ { |
| real=mbcsData->unicodeCodeUnits[offset+1]; |
| } |
| if(flag>=0) { |
| fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)real); |
| return FALSE; |
| } else if(VERBOSE) { |
| fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)real); |
| } |
| } |
| if(flag>0) { |
| /* assign only if there is no precise mapping */ |
| if(old<=0xdbff || old==0xe000) { |
| /* do nothing */ |
| } else if(c<=0xffff) { |
| /* set a BMP fallback code point as a pair with 0xe001 */ |
| mbcsData->unicodeCodeUnits[offset++]=0xe001; |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| } else { |
| /* set a fallback surrogate pair with two second surrogates */ |
| mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10)); |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); |
| } |
| } else { |
| if(c<0xd800) { |
| /* set a BMP code point */ |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| } else if(c<=0xffff) { |
| /* set a BMP code point above 0xd800 as a pair with 0xe000 */ |
| mbcsData->unicodeCodeUnits[offset++]=0xe000; |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| } else { |
| /* set a surrogate pair */ |
| mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10)); |
| mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); |
| } |
| } |
| break; |
| default: |
| /* reserved, must never occur */ |
| fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n", |
| (int)entry, printBytes(buffer, bytes, length), (int)c); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| } |
| } |
| |
| /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */ |
| static UBool |
| MBCSIsValid(NewConverter *cnvData, |
| const uint8_t *bytes, int32_t length) { |
| MBCSData *mbcsData=(MBCSData *)cnvData; |
| |
| return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); |
| } |
| |
| static UBool |
| MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag) { |
| uint16_t *stage3, *p; |
| uint32_t idx; |
| uint16_t old; |
| uint8_t b; |
| |
| uint32_t blockSize, newTop, i, nextOffset, newBlock, min; |
| |
| /* ignore |2 SUB mappings */ |
| if(flag==2) { |
| return TRUE; |
| } |
| |
| /* |
| * Walk down the triple-stage compact array ("trie") and |
| * allocate parts as necessary. |
| * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings. |
| * We assume that length<=maxCharLength and that c<=0x10ffff. |
| */ |
| stage3=(uint16_t *)mbcsData->fromUBytes; |
| b=*bytes; |
| |
| /* inspect stage 1 */ |
| idx=c>>MBCS_STAGE_1_SHIFT; |
| if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
| nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); |
| } else { |
| nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
| } |
| if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
| /* allocate another block in stage 2 */ |
| newBlock=mbcsData->stage2Top; |
| if(mbcsData->utf8Friendly) { |
| min=newBlock-nextOffset; /* minimum block start with overlap */ |
| while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { |
| --newBlock; |
| } |
| } |
| newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
| |
| if(newTop>MBCS_MAX_STAGE_2_TOP) { |
| fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b); |
| return FALSE; |
| } |
| |
| /* |
| * each stage 2 block contains 64 16-bit words: |
| * 6 code point bits 9..4 with 1 stage 3 index |
| */ |
| mbcsData->stage1[idx]=(uint16_t)newBlock; |
| mbcsData->stage2Top=newTop; |
| } |
| |
| /* inspect stage 2 */ |
| idx=mbcsData->stage1[idx]+nextOffset; |
| if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
| /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
| blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
| } else { |
| blockSize=MBCS_STAGE_3_BLOCK_SIZE; |
| nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
| } |
| if(mbcsData->stage2Single[idx]==0) { |
| /* allocate another block in stage 3 */ |
| newBlock=mbcsData->stage3Top; |
| if(mbcsData->utf8Friendly) { |
| min=newBlock-nextOffset; /* minimum block start with overlap */ |
| while(min<newBlock && stage3[newBlock-1]==0) { |
| --newBlock; |
| } |
| } |
| newTop=newBlock+blockSize; |
| |
| if(newTop>MBCS_STAGE_3_SBCS_SIZE) { |
| fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b); |
| return FALSE; |
| } |
| /* each block has 16 uint16_t entries */ |
| i=idx; |
| while(newBlock<newTop) { |
| mbcsData->stage2Single[i++]=(uint16_t)newBlock; |
| newBlock+=MBCS_STAGE_3_BLOCK_SIZE; |
| } |
| mbcsData->stage3Top=newTop; /* ==newBlock */ |
| } |
| |
| /* write the codepage entry into stage 3 and get the previous entry */ |
| p=stage3+mbcsData->stage2Single[idx]+nextOffset; |
| old=*p; |
| if(flag<=0) { |
| *p=(uint16_t)(0xf00|b); |
| } else if(IS_PRIVATE_USE(c)) { |
| *p=(uint16_t)(0xc00|b); |
| } else { |
| *p=(uint16_t)(0x800|b); |
| } |
| |
| /* check that this Unicode code point was still unassigned */ |
| if(old>=0x100) { |
| if(flag>=0) { |
| fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", |
| (int)c, b, old&0xff); |
| return FALSE; |
| } else if(VERBOSE) { |
| fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", |
| (int)c, b, old&0xff); |
| } |
| /* continue after the above warning if the precision of the mapping is unspecified */ |
| } |
| |
| return TRUE; |
| } |
| |
| static UBool |
| MBCSAddFromUnicode(MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, |
| int8_t flag) { |
| char buffer[10]; |
| const uint8_t *pb; |
| uint8_t *stage3, *p; |
| uint32_t idx, b, old, stage3Index; |
| int32_t maxCharLength; |
| |
| uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap; |
| |
| maxCharLength=mbcsData->ucm->states.maxCharLength; |
| |
| if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && |
| (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf)) |
| ) { |
| fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| } |
| |
| if(flag==1 && length==1 && *bytes==0) { |
| fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n", |
| (int)c, *bytes); |
| return FALSE; |
| } |
| |
| /* |
| * Walk down the triple-stage compact array ("trie") and |
| * allocate parts as necessary. |
| * Note that the first stage 2 and 3 blocks are reserved for |
| * all-unassigned mappings. |
| * We assume that length<=maxCharLength and that c<=0x10ffff. |
| */ |
| stage3=mbcsData->fromUBytes; |
| |
| /* inspect stage 1 */ |
| idx=c>>MBCS_STAGE_1_SHIFT; |
| if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); |
| } else { |
| nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
| } |
| if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
| /* allocate another block in stage 2 */ |
| newBlock=mbcsData->stage2Top; |
| if(mbcsData->utf8Friendly) { |
| min=newBlock-nextOffset; /* minimum block start with overlap */ |
| while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { |
| --newBlock; |
| } |
| } |
| newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
| |
| if(newTop>MBCS_MAX_STAGE_2_TOP) { |
| fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| } |
| |
| /* |
| * each stage 2 block contains 64 32-bit words: |
| * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index |
| */ |
| i=idx; |
| while(newBlock<newTop) { |
| mbcsData->stage1[i++]=(uint16_t)newBlock; |
| newBlock+=MBCS_STAGE_2_BLOCK_SIZE; |
| } |
| mbcsData->stage2Top=newTop; /* ==newBlock */ |
| } |
| |
| /* inspect stage 2 */ |
| idx=mbcsData->stage1[idx]+nextOffset; |
| if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
| blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; |
| nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
| } else { |
| blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
| nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
| } |
| if(mbcsData->stage2[idx]==0) { |
| /* allocate another block in stage 3 */ |
| newBlock=mbcsData->stage3Top; |
| if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { |
| /* |
| * Overlap stage 3 blocks only in multiples of 16-entry blocks |
| * because of the indexing granularity in stage 2. |
| */ |
| maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; |
| for(overlap=0; |
| overlap<maxOverlap && stage3[newBlock-overlap-1]==0; |
| ++overlap) {} |
| |
| overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; |
| overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; |
| |
| newBlock-=overlap; |
| } |
| newTop=newBlock+blockSize; |
| |
| if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { |
| fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", |
| (int)c, printBytes(buffer, bytes, length)); |
| return FALSE; |
| } |
| /* each block has 16*maxCharLength bytes */ |
| i=idx; |
| while(newBlock<newTop) { |
| mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength; |
| newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
| } |
| mbcsData->stage3Top=newTop; /* ==newBlock */ |
| } |
| |
| stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx]; |
| |
| /* Build an alternate, UTF-8-friendly stage table as well. */ |
| if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| /* Overflow for uint16_t entries in stageUTF8? */ |
| if(stage3Index>0xffff) { |
| /* |
| * This can occur only if the mapping table is nearly perfectly filled and if |
| * utf8Max==0xffff. |
| * (There is no known charset like this. GB 18030 does not map |
| * surrogate code points and LMBCS does not map 256 PUA code points.) |
| * |
| * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff |
| * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) |
| * because we have a sorted table and there are at most MBCS_UTF8_LIMIT |
| * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also |
| * the initial all-unassigned block in stage3. |
| * |
| * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff. |
| * |
| * (See svn revision 20866 of the markus/ucnvutf8 feature branch for |
| * code that causes MBCSAddTable() to rebuild the table not utf8Friendly |
| * in case of overflow. That code was not tested.) |
| */ |
| mbcsData->utf8Max=0xfeff; |
| } else { |
| /* |
| * The stage 3 block has been assigned for the regular trie. |
| * Just copy its index into stageUTF8[], without the granularity. |
| */ |
| mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; |
| } |
| } |
| |
| /* write the codepage bytes into stage 3 and get the previous bytes */ |
| |
| /* assemble the bytes into a single integer */ |
| pb=bytes; |
| b=0; |
| switch(length) { |
| case 4: |
| b=*pb++; |
| case 3: |
| b=(b<<8)|*pb++; |
| case 2: |
| b=(b<<8)|*pb++; |
| case 1: |
| default: |
| b=(b<<8)|*pb++; |
| break; |
| } |
| |
| old=0; |
| p=stage3+(stage3Index+nextOffset)*maxCharLength; |
| switch(maxCharLength) { |
| case 2: |
| old=*(uint16_t *)p; |
| *(uint16_t *)p=(uint16_t)b; |
| break; |
| case 3: |
| old=(uint32_t)*p<<16; |
| *p++=(uint8_t)(b>>16); |
| old|=(uint32_t)*p<<8; |
| *p++=(uint8_t)(b>>8); |
| old|=*p; |
| *p=(uint8_t)b; |
| break; |
| case 4: |
| old=*(uint32_t *)p; |
| *(uint32_t *)p=b; |
| break; |
| default: |
| /* will never occur */ |
| break; |
| } |
| |
| /* check that this Unicode code point was still unassigned */ |
| if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) { |
| if(flag>=0) { |
| fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| return FALSE; |
| } else if(VERBOSE) { |
| fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", |
| (int)c, printBytes(buffer, bytes, length), (int)old); |
| } |
| /* continue after the above warning if the precision of the mapping is |
| unspecified */ |
| } |
| if(flag<=0) { |
| /* set the roundtrip flag */ |
| mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); |
| } |
| |
| return TRUE; |
| } |
| |
| U_CFUNC UBool |
| MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, |
| const uint8_t *bytes, int32_t length, |
| UChar32 c, int8_t flag) { |
| /* |
| * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under |
| * the following conditions: |
| * |
| * - a |2 SUB mapping for <subchar1> (no base table data structure for them) |
| * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry) |
| * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) |
| * |
| * Some of these tests are redundant with ucm_mappingType(). |
| */ |
| if( (flag==2 && length==1) || |
| (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */ |
| (flag<=1 && length>1 && bytes[0]==0) |
| ) { |
| return FALSE; |
| } |
| |
| /* |
| * Additional restrictions for UTF-8-friendly fromUnicode tables, |
| * for code points up to the maximum optimized one: |
| * |
| * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry) |
| * - any |1 fallback (no roundtrip flags in the optimized table) |
| */ |
| if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) { |
| return FALSE; |
| } |
| |
| /* |
| * If we omit the fromUnicode data, we can only store roundtrips there |
| * because only they are recoverable from the toUnicode data. |
| * Fallbacks must go into the extension table. |
| */ |
| if(mbcsData->omitFromU && flag!=0) { |
| return FALSE; |
| } |
| |
| /* All other mappings do fit into the base table. */ |
| return TRUE; |
| } |
| |
| /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */ |
| static UBool |
| MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { |
| MBCSData *mbcsData; |
| UCMapping *m; |
| UChar32 c; |
| int32_t i, maxCharLength; |
| int8_t f; |
| UBool isOK, utf8Friendly; |
| |
| staticData->unicodeMask=table->unicodeMask; |
| if(staticData->unicodeMask==3) { |
| fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n"); |
| return FALSE; |
| } |
| |
| staticData->conversionType=UCNV_MBCS; |
| |
| mbcsData=(MBCSData *)cnvData; |
| maxCharLength=mbcsData->ucm->states.maxCharLength; |
| |
| /* |
| * Generation of UTF-8-friendly data requires |
| * a sorted table, which makeconv generates when explicit precision |
| * indicators are used. |
| */ |
| mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0); |
| if(utf8Friendly) { |
| mbcsData->utf8Max=MBCS_UTF8_MAX; |
| if(SMALL && maxCharLength>1) { |
| mbcsData->omitFromU=TRUE; |
| } |
| } else { |
| mbcsData->utf8Max=0; |
| if(SMALL && maxCharLength>1) { |
| fprintf(stderr, |
| "makeconv warning: --small not available for .ucm files without |0 etc.\n"); |
| } |
| } |
| |
| if(!MBCSStartMappings(mbcsData)) { |
| return FALSE; |
| } |
| |
| staticData->hasFromUnicodeFallback=FALSE; |
| staticData->hasToUnicodeFallback=FALSE; |
| |
| isOK=TRUE; |
| |
| m=table->mappings; |
| for(i=0; i<table->mappingsLength; ++m, ++i) { |
| c=m->u; |
| f=m->f; |
| |
| /* |
| * Small optimization for --small .cnv files: |
| * |
| * If there are fromUnicode mappings above MBCS_UTF8_MAX, |
| * then the file size will be smaller if we make utf8Max larger |
| * because the size increase in stageUTF8 will be more than balanced by |
| * how much less of stage2 needs to be stored. |
| * |
| * There is no point in doing this incrementally because stageUTF8 |
| * uses so much less space per block than stage2, |
| * so we immediately increase utf8Max to 0xffff. |
| * |
| * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode() |
| * sets it to that value when stageUTF8 overflows. |
| */ |
| if( mbcsData->omitFromU && f<=1 && |
| mbcsData->utf8Max<c && c<=0xffff && |
| mbcsData->utf8Max<0xfeff |
| ) { |
| mbcsData->utf8Max=0xffff; |
| } |
| |
| switch(f) { |
| case -1: |
| /* there was no precision/fallback indicator */ |
| /* fall through to set the mappings */ |
| case 0: |
| /* set roundtrip mappings */ |
| isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| |
| if(maxCharLength==1) { |
| isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { |
| isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| } else { |
| m->f|=MBCS_FROM_U_EXT_FLAG; |
| m->moveFlag=UCM_MOVE_TO_EXT; |
| } |
| break; |
| case 1: |
| /* set only a fallback mapping from Unicode to codepage */ |
| if(maxCharLength==1) { |
| staticData->hasFromUnicodeFallback=TRUE; |
| isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { |
| staticData->hasFromUnicodeFallback=TRUE; |
| isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| } else { |
| m->f|=MBCS_FROM_U_EXT_FLAG; |
| m->moveFlag=UCM_MOVE_TO_EXT; |
| } |
| break; |
| case 2: |
| /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */ |
| if(maxCharLength>1 && m->bLen==1) { |
| m->f|=MBCS_FROM_U_EXT_FLAG; |
| m->moveFlag=UCM_MOVE_TO_EXT; |
| } |
| break; |
| case 3: |
| /* set only a fallback mapping from codepage to Unicode */ |
| staticData->hasToUnicodeFallback=TRUE; |
| isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| break; |
| default: |
| /* will not occur because the parser checked it already */ |
| fprintf(stderr, "error: illegal fallback indicator %d\n", f); |
| return FALSE; |
| } |
| } |
| |
| MBCSPostprocess(mbcsData, staticData); |
| |
| return isOK; |
| } |
| |
| static UBool |
| transformEUC(MBCSData *mbcsData) { |
| uint8_t *p8; |
| uint32_t i, value, oldLength, old3Top, new3Top; |
| uint8_t b; |
| |
| oldLength=mbcsData->ucm->states.maxCharLength; |
| if(oldLength<3) { |
| return FALSE; |
| } |
| |
| old3Top=mbcsData->stage3Top; |
| |
| /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ |
| |
| /* test if all first bytes are in {0, 0x8e, 0x8f} */ |
| p8=mbcsData->fromUBytes; |
| |
| #if !U_IS_BIG_ENDIAN |
| if(oldLength==4) { |
| p8+=3; |
| } |
| #endif |
| |
| for(i=0; i<old3Top; i+=oldLength) { |
| b=p8[i]; |
| if(b!=0 && b!=0x8e && b!=0x8f) { |
| /* some first byte does not fit the EUC pattern, nothing to be done */ |
| return FALSE; |
| } |
| } |
| /* restore p if it was modified above */ |
| p8=mbcsData->fromUBytes; |
| |
| /* modify outputType and adjust stage3Top */ |
| mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); |
| mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength; |
| |
| /* |
| * EUC-encode all byte sequences; |
| * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly, |
| * p. 161 in chapter 4 "Encoding Methods" |
| * |
| * This also must reverse the byte order if the platform is little-endian! |
| */ |
| if(oldLength==3) { |
| uint16_t *q=(uint16_t *)p8; |
| for(i=0; i<old3Top; i+=oldLength) { |
| b=*p8; |
| if(b==0) { |
| /* short sequences are stored directly */ |
| /* code set 0 or 1 */ |
| (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); |
| } else if(b==0x8e) { |
| /* code set 2 */ |
| (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); |
| } else /* b==0x8f */ { |
| /* code set 3 */ |
| (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); |
| } |
| p8+=3; |
| } |
| } else /* oldLength==4 */ { |
| uint8_t *q=p8; |
| uint32_t *p32=(uint32_t *)p8; |
| for(i=0; i<old3Top; i+=4) { |
| value=(*p32++); |
| if(value<=0xffffff) { |
| /* short sequences are stored directly */ |
| /* code set 0 or 1 */ |
| (*q++)=(uint8_t)(value>>16); |
| (*q++)=(uint8_t)(value>>8); |
| (*q++)=(uint8_t)value; |
| } else if(value<=0x8effffff) { |
| /* code set 2 */ |
| (*q++)=(uint8_t)((value>>16)&0x7f); |
| (*q++)=(uint8_t)(value>>8); |
| (*q++)=(uint8_t)value; |
| } else /* first byte is 0x8f */ { |
| /* code set 3 */ |
| (*q++)=(uint8_t)(value>>16); |
| (*q++)=(uint8_t)((value>>8)&0x7f); |
| (*q++)=(uint8_t)value; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* |
| * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far |
| * as possible. Overlapping is done on unassigned head and tail |
| * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
| * Stage 1 indexes need to be adjusted accordingly. |
| * This function is very similar to genprops/store.c/compactStage(). |
| */ |
| static void |
| singleCompactStage2(MBCSData *mbcsData) { |
| /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ |
| uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
| uint16_t i, start, prevEnd, newStart; |
| |
| /* enter the all-unassigned first stage 2 block into the map */ |
| map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
| |
| /* begin with the first block after the all-unassigned one */ |
| start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
| while(start<mbcsData->stage2Top) { |
| prevEnd=(uint16_t)(newStart-1); |
| |
| /* find the size of the overlap */ |
| for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {} |
| |
| if(i>0) { |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=i; |
| for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
| mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; |
| } |
| } else if(newStart<start) { |
| /* move the indexes to their new positions */ |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
| for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
| mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
| start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
| } |
| } |
| |
| /* adjust stage2Top */ |
| if(VERBOSE && newStart<mbcsData->stage2Top) { |
| printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", |
| (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
| (long)(mbcsData->stage2Top-newStart)*2); |
| } |
| mbcsData->stage2Top=newStart; |
| |
| /* now adjust stage 1 */ |
| for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
| mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; |
| } |
| } |
| |
| /* Compact stage 3 for SBCS - same algorithm as above. */ |
| static void |
| singleCompactStage3(MBCSData *mbcsData) { |
| uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; |
| |
| /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */ |
| uint16_t map[0x1000]; |
| uint16_t i, start, prevEnd, newStart; |
| |
| /* enter the all-unassigned first stage 3 block into the map */ |
| map[0]=0; |
| |
| /* begin with the first block after the all-unassigned one */ |
| start=newStart=16; |
| while(start<mbcsData->stage3Top) { |
| prevEnd=(uint16_t)(newStart-1); |
| |
| /* find the size of the overlap */ |
| for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} |
| |
| if(i>0) { |
| map[start>>4]=(uint16_t)(newStart-i); |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=i; |
| for(i=(uint16_t)(16-i); i>0; --i) { |
| stage3[newStart++]=stage3[start++]; |
| } |
| } else if(newStart<start) { |
| /* move the indexes to their new positions */ |
| map[start>>4]=newStart; |
| for(i=16; i>0; --i) { |
| stage3[newStart++]=stage3[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| map[start>>4]=start; |
| start=newStart+=16; |
| } |
| } |
| |
| /* adjust stage3Top */ |
| if(VERBOSE && newStart<mbcsData->stage3Top) { |
| printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n", |
| (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, |
| (long)(mbcsData->stage3Top-newStart)*2); |
| } |
| mbcsData->stage3Top=newStart; |
| |
| /* now adjust stage 2 */ |
| for(i=0; i<mbcsData->stage2Top; ++i) { |
| mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; |
| } |
| } |
| |
| /* |
| * Compact stage 2 by overlapping adjacent stage 2 blocks as far |
| * as possible. Overlapping is done on unassigned head and tail |
| * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
| * Stage 1 indexes need to be adjusted accordingly. |
| * This function is very similar to genprops/store.c/compactStage(). |
| */ |
| static void |
| compactStage2(MBCSData *mbcsData) { |
| /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ |
| uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
| uint16_t i, start, prevEnd, newStart; |
| |
| /* enter the all-unassigned first stage 2 block into the map */ |
| map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
| |
| /* begin with the first block after the all-unassigned one */ |
| start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
| while(start<mbcsData->stage2Top) { |
| prevEnd=(uint16_t)(newStart-1); |
| |
| /* find the size of the overlap */ |
| for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {} |
| |
| if(i>0) { |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=i; |
| for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
| mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
| } |
| } else if(newStart<start) { |
| /* move the indexes to their new positions */ |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
| for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
| mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
| start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
| } |
| } |
| |
| /* adjust stage2Top */ |
| if(VERBOSE && newStart<mbcsData->stage2Top) { |
| printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", |
| (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
| (long)(mbcsData->stage2Top-newStart)*4); |
| } |
| mbcsData->stage2Top=newStart; |
| |
| /* now adjust stage 1 */ |
| for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
| mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; |
| } |
| } |
| |
| static void |
| MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) { |
| UCMStates *states; |
| int32_t maxCharLength, stage3Width; |
| |
| states=&mbcsData->ucm->states; |
| stage3Width=maxCharLength=states->maxCharLength; |
| |
| ucm_optimizeStates(states, |
| &mbcsData->unicodeCodeUnits, |
| mbcsData->toUFallbacks, mbcsData->countToUFallbacks, |
| VERBOSE); |
| |
| /* try to compact the fromUnicode tables */ |
| if(transformEUC(mbcsData)) { |
| --stage3Width; |
| } |
| |
| /* |
| * UTF-8-friendly tries are built precompacted, to cope with variable |
| * stage 3 allocation block sizes. |
| * |
| * Tables without precision indicators cannot be built that way, |
| * because if a block was overlapped with a previous one, then a smaller |
| * code point for the same block would not fit. |
| * Therefore, such tables are not marked UTF-8-friendly and must be |
| * compacted after all mappings are entered. |
| */ |
| if(!mbcsData->utf8Friendly) { |
| if(maxCharLength==1) { |
| singleCompactStage3(mbcsData); |
| singleCompactStage2(mbcsData); |
| } else { |
| compactStage2(mbcsData); |
| } |
| } |
| |
| if(VERBOSE) { |
| /*uint32_t c, i1, i2, i2Limit, i3;*/ |
| |
| printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", |
| maxCharLength==1 ? "16" : "32", |
| (unsigned long)mbcsData->stage2Top, |
| (unsigned long)mbcsData->stage2Top); |
| printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n", |
| (int)stage3Width, |
| (unsigned long)mbcsData->stage3Top/stage3Width, |
| (unsigned long)mbcsData->stage3Top/stage3Width); |
| #if 0 |
| c=0; |
| for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { |
| i2=mbcsData->stage1[i1]; |
| if(i2==0) { |
| c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; |
| continue; |
| } |
| for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { |
| if(maxCharLength==1) { |
| i3=mbcsData->stage2Single[i2]; |
| } else { |
| i3=(uint16_t)mbcsData->stage2[i2]; |
| } |
| if(i3==0) { |
| c+=MBCS_STAGE_3_BLOCK_SIZE; |
| continue; |
| } |
| printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", |
| (unsigned long)c, |
| (unsigned long)i1, |
| (unsigned long)i2, |
| (unsigned long)i3); |
| c+=MBCS_STAGE_3_BLOCK_SIZE; |
| } |
| } |
| #endif |
| } |
| } |
| |
| static uint32_t |
| MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| UNewDataMemory *pData, int32_t tableType) { |
| MBCSData *mbcsData=(MBCSData *)cnvData; |
| uint32_t stage2Start, stage2Length; |
| uint32_t top, stageUTF8Length=0; |
| int32_t i, stage1Top; |
| uint32_t headerLength; |
| |
| _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| stage2Length=mbcsData->stage2Top; |
| if(mbcsData->omitFromU) { |
| /* find how much of stage2 can be omitted */ |
| int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; |
| uint32_t st2=0; /*initialized it to avoid compiler warnings */ |
| |
| i=utf8Limit>>MBCS_STAGE_1_SHIFT; |
| if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) { |
| /* utf8Limit is in the middle of an existing stage 2 block */ |
| stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK); |
| } else { |
| /* find the last stage2 block with mappings before utf8Limit */ |
| while(i>0 && (st2=mbcsData->stage1[--i])==0) {} |
| /* stage2 up to the end of this block corresponds to stageUTF8 */ |
| stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; |
| } |
| header.options|=MBCS_OPT_NO_FROM_U; |
| header.fullStage2Length=stage2Length; |
| stage2Length-=stage2Start; |
| if(VERBOSE) { |
| printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n", |
| (unsigned long)stage2Start, |
| (unsigned long)mbcsData->stage2Top, |
| (unsigned long)mbcsData->stage3Top); |
| printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top); |
| } |
| } else { |
| stage2Start=0; |
| } |
| |
| if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
| stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ |
| } else { |
| stage1Top=0x40; /* 0x40==64 */ |
| } |
| |
| /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */ |
| if(mbcsData->ucm->states.maxCharLength==1) { |
| for(i=0; i<stage1Top; ++i) { |
| mbcsData->stage1[i]+=(uint16_t)stage1Top; |
| } |
| |
| /* stage2Top/Length have counted 16-bit results, now we need to count bytes */ |
| /* also round up to a multiple of 4 bytes */ |
| stage2Length=(stage2Length*2+1)&~1; |
| |
| /* stage3Top has counted 16-bit results, now we need to count bytes */ |
| mbcsData->stage3Top*=2; |
| |
| if(mbcsData->utf8Friendly) { |
| header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */ |
| } |
| } else { |
| for(i=0; i<stage1Top; ++i) { |
| mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */ |
| } |
| |
| /* stage2Top/Length have counted 32-bit results, now we need to count bytes */ |
| stage2Length*=4; |
| /* leave stage2Start counting 32-bit units */ |
| |
| if(mbcsData->utf8Friendly) { |
| stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; |
| header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */ |
| } |
| |
| /* stage3Top has already counted bytes */ |
| } |
| |
| /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */ |
| mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; |
| |
| /* fill the header */ |
| if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { |
| header.version[0]=5; |
| if(header.options&MBCS_OPT_NO_FROM_U) { |
| headerLength=10; /* include fullStage2Length */ |
| } else { |
| headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ |
| } |
| } else { |
| header.version[0]=4; |
| headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ |
| } |
| header.version[1]=3; |
| /* header.version[2] set above for utf8Friendly data */ |
| |
| header.options|=(uint32_t)headerLength; |
| |
| header.countStates=mbcsData->ucm->states.countStates; |
| header.countToUFallbacks=mbcsData->countToUFallbacks; |
| |
| header.offsetToUCodeUnits= |
| headerLength*4+ |
| mbcsData->ucm->states.countStates*1024+ |
| mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); |
| header.offsetFromUTable= |
| header.offsetToUCodeUnits+ |
| mbcsData->ucm->states.countToUCodeUnits*2; |
| header.offsetFromUBytes= |
| header.offsetFromUTable+ |
| stage1Top*2+ |
| stage2Length; |
| header.fromUBytesLength=mbcsData->stage3Top; |
| |
| top=header.offsetFromUBytes+stageUTF8Length*2; |
| if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
| top+=header.fromUBytesLength; |
| } |
| |
| header.flags=(uint8_t)(mbcsData->ucm->states.outputType); |
| |
| if(tableType&TABLE_EXT) { |
| if(top>0xffffff) { |
| fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top); |
| return 0; |
| } |
| |
| header.flags|=top<<8; |
| } |
| |
| /* write the MBCS data */ |
| udata_writeBlock(pData, &header, headerLength*4); |
| udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024); |
| udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback)); |
| udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2); |
| udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); |
| if(mbcsData->ucm->states.maxCharLength==1) { |
| udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length); |
| } else { |
| udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); |
| } |
| if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
| udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); |
| } |
| |
| if(stageUTF8Length>0) { |
| udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); |
| } |
| |
| /* return the number of bytes that should have been written */ |
| return top; |
| } |