| /*- |
| * Support for VIA PadLock Advanced Cryptography Engine (ACE) |
| * Written by Michal Ludvig <michal@logix.cz> |
| * http://www.logix.cz/michal |
| * |
| * Big thanks to Andy Polyakov for a help with optimization, |
| * assembler fixes, port to MS Windows and a lot of other |
| * valuable work on this engine! |
| */ |
| |
| /* ==================================================================== |
| * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/opensslconf.h> |
| #include <openssl/crypto.h> |
| #include <openssl/dso.h> |
| #include <openssl/engine.h> |
| #include <openssl/evp.h> |
| #ifndef OPENSSL_NO_AES |
| # include <openssl/aes.h> |
| #endif |
| #include <openssl/rand.h> |
| #include <openssl/err.h> |
| |
| #ifndef OPENSSL_NO_HW |
| # ifndef OPENSSL_NO_HW_PADLOCK |
| |
| /* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ |
| # if (OPENSSL_VERSION_NUMBER >= 0x00908000L) |
| # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| # define DYNAMIC_ENGINE |
| # endif |
| # elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
| # ifdef ENGINE_DYNAMIC_SUPPORT |
| # define DYNAMIC_ENGINE |
| # endif |
| # else |
| # error "Only OpenSSL >= 0.9.7 is supported" |
| # endif |
| |
| /* |
| * VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it |
| * doesn't exist elsewhere, but it even can't be compiled on other platforms! |
| * |
| * In addition, because of the heavy use of inline assembler, compiler choice |
| * is limited to GCC and Microsoft C. |
| */ |
| # undef COMPILE_HW_PADLOCK |
| # if !defined(I386_ONLY) && !defined(OPENSSL_NO_INLINE_ASM) |
| # if (defined(__GNUC__) && (defined(__i386__) || defined(__i386))) || \ |
| (defined(_MSC_VER) && defined(_M_IX86)) |
| # define COMPILE_HW_PADLOCK |
| # endif |
| # endif |
| |
| # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| # ifdef COMPILE_HW_PADLOCK |
| static ENGINE *ENGINE_padlock(void); |
| # endif |
| |
| void ENGINE_load_padlock(void) |
| { |
| /* On non-x86 CPUs it just returns. */ |
| # ifdef COMPILE_HW_PADLOCK |
| ENGINE *toadd = ENGINE_padlock(); |
| if (!toadd) |
| return; |
| ENGINE_add(toadd); |
| ENGINE_free(toadd); |
| ERR_clear_error(); |
| # endif |
| } |
| |
| # endif |
| |
| # ifdef COMPILE_HW_PADLOCK |
| /* |
| * We do these includes here to avoid header problems on platforms that do |
| * not have the VIA padlock anyway... |
| */ |
| # include <stdlib.h> |
| # ifdef _WIN32 |
| # include <malloc.h> |
| # ifndef alloca |
| # define alloca _alloca |
| # endif |
| # elif defined(__GNUC__) |
| # ifndef alloca |
| # define alloca(s) __builtin_alloca(s) |
| # endif |
| # endif |
| |
| /* Function for ENGINE detection and control */ |
| static int padlock_available(void); |
| static int padlock_init(ENGINE *e); |
| |
| /* RNG Stuff */ |
| static RAND_METHOD padlock_rand; |
| |
| /* Cipher Stuff */ |
| # ifndef OPENSSL_NO_AES |
| static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, |
| const int **nids, int nid); |
| # endif |
| |
| /* Engine names */ |
| static const char *padlock_id = "padlock"; |
| static char padlock_name[100]; |
| |
| /* Available features */ |
| static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ |
| static int padlock_use_rng = 0; /* Random Number Generator */ |
| # ifndef OPENSSL_NO_AES |
| static int padlock_aes_align_required = 1; |
| # endif |
| |
| /* ===== Engine "management" functions ===== */ |
| |
| /* Prepare the ENGINE structure for registration */ |
| static int padlock_bind_helper(ENGINE *e) |
| { |
| /* Check available features */ |
| padlock_available(); |
| |
| # if 1 /* disable RNG for now, see commentary in |
| * vicinity of RNG code */ |
| padlock_use_rng = 0; |
| # endif |
| |
| /* Generate a nice engine name with available features */ |
| BIO_snprintf(padlock_name, sizeof(padlock_name), |
| "VIA PadLock (%s, %s)", |
| padlock_use_rng ? "RNG" : "no-RNG", |
| padlock_use_ace ? "ACE" : "no-ACE"); |
| |
| /* Register everything or return with an error */ |
| if (!ENGINE_set_id(e, padlock_id) || |
| !ENGINE_set_name(e, padlock_name) || |
| !ENGINE_set_init_function(e, padlock_init) || |
| # ifndef OPENSSL_NO_AES |
| (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) || |
| # endif |
| (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) { |
| return 0; |
| } |
| |
| /* Everything looks good */ |
| return 1; |
| } |
| |
| # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
| |
| /* Constructor */ |
| static ENGINE *ENGINE_padlock(void) |
| { |
| ENGINE *eng = ENGINE_new(); |
| |
| if (!eng) { |
| return NULL; |
| } |
| |
| if (!padlock_bind_helper(eng)) { |
| ENGINE_free(eng); |
| return NULL; |
| } |
| |
| return eng; |
| } |
| |
| # endif |
| |
| /* Check availability of the engine */ |
| static int padlock_init(ENGINE *e) |
| { |
| return (padlock_use_rng || padlock_use_ace); |
| } |
| |
| /* |
| * This stuff is needed if this ENGINE is being compiled into a |
| * self-contained shared-library. |
| */ |
| # ifdef DYNAMIC_ENGINE |
| static int padlock_bind_fn(ENGINE *e, const char *id) |
| { |
| if (id && (strcmp(id, padlock_id) != 0)) { |
| return 0; |
| } |
| |
| if (!padlock_bind_helper(e)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| IMPLEMENT_DYNAMIC_CHECK_FN() |
| IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn) |
| # endif /* DYNAMIC_ENGINE */ |
| /* ===== Here comes the "real" engine ===== */ |
| # ifndef OPENSSL_NO_AES |
| /* Some AES-related constants */ |
| # define AES_BLOCK_SIZE 16 |
| # define AES_KEY_SIZE_128 16 |
| # define AES_KEY_SIZE_192 24 |
| # define AES_KEY_SIZE_256 32 |
| /* |
| * Here we store the status information relevant to the current context. |
| */ |
| /* |
| * BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on |
| * the order of items in this structure. Don't blindly modify, reorder, |
| * etc! |
| */ |
| struct padlock_cipher_data { |
| unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ |
| union { |
| unsigned int pad[4]; |
| struct { |
| int rounds:4; |
| int dgst:1; /* n/a in C3 */ |
| int align:1; /* n/a in C3 */ |
| int ciphr:1; /* n/a in C3 */ |
| unsigned int keygen:1; |
| int interm:1; |
| unsigned int encdec:1; |
| int ksize:2; |
| } b; |
| } cword; /* Control word */ |
| AES_KEY ks; /* Encryption key */ |
| }; |
| |
| /* |
| * Essentially this variable belongs in thread local storage. |
| * Having this variable global on the other hand can only cause |
| * few bogus key reloads [if any at all on single-CPU system], |
| * so we accept the penatly... |
| */ |
| static volatile struct padlock_cipher_data *padlock_saved_context; |
| # endif |
| |
| /*- |
| * ======================================================= |
| * Inline assembler section(s). |
| * ======================================================= |
| * Order of arguments is chosen to facilitate Windows port |
| * using __fastcall calling convention. If you wish to add |
| * more routines, keep in mind that first __fastcall |
| * argument is passed in %ecx and second - in %edx. |
| * ======================================================= |
| */ |
| # if defined(__GNUC__) && __GNUC__>=2 |
| /* |
| * As for excessive "push %ebx"/"pop %ebx" found all over. |
| * When generating position-independent code GCC won't let |
| * us use "b" in assembler templates nor even respect "ebx" |
| * in "clobber description." Therefore the trouble... |
| */ |
| |
| /* |
| * Helper function - check if a CPUID instruction is available on this CPU |
| */ |
| static int padlock_insn_cpuid_available(void) |
| { |
| int result = -1; |
| |
| /* |
| * We're checking if the bit #21 of EFLAGS can be toggled. If yes = |
| * CPUID is available. |
| */ |
| asm volatile ("pushf\n" |
| "popl %%eax\n" |
| "xorl $0x200000, %%eax\n" |
| "movl %%eax, %%ecx\n" |
| "andl $0x200000, %%ecx\n" |
| "pushl %%eax\n" |
| "popf\n" |
| "pushf\n" |
| "popl %%eax\n" |
| "andl $0x200000, %%eax\n" |
| "xorl %%eax, %%ecx\n" |
| "movl %%ecx, %0\n":"=r" (result)::"eax", "ecx"); |
| |
| return (result == 0); |
| } |
| |
| /* |
| * Load supported features of the CPU to see if the PadLock is available. |
| */ |
| static int padlock_available(void) |
| { |
| char vendor_string[16]; |
| unsigned int eax, edx; |
| |
| /* First check if the CPUID instruction is available at all... */ |
| if (!padlock_insn_cpuid_available()) |
| return 0; |
| |
| /* Are we running on the Centaur (VIA) CPU? */ |
| eax = 0x00000000; |
| vendor_string[12] = 0; |
| asm volatile ("pushl %%ebx\n" |
| "cpuid\n" |
| "movl %%ebx,(%%edi)\n" |
| "movl %%edx,4(%%edi)\n" |
| "movl %%ecx,8(%%edi)\n" |
| "popl %%ebx":"+a" (eax):"D"(vendor_string):"ecx", "edx"); |
| if (strcmp(vendor_string, "CentaurHauls") != 0) |
| return 0; |
| |
| /* Check for Centaur Extended Feature Flags presence */ |
| eax = 0xC0000000; |
| asm volatile ("pushl %%ebx; cpuid; popl %%ebx":"+a" (eax)::"ecx", "edx"); |
| if (eax < 0xC0000001) |
| return 0; |
| |
| /* Read the Centaur Extended Feature Flags */ |
| eax = 0xC0000001; |
| asm volatile ("pushl %%ebx; cpuid; popl %%ebx":"+a" (eax), |
| "=d"(edx)::"ecx"); |
| |
| /* Fill up some flags */ |
| padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6)); |
| padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2)); |
| |
| return padlock_use_ace + padlock_use_rng; |
| } |
| |
| # ifndef OPENSSL_NO_AES |
| # ifndef AES_ASM |
| /* Our own htonl()/ntohl() */ |
| static inline void padlock_bswapl(AES_KEY *ks) |
| { |
| size_t i = sizeof(ks->rd_key) / sizeof(ks->rd_key[0]); |
| unsigned int *key = ks->rd_key; |
| |
| while (i--) { |
| asm volatile ("bswapl %0":"+r" (*key)); |
| key++; |
| } |
| } |
| # endif |
| # endif |
| |
| /* |
| * Force key reload from memory to the CPU microcode. Loading EFLAGS from the |
| * stack clears EFLAGS[30] which does the trick. |
| */ |
| static inline void padlock_reload_key(void) |
| { |
| asm volatile ("pushfl; popfl"); |
| } |
| |
| # ifndef OPENSSL_NO_AES |
| /* |
| * This is heuristic key context tracing. At first one |
| * believes that one should use atomic swap instructions, |
| * but it's not actually necessary. Point is that if |
| * padlock_saved_context was changed by another thread |
| * after we've read it and before we compare it with cdata, |
| * our key *shall* be reloaded upon thread context switch |
| * and we are therefore set in either case... |
| */ |
| static inline void padlock_verify_context(struct padlock_cipher_data *cdata) |
| { |
| asm volatile ("pushfl\n" |
| " btl $30,(%%esp)\n" |
| " jnc 1f\n" |
| " cmpl %2,%1\n" |
| " je 1f\n" |
| " popfl\n" |
| " subl $4,%%esp\n" |
| "1: addl $4,%%esp\n" |
| " movl %2,%0":"+m" (padlock_saved_context) |
| :"r"(padlock_saved_context), "r"(cdata):"cc"); |
| } |
| |
| /* Template for padlock_xcrypt_* modes */ |
| /* |
| * BIG FAT WARNING: The offsets used with 'leal' instructions describe items |
| * of the 'padlock_cipher_data' structure. |
| */ |
| # define PADLOCK_XCRYPT_ASM(name,rep_xcrypt) \ |
| static inline void *name(size_t cnt, \ |
| struct padlock_cipher_data *cdata, \ |
| void *out, const void *inp) \ |
| { void *iv; \ |
| asm volatile ( "pushl %%ebx\n" \ |
| " leal 16(%0),%%edx\n" \ |
| " leal 32(%0),%%ebx\n" \ |
| rep_xcrypt "\n" \ |
| " popl %%ebx" \ |
| : "=a"(iv), "=c"(cnt), "=D"(out), "=S"(inp) \ |
| : "0"(cdata), "1"(cnt), "2"(out), "3"(inp) \ |
| : "edx", "cc", "memory"); \ |
| return iv; \ |
| } |
| |
| /* Generate all functions with appropriate opcodes */ |
| /* rep xcryptecb */ |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb, ".byte 0xf3,0x0f,0xa7,0xc8") |
| /* rep xcryptcbc */ |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc, ".byte 0xf3,0x0f,0xa7,0xd0") |
| /* rep xcryptcfb */ |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb, ".byte 0xf3,0x0f,0xa7,0xe0") |
| /* rep xcryptofb */ |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb, ".byte 0xf3,0x0f,0xa7,0xe8") |
| # endif |
| /* The RNG call itself */ |
| static inline unsigned int padlock_xstore(void *addr, unsigned int edx_in) |
| { |
| unsigned int eax_out; |
| |
| asm volatile (".byte 0x0f,0xa7,0xc0" /* xstore */ |
| :"=a" (eax_out), "=m"(*(unsigned *)addr) |
| :"D"(addr), "d"(edx_in) |
| ); |
| |
| return eax_out; |
| } |
| |
| /* |
| * Why not inline 'rep movsd'? I failed to find information on what value in |
| * Direction Flag one can expect and consequently have to apply |
| * "better-safe-than-sorry" approach and assume "undefined." I could |
| * explicitly clear it and restore the original value upon return from |
| * padlock_aes_cipher, but it's presumably too much trouble for too little |
| * gain... In case you wonder 'rep xcrypt*' instructions above are *not* |
| * affected by the Direction Flag and pointers advance toward larger |
| * addresses unconditionally. |
| */ |
| static inline unsigned char *padlock_memcpy(void *dst, const void *src, |
| size_t n) |
| { |
| long *d = dst; |
| const long *s = src; |
| |
| n /= sizeof(*d); |
| do { |
| *d++ = *s++; |
| } while (--n); |
| |
| return dst; |
| } |
| |
| # elif defined(_MSC_VER) |
| /* |
| * Unlike GCC these are real functions. In order to minimize impact |
| * on performance we adhere to __fastcall calling convention in |
| * order to get two first arguments passed through %ecx and %edx. |
| * Which kind of suits very well, as instructions in question use |
| * both %ecx and %edx as input:-) |
| */ |
| # define REP_XCRYPT(code) \ |
| _asm _emit 0xf3 \ |
| _asm _emit 0x0f _asm _emit 0xa7 \ |
| _asm _emit code |
| |
| /* |
| * BIG FAT WARNING: The offsets used with 'lea' instructions describe items |
| * of the 'padlock_cipher_data' structure. |
| */ |
| # define PADLOCK_XCRYPT_ASM(name,code) \ |
| static void * __fastcall \ |
| name (size_t cnt, void *cdata, \ |
| void *outp, const void *inp) \ |
| { _asm mov eax,edx \ |
| _asm lea edx,[eax+16] \ |
| _asm lea ebx,[eax+32] \ |
| _asm mov edi,outp \ |
| _asm mov esi,inp \ |
| REP_XCRYPT(code) \ |
| } |
| |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb,0xc8) |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc,0xd0) |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb,0xe0) |
| PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb,0xe8) |
| |
| static int __fastcall padlock_xstore(void *outp, unsigned int code) |
| { |
| _asm mov edi,ecx |
| _asm _emit 0x0f _asm _emit 0xa7 _asm _emit 0xc0 |
| } |
| |
| static void __fastcall padlock_reload_key(void) |
| { |
| _asm pushfd |
| _asm popfd |
| } |
| |
| static void __fastcall padlock_verify_context(void *cdata) |
| { |
| _asm { |
| pushfd |
| bt DWORD PTR[esp],30 |
| jnc skip |
| cmp ecx,padlock_saved_context |
| je skip |
| popfd |
| sub esp,4 |
| skip: add esp,4 |
| mov padlock_saved_context,ecx |
| } |
| } |
| |
| static int |
| padlock_available(void) |
| { |
| _asm { |
| pushfd |
| pop eax |
| mov ecx,eax |
| xor eax,1<<21 |
| push eax |
| popfd |
| pushfd |
| pop eax |
| xor eax,ecx |
| bt eax,21 |
| jnc noluck |
| mov eax,0 |
| cpuid |
| xor eax,eax |
| cmp ebx,'tneC' |
| jne noluck |
| cmp edx,'Hrua' |
| jne noluck |
| cmp ecx,'slua' |
| jne noluck |
| mov eax,0xC0000000 |
| cpuid |
| mov edx,eax |
| xor eax,eax |
| cmp edx,0xC0000001 |
| jb noluck |
| mov eax,0xC0000001 |
| cpuid |
| xor eax,eax |
| bt edx,6 |
| jnc skip_a |
| bt edx,7 |
| jnc skip_a |
| mov padlock_use_ace,1 |
| inc eax |
| skip_a: bt edx,2 |
| jnc skip_r |
| bt edx,3 |
| jnc skip_r |
| mov padlock_use_rng,1 |
| inc eax |
| skip_r: |
| noluck: |
| } |
| } |
| |
| static void __fastcall padlock_bswapl(void *key) |
| { |
| _asm { |
| pushfd |
| cld |
| mov esi,ecx |
| mov edi,ecx |
| mov ecx,60 |
| up: lodsd |
| bswap eax |
| stosd |
| loop up |
| popfd |
| } |
| } |
| |
| /* |
| * MS actually specifies status of Direction Flag and compiler even manages |
| * to compile following as 'rep movsd' all by itself... |
| */ |
| # define padlock_memcpy(o,i,n) ((unsigned char *)memcpy((o),(i),(n)&~3U)) |
| # endif |
| /* ===== AES encryption/decryption ===== */ |
| # ifndef OPENSSL_NO_AES |
| # if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) |
| # define NID_aes_128_cfb NID_aes_128_cfb128 |
| # endif |
| # if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) |
| # define NID_aes_128_ofb NID_aes_128_ofb128 |
| # endif |
| # if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) |
| # define NID_aes_192_cfb NID_aes_192_cfb128 |
| # endif |
| # if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) |
| # define NID_aes_192_ofb NID_aes_192_ofb128 |
| # endif |
| # if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) |
| # define NID_aes_256_cfb NID_aes_256_cfb128 |
| # endif |
| # if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) |
| # define NID_aes_256_ofb NID_aes_256_ofb128 |
| # endif |
| /* |
| * List of supported ciphers. |
| */ static int padlock_cipher_nids[] = { |
| NID_aes_128_ecb, |
| NID_aes_128_cbc, |
| NID_aes_128_cfb, |
| NID_aes_128_ofb, |
| |
| NID_aes_192_ecb, |
| NID_aes_192_cbc, |
| NID_aes_192_cfb, |
| NID_aes_192_ofb, |
| |
| NID_aes_256_ecb, |
| NID_aes_256_cbc, |
| NID_aes_256_cfb, |
| NID_aes_256_ofb, |
| }; |
| |
| static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) / |
| sizeof(padlock_cipher_nids[0])); |
| |
| /* Function prototypes ... */ |
| static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc); |
| static int padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t nbytes); |
| |
| # define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ |
| ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) |
| # define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ |
| NEAREST_ALIGNED(ctx->cipher_data)) |
| |
| # define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE |
| # define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE |
| # define EVP_CIPHER_block_size_OFB 1 |
| # define EVP_CIPHER_block_size_CFB 1 |
| |
| /* |
| * Declaring so many ciphers by hand would be a pain. Instead introduce a bit |
| * of preprocessor magic :-) |
| */ |
| # define DECLARE_AES_EVP(ksize,lmode,umode) \ |
| static const EVP_CIPHER padlock_aes_##ksize##_##lmode = { \ |
| NID_aes_##ksize##_##lmode, \ |
| EVP_CIPHER_block_size_##umode, \ |
| AES_KEY_SIZE_##ksize, \ |
| AES_BLOCK_SIZE, \ |
| 0 | EVP_CIPH_##umode##_MODE, \ |
| padlock_aes_init_key, \ |
| padlock_aes_cipher, \ |
| NULL, \ |
| sizeof(struct padlock_cipher_data) + 16, \ |
| EVP_CIPHER_set_asn1_iv, \ |
| EVP_CIPHER_get_asn1_iv, \ |
| NULL, \ |
| NULL \ |
| } |
| |
| DECLARE_AES_EVP(128, ecb, ECB); |
| DECLARE_AES_EVP(128, cbc, CBC); |
| DECLARE_AES_EVP(128, cfb, CFB); |
| DECLARE_AES_EVP(128, ofb, OFB); |
| |
| DECLARE_AES_EVP(192, ecb, ECB); |
| DECLARE_AES_EVP(192, cbc, CBC); |
| DECLARE_AES_EVP(192, cfb, CFB); |
| DECLARE_AES_EVP(192, ofb, OFB); |
| |
| DECLARE_AES_EVP(256, ecb, ECB); |
| DECLARE_AES_EVP(256, cbc, CBC); |
| DECLARE_AES_EVP(256, cfb, CFB); |
| DECLARE_AES_EVP(256, ofb, OFB); |
| |
| static int |
| padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, |
| int nid) |
| { |
| /* No specific cipher => return a list of supported nids ... */ |
| if (!cipher) { |
| *nids = padlock_cipher_nids; |
| return padlock_cipher_nids_num; |
| } |
| |
| /* ... or the requested "cipher" otherwise */ |
| switch (nid) { |
| case NID_aes_128_ecb: |
| *cipher = &padlock_aes_128_ecb; |
| break; |
| case NID_aes_128_cbc: |
| *cipher = &padlock_aes_128_cbc; |
| break; |
| case NID_aes_128_cfb: |
| *cipher = &padlock_aes_128_cfb; |
| break; |
| case NID_aes_128_ofb: |
| *cipher = &padlock_aes_128_ofb; |
| break; |
| |
| case NID_aes_192_ecb: |
| *cipher = &padlock_aes_192_ecb; |
| break; |
| case NID_aes_192_cbc: |
| *cipher = &padlock_aes_192_cbc; |
| break; |
| case NID_aes_192_cfb: |
| *cipher = &padlock_aes_192_cfb; |
| break; |
| case NID_aes_192_ofb: |
| *cipher = &padlock_aes_192_ofb; |
| break; |
| |
| case NID_aes_256_ecb: |
| *cipher = &padlock_aes_256_ecb; |
| break; |
| case NID_aes_256_cbc: |
| *cipher = &padlock_aes_256_cbc; |
| break; |
| case NID_aes_256_cfb: |
| *cipher = &padlock_aes_256_cfb; |
| break; |
| case NID_aes_256_ofb: |
| *cipher = &padlock_aes_256_ofb; |
| break; |
| |
| default: |
| /* Sorry, we don't support this NID */ |
| *cipher = NULL; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Prepare the encryption key for PadLock usage */ |
| static int |
| padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| const unsigned char *iv, int enc) |
| { |
| struct padlock_cipher_data *cdata; |
| int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| |
| if (key == NULL) |
| return 0; /* ERROR */ |
| |
| cdata = ALIGNED_CIPHER_DATA(ctx); |
| memset(cdata, 0, sizeof(struct padlock_cipher_data)); |
| |
| /* Prepare Control word. */ |
| if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE) |
| cdata->cword.b.encdec = 0; |
| else |
| cdata->cword.b.encdec = (ctx->encrypt == 0); |
| cdata->cword.b.rounds = 10 + (key_len - 128) / 32; |
| cdata->cword.b.ksize = (key_len - 128) / 64; |
| |
| switch (key_len) { |
| case 128: |
| /* |
| * PadLock can generate an extended key for AES128 in hardware |
| */ |
| memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); |
| cdata->cword.b.keygen = 0; |
| break; |
| |
| case 192: |
| case 256: |
| /* |
| * Generate an extended AES key in software. Needed for AES192/AES256 |
| */ |
| /* |
| * Well, the above applies to Stepping 8 CPUs and is listed as |
| * hardware errata. They most likely will fix it at some point and |
| * then a check for stepping would be due here. |
| */ |
| if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE || |
| EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE || enc) |
| AES_set_encrypt_key(key, key_len, &cdata->ks); |
| else |
| AES_set_decrypt_key(key, key_len, &cdata->ks); |
| # ifndef AES_ASM |
| /* |
| * OpenSSL C functions use byte-swapped extended key. |
| */ |
| padlock_bswapl(&cdata->ks); |
| # endif |
| cdata->cword.b.keygen = 1; |
| break; |
| |
| default: |
| /* ERROR */ |
| return 0; |
| } |
| |
| /* |
| * This is done to cover for cases when user reuses the |
| * context for new key. The catch is that if we don't do |
| * this, padlock_eas_cipher might proceed with old key... |
| */ |
| padlock_reload_key(); |
| |
| return 1; |
| } |
| |
| /*- |
| * Simplified version of padlock_aes_cipher() used when |
| * 1) both input and output buffers are at aligned addresses. |
| * or when |
| * 2) running on a newer CPU that doesn't require aligned buffers. |
| */ |
| static int |
| padlock_aes_cipher_omnivorous(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata; |
| void *iv; |
| |
| cdata = ALIGNED_CIPHER_DATA(ctx); |
| padlock_verify_context(cdata); |
| |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| case EVP_CIPH_ECB_MODE: |
| padlock_xcrypt_ecb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, in_arg); |
| break; |
| |
| case EVP_CIPH_CBC_MODE: |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| iv = padlock_xcrypt_cbc(nbytes / AES_BLOCK_SIZE, cdata, out_arg, |
| in_arg); |
| memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
| break; |
| |
| case EVP_CIPH_CFB_MODE: |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| iv = padlock_xcrypt_cfb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, |
| in_arg); |
| memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
| break; |
| |
| case EVP_CIPH_OFB_MODE: |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| padlock_xcrypt_ofb(nbytes / AES_BLOCK_SIZE, cdata, out_arg, in_arg); |
| memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| memset(cdata->iv, 0, AES_BLOCK_SIZE); |
| |
| return 1; |
| } |
| |
| # ifndef PADLOCK_CHUNK |
| # define PADLOCK_CHUNK 512 /* Must be a power of 2 larger than 16 */ |
| # endif |
| # if PADLOCK_CHUNK<16 || PADLOCK_CHUNK&(PADLOCK_CHUNK-1) |
| # error "insane PADLOCK_CHUNK..." |
| # endif |
| |
| /* |
| * Re-align the arguments to 16-Bytes boundaries and run the encryption |
| * function itself. This function is not AES-specific. |
| */ |
| static int |
| padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
| const unsigned char *in_arg, size_t nbytes) |
| { |
| struct padlock_cipher_data *cdata; |
| const void *inp; |
| unsigned char *out; |
| void *iv; |
| int inp_misaligned, out_misaligned, realign_in_loop; |
| size_t chunk, allocated = 0; |
| |
| /* |
| * ctx->num is maintained in byte-oriented modes, such as CFB and OFB... |
| */ |
| if ((chunk = ctx->num)) { /* borrow chunk variable */ |
| unsigned char *ivp = ctx->iv; |
| |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| case EVP_CIPH_CFB_MODE: |
| if (chunk >= AES_BLOCK_SIZE) |
| return 0; /* bogus value */ |
| |
| if (ctx->encrypt) |
| while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| chunk++, nbytes--; |
| } else |
| while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| unsigned char c = *(in_arg++); |
| *(out_arg++) = c ^ ivp[chunk]; |
| ivp[chunk++] = c, nbytes--; |
| } |
| |
| ctx->num = chunk % AES_BLOCK_SIZE; |
| break; |
| case EVP_CIPH_OFB_MODE: |
| if (chunk >= AES_BLOCK_SIZE) |
| return 0; /* bogus value */ |
| |
| while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
| *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
| chunk++, nbytes--; |
| } |
| |
| ctx->num = chunk % AES_BLOCK_SIZE; |
| break; |
| } |
| } |
| |
| if (nbytes == 0) |
| return 1; |
| # if 0 |
| if (nbytes % AES_BLOCK_SIZE) |
| return 0; /* are we expected to do tail processing? */ |
| # else |
| /* |
| * nbytes is always multiple of AES_BLOCK_SIZE in ECB and CBC modes and |
| * arbitrary value in byte-oriented modes, such as CFB and OFB... |
| */ |
| # endif |
| |
| /* |
| * VIA promises CPUs that won't require alignment in the future. For now |
| * padlock_aes_align_required is initialized to 1 and the condition is |
| * never met... |
| */ |
| /* |
| * C7 core is capable to manage unaligned input in non-ECB[!] mode, but |
| * performance penalties appear to be approximately same as for software |
| * alignment below or ~3x. They promise to improve it in the future, but |
| * for now we can just as well pretend that it can only handle aligned |
| * input... |
| */ |
| if (!padlock_aes_align_required && (nbytes % AES_BLOCK_SIZE) == 0) |
| return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes); |
| |
| inp_misaligned = (((size_t)in_arg) & 0x0F); |
| out_misaligned = (((size_t)out_arg) & 0x0F); |
| |
| /* |
| * Note that even if output is aligned and input not, I still prefer to |
| * loop instead of copy the whole input and then encrypt in one stroke. |
| * This is done in order to improve L1 cache utilization... |
| */ |
| realign_in_loop = out_misaligned | inp_misaligned; |
| |
| if (!realign_in_loop && (nbytes % AES_BLOCK_SIZE) == 0) |
| return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, nbytes); |
| |
| /* this takes one "if" out of the loops */ |
| chunk = nbytes; |
| chunk %= PADLOCK_CHUNK; |
| if (chunk == 0) |
| chunk = PADLOCK_CHUNK; |
| |
| if (out_misaligned) { |
| /* optmize for small input */ |
| allocated = (chunk < nbytes ? PADLOCK_CHUNK : nbytes); |
| out = alloca(0x10 + allocated); |
| out = NEAREST_ALIGNED(out); |
| } else |
| out = out_arg; |
| |
| cdata = ALIGNED_CIPHER_DATA(ctx); |
| padlock_verify_context(cdata); |
| |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| case EVP_CIPH_ECB_MODE: |
| do { |
| if (inp_misaligned) |
| inp = padlock_memcpy(out, in_arg, chunk); |
| else |
| inp = in_arg; |
| in_arg += chunk; |
| |
| padlock_xcrypt_ecb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
| |
| if (out_misaligned) |
| out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
| else |
| out = out_arg += chunk; |
| |
| nbytes -= chunk; |
| chunk = PADLOCK_CHUNK; |
| } while (nbytes); |
| break; |
| |
| case EVP_CIPH_CBC_MODE: |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| goto cbc_shortcut; |
| do { |
| if (iv != cdata->iv) |
| memcpy(cdata->iv, iv, AES_BLOCK_SIZE); |
| chunk = PADLOCK_CHUNK; |
| cbc_shortcut: /* optimize for small input */ |
| if (inp_misaligned) |
| inp = padlock_memcpy(out, in_arg, chunk); |
| else |
| inp = in_arg; |
| in_arg += chunk; |
| |
| iv = padlock_xcrypt_cbc(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
| |
| if (out_misaligned) |
| out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
| else |
| out = out_arg += chunk; |
| |
| } while (nbytes -= chunk); |
| memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
| break; |
| |
| case EVP_CIPH_CFB_MODE: |
| memcpy(iv = cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| chunk &= ~(AES_BLOCK_SIZE - 1); |
| if (chunk) |
| goto cfb_shortcut; |
| else |
| goto cfb_skiploop; |
| do { |
| if (iv != cdata->iv) |
| memcpy(cdata->iv, iv, AES_BLOCK_SIZE); |
| chunk = PADLOCK_CHUNK; |
| cfb_shortcut: /* optimize for small input */ |
| if (inp_misaligned) |
| inp = padlock_memcpy(out, in_arg, chunk); |
| else |
| inp = in_arg; |
| in_arg += chunk; |
| |
| iv = padlock_xcrypt_cfb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
| |
| if (out_misaligned) |
| out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
| else |
| out = out_arg += chunk; |
| |
| nbytes -= chunk; |
| } while (nbytes >= AES_BLOCK_SIZE); |
| |
| cfb_skiploop: |
| if (nbytes) { |
| unsigned char *ivp = cdata->iv; |
| |
| if (iv != ivp) { |
| memcpy(ivp, iv, AES_BLOCK_SIZE); |
| iv = ivp; |
| } |
| ctx->num = nbytes; |
| if (cdata->cword.b.encdec) { |
| cdata->cword.b.encdec = 0; |
| padlock_reload_key(); |
| padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
| cdata->cword.b.encdec = 1; |
| padlock_reload_key(); |
| while (nbytes) { |
| unsigned char c = *(in_arg++); |
| *(out_arg++) = c ^ *ivp; |
| *(ivp++) = c, nbytes--; |
| } |
| } else { |
| padlock_reload_key(); |
| padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
| padlock_reload_key(); |
| while (nbytes) { |
| *ivp = *(out_arg++) = *(in_arg++) ^ *ivp; |
| ivp++, nbytes--; |
| } |
| } |
| } |
| |
| memcpy(ctx->iv, iv, AES_BLOCK_SIZE); |
| break; |
| |
| case EVP_CIPH_OFB_MODE: |
| memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); |
| chunk &= ~(AES_BLOCK_SIZE - 1); |
| if (chunk) |
| do { |
| if (inp_misaligned) |
| inp = padlock_memcpy(out, in_arg, chunk); |
| else |
| inp = in_arg; |
| in_arg += chunk; |
| |
| padlock_xcrypt_ofb(chunk / AES_BLOCK_SIZE, cdata, out, inp); |
| |
| if (out_misaligned) |
| out_arg = padlock_memcpy(out_arg, out, chunk) + chunk; |
| else |
| out = out_arg += chunk; |
| |
| nbytes -= chunk; |
| chunk = PADLOCK_CHUNK; |
| } while (nbytes >= AES_BLOCK_SIZE); |
| |
| if (nbytes) { |
| unsigned char *ivp = cdata->iv; |
| |
| ctx->num = nbytes; |
| padlock_reload_key(); /* empirically found */ |
| padlock_xcrypt_ecb(1, cdata, ivp, ivp); |
| padlock_reload_key(); /* empirically found */ |
| while (nbytes) { |
| *(out_arg++) = *(in_arg++) ^ *ivp; |
| ivp++, nbytes--; |
| } |
| } |
| |
| memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| /* Clean the realign buffer if it was used */ |
| if (out_misaligned) { |
| volatile unsigned long *p = (void *)out; |
| size_t n = allocated / sizeof(*p); |
| while (n--) |
| *p++ = 0; |
| } |
| |
| memset(cdata->iv, 0, AES_BLOCK_SIZE); |
| |
| return 1; |
| } |
| |
| # endif /* OPENSSL_NO_AES */ |
| |
| /* ===== Random Number Generator ===== */ |
| /* |
| * This code is not engaged. The reason is that it does not comply |
| * with recommendations for VIA RNG usage for secure applications |
| * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it |
| * provide meaningful error control... |
| */ |
| /* |
| * Wrapper that provides an interface between the API and the raw PadLock |
| * RNG |
| */ |
| static int padlock_rand_bytes(unsigned char *output, int count) |
| { |
| unsigned int eax, buf; |
| |
| while (count >= 8) { |
| eax = padlock_xstore(output, 0); |
| if (!(eax & (1 << 6))) |
| return 0; /* RNG disabled */ |
| /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| if (eax & (0x1F << 10)) |
| return 0; |
| if ((eax & 0x1F) == 0) |
| continue; /* no data, retry... */ |
| if ((eax & 0x1F) != 8) |
| return 0; /* fatal failure... */ |
| output += 8; |
| count -= 8; |
| } |
| while (count > 0) { |
| eax = padlock_xstore(&buf, 3); |
| if (!(eax & (1 << 6))) |
| return 0; /* RNG disabled */ |
| /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
| if (eax & (0x1F << 10)) |
| return 0; |
| if ((eax & 0x1F) == 0) |
| continue; /* no data, retry... */ |
| if ((eax & 0x1F) != 1) |
| return 0; /* fatal failure... */ |
| *output++ = (unsigned char)buf; |
| count--; |
| } |
| *(volatile unsigned int *)&buf = 0; |
| |
| return 1; |
| } |
| |
| /* Dummy but necessary function */ |
| static int padlock_rand_status(void) |
| { |
| return 1; |
| } |
| |
| /* Prepare structure for registration */ |
| static RAND_METHOD padlock_rand = { |
| NULL, /* seed */ |
| padlock_rand_bytes, /* bytes */ |
| NULL, /* cleanup */ |
| NULL, /* add */ |
| padlock_rand_bytes, /* pseudorand */ |
| padlock_rand_status, /* rand status */ |
| }; |
| |
| # else /* !COMPILE_HW_PADLOCK */ |
| # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
| OPENSSL_EXPORT |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); |
| OPENSSL_EXPORT |
| int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) |
| { |
| return 0; |
| } |
| |
| IMPLEMENT_DYNAMIC_CHECK_FN() |
| # endif |
| # endif /* COMPILE_HW_PADLOCK */ |
| # endif /* !OPENSSL_NO_HW_PADLOCK */ |
| #endif /* !OPENSSL_NO_HW */ |