| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // This is a GPU-backend specific test. It relies on static intializers to work |
| |
| #include "SkTypes.h" |
| |
| #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS |
| |
| #include "GrBackendProcessorFactory.h" |
| #include "GrContextFactory.h" |
| #include "GrOptDrawState.h" |
| #include "effects/GrConfigConversionEffect.h" |
| #include "gl/GrGLPathRendering.h" |
| #include "gl/GrGpuGL.h" |
| #include "SkChecksum.h" |
| #include "SkRandom.h" |
| #include "Test.h" |
| |
| static void get_stage_stats(const GrFragmentStage stage, bool* readsDst, |
| bool* readsFragPosition, bool* requiresVertexShader) { |
| if (stage.getFragmentProcessor()->willReadDstColor()) { |
| *readsDst = true; |
| } |
| if (stage.getProcessor()->willReadFragmentPosition()) { |
| *readsFragPosition = true; |
| } |
| } |
| |
| bool GrGLProgramDesc::setRandom(SkRandom* random, |
| GrGpuGL* gpu, |
| const GrRenderTarget* dstRenderTarget, |
| const GrTexture* dstCopyTexture, |
| const GrGeometryStage* geometryProcessor, |
| const GrFragmentStage* stages[], |
| int numColorStages, |
| int numCoverageStages, |
| int currAttribIndex, |
| GrGpu::DrawType drawType) { |
| bool isPathRendering = GrGpu::IsPathRenderingDrawType(drawType); |
| bool useLocalCoords = !isPathRendering && |
| random->nextBool() && |
| currAttribIndex < GrDrawState::kMaxVertexAttribCnt; |
| |
| int numStages = numColorStages + numCoverageStages; |
| fKey.reset(); |
| |
| GR_STATIC_ASSERT(0 == kEffectKeyOffsetsAndLengthOffset % sizeof(uint32_t)); |
| |
| // Make room for everything up to and including the array of offsets to effect keys. |
| fKey.push_back_n(kEffectKeyOffsetsAndLengthOffset + 2 * sizeof(uint16_t) * (numStages + |
| (geometryProcessor ? 1 : 0))); |
| |
| bool dstRead = false; |
| bool fragPos = false; |
| bool vertexShader = SkToBool(geometryProcessor); |
| int offset = 0; |
| if (geometryProcessor) { |
| const GrGeometryStage* stage = geometryProcessor; |
| uint16_t* offsetAndSize = reinterpret_cast<uint16_t*>(fKey.begin() + |
| kEffectKeyOffsetsAndLengthOffset + |
| offset * 2 * sizeof(uint16_t)); |
| uint32_t effectKeyOffset = fKey.count(); |
| if (effectKeyOffset > SK_MaxU16) { |
| fKey.reset(); |
| return false; |
| } |
| GrProcessorKeyBuilder b(&fKey); |
| uint16_t effectKeySize; |
| if (!GetProcessorKey(*stage, gpu->glCaps(), useLocalCoords, &b, &effectKeySize)) { |
| fKey.reset(); |
| return false; |
| } |
| vertexShader = true; |
| fragPos = stage->getProcessor()->willReadFragmentPosition(); |
| offsetAndSize[0] = effectKeyOffset; |
| offsetAndSize[1] = effectKeySize; |
| offset++; |
| } |
| |
| for (int s = 0; s < numStages; ++s, ++offset) { |
| const GrFragmentStage* stage = stages[s]; |
| uint16_t* offsetAndSize = reinterpret_cast<uint16_t*>(fKey.begin() + |
| kEffectKeyOffsetsAndLengthOffset + |
| offset * 2 * sizeof(uint16_t)); |
| uint32_t effectKeyOffset = fKey.count(); |
| if (effectKeyOffset > SK_MaxU16) { |
| fKey.reset(); |
| return false; |
| } |
| GrProcessorKeyBuilder b(&fKey); |
| uint16_t effectKeySize; |
| if (!GetProcessorKey(*stages[s], gpu->glCaps(), useLocalCoords, &b, &effectKeySize)) { |
| fKey.reset(); |
| return false; |
| } |
| get_stage_stats(*stage, &dstRead, &fragPos, &vertexShader); |
| offsetAndSize[0] = effectKeyOffset; |
| offsetAndSize[1] = effectKeySize; |
| } |
| |
| KeyHeader* header = this->header(); |
| memset(header, 0, kHeaderSize); |
| header->fEmitsPointSize = random->nextBool(); |
| |
| header->fPositionAttributeIndex = 0; |
| |
| // if the effects have used up all off the available attributes, |
| // don't try to use color or coverage attributes as input |
| do { |
| header->fColorInput = static_cast<GrGLProgramDesc::ColorInput>( |
| random->nextULessThan(kColorInputCnt)); |
| } while ((GrDrawState::kMaxVertexAttribCnt <= currAttribIndex || isPathRendering) && |
| kAttribute_ColorInput == header->fColorInput); |
| header->fColorAttributeIndex = (header->fColorInput == kAttribute_ColorInput) ? |
| currAttribIndex++ : |
| -1; |
| |
| do { |
| header->fCoverageInput = static_cast<GrGLProgramDesc::ColorInput>( |
| random->nextULessThan(kColorInputCnt)); |
| } while ((GrDrawState::kMaxVertexAttribCnt <= currAttribIndex || isPathRendering) && |
| kAttribute_ColorInput == header->fCoverageInput); |
| header->fCoverageAttributeIndex = (header->fCoverageInput == kAttribute_ColorInput) ? |
| currAttribIndex++ : |
| -1; |
| bool useGS = random->nextBool(); |
| #if GR_GL_EXPERIMENTAL_GS |
| header->fExperimentalGS = gpu->caps()->geometryShaderSupport() && useGS; |
| #else |
| (void) useGS; |
| #endif |
| |
| header->fLocalCoordAttributeIndex = useLocalCoords ? currAttribIndex++ : -1; |
| |
| header->fColorEffectCnt = numColorStages; |
| header->fCoverageEffectCnt = numCoverageStages; |
| |
| if (dstRead) { |
| header->fDstReadKey = SkToU8(GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture, |
| gpu->glCaps())); |
| } else { |
| header->fDstReadKey = 0; |
| } |
| if (fragPos) { |
| header->fFragPosKey = SkToU8(GrGLFragmentShaderBuilder::KeyForFragmentPosition(dstRenderTarget, |
| gpu->glCaps())); |
| } else { |
| header->fFragPosKey = 0; |
| } |
| |
| header->fUseFragShaderOnly = isPathRendering && gpu->glPathRendering()->texturingMode() == |
| GrGLPathRendering::FixedFunction_TexturingMode; |
| header->fHasGeometryProcessor = vertexShader; |
| |
| GrOptDrawState::PrimaryOutputType primaryOutput; |
| GrOptDrawState::SecondaryOutputType secondaryOutput; |
| if (!dstRead) { |
| primaryOutput = GrOptDrawState::kModulate_PrimaryOutputType; |
| } else { |
| primaryOutput = static_cast<GrOptDrawState::PrimaryOutputType>( |
| random->nextULessThan(GrOptDrawState::kPrimaryOutputTypeCnt)); |
| } |
| |
| if (GrOptDrawState::kCombineWithDst_PrimaryOutputType == primaryOutput || |
| !gpu->caps()->dualSourceBlendingSupport()) { |
| secondaryOutput = GrOptDrawState::kNone_SecondaryOutputType; |
| } else { |
| secondaryOutput = static_cast<GrOptDrawState::SecondaryOutputType>( |
| random->nextULessThan(GrOptDrawState::kSecondaryOutputTypeCnt)); |
| } |
| |
| header->fPrimaryOutputType = primaryOutput; |
| header->fSecondaryOutputType = secondaryOutput; |
| |
| this->finalize(); |
| return true; |
| } |
| |
| // TODO clean this up, we have to do this to test geometry processors but there has got to be |
| // a better way. In the mean time, we actually fill out these generic vertex attribs below with |
| // the correct vertex attribs from the GP. We have to ensure, however, we don't try to add more |
| // than two attributes. |
| GrVertexAttrib genericVertexAttribs[] = { |
| { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, |
| { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }, |
| { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding } |
| }; |
| |
| /* |
| * convert sl type to vertexattrib type, not a complete implementation, only use for debugging |
| */ |
| GrVertexAttribType convert_sltype_to_attribtype(GrSLType type) { |
| switch (type) { |
| case kFloat_GrSLType: |
| return kFloat_GrVertexAttribType; |
| case kVec2f_GrSLType: |
| return kVec2f_GrVertexAttribType; |
| case kVec3f_GrSLType: |
| return kVec3f_GrVertexAttribType; |
| case kVec4f_GrSLType: |
| return kVec4f_GrVertexAttribType; |
| default: |
| SkFAIL("Type isn't convertible"); |
| return kFloat_GrVertexAttribType; |
| } |
| } |
| // TODO end test hack |
| |
| |
| bool GrGpuGL::programUnitTest(int maxStages) { |
| |
| GrTextureDesc dummyDesc; |
| dummyDesc.fFlags = kRenderTarget_GrTextureFlagBit; |
| dummyDesc.fConfig = kSkia8888_GrPixelConfig; |
| dummyDesc.fWidth = 34; |
| dummyDesc.fHeight = 18; |
| SkAutoTUnref<GrTexture> dummyTexture1(this->createTexture(dummyDesc, NULL, 0)); |
| dummyDesc.fFlags = kNone_GrTextureFlags; |
| dummyDesc.fConfig = kAlpha_8_GrPixelConfig; |
| dummyDesc.fWidth = 16; |
| dummyDesc.fHeight = 22; |
| SkAutoTUnref<GrTexture> dummyTexture2(this->createTexture(dummyDesc, NULL, 0)); |
| |
| if (!dummyTexture1 || ! dummyTexture2) { |
| return false; |
| } |
| |
| static const int NUM_TESTS = 512; |
| |
| SkRandom random; |
| for (int t = 0; t < NUM_TESTS; ++t) { |
| |
| #if 0 |
| GrPrintf("\nTest Program %d\n-------------\n", t); |
| static const int stop = -1; |
| if (t == stop) { |
| int breakpointhere = 9; |
| } |
| #endif |
| |
| GrGLProgramDesc pdesc; |
| |
| int currAttribIndex = 1; // we need to always leave room for position |
| int currTextureCoordSet = 0; |
| GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; |
| |
| int numStages = random.nextULessThan(maxStages + 1); |
| int numColorStages = random.nextULessThan(numStages + 1); |
| int numCoverageStages = numStages - numColorStages; |
| |
| SkAutoSTMalloc<8, const GrFragmentStage*> stages(numStages); |
| |
| bool usePathRendering = this->glCaps().pathRenderingSupport() && random.nextBool(); |
| |
| GrGpu::DrawType drawType = usePathRendering ? GrGpu::kDrawPath_DrawType : |
| GrGpu::kDrawPoints_DrawType; |
| |
| SkAutoTDelete<GrGeometryStage> geometryProcessor; |
| bool hasGeometryProcessor = usePathRendering ? false : random.nextBool(); |
| if (hasGeometryProcessor) { |
| while (true) { |
| SkAutoTUnref<const GrGeometryProcessor> effect( |
| GrProcessorTestFactory<GrGeometryProcessor>::CreateStage(&random, this->getContext(), *this->caps(), |
| dummyTextures)); |
| SkASSERT(effect); |
| // Only geometryProcessor can use vertex shader |
| GrGeometryStage* stage = SkNEW_ARGS(GrGeometryStage, (effect.get())); |
| geometryProcessor.reset(stage); |
| |
| // we have to set dummy vertex attribs |
| const GrGeometryProcessor::VertexAttribArray& v = effect->getVertexAttribs(); |
| int numVertexAttribs = v.count(); |
| |
| SkASSERT(GrGeometryProcessor::kMaxVertexAttribs == 2 && |
| GrGeometryProcessor::kMaxVertexAttribs >= numVertexAttribs); |
| size_t runningStride = GrVertexAttribTypeSize(genericVertexAttribs[0].fType); |
| for (int i = 0; i < numVertexAttribs; i++) { |
| genericVertexAttribs[i + 1].fOffset = runningStride; |
| genericVertexAttribs[i + 1].fType = |
| convert_sltype_to_attribtype(v[i].getType()); |
| runningStride += GrVertexAttribTypeSize(genericVertexAttribs[i + 1].fType); |
| } |
| |
| // update the vertex attributes with the ds |
| GrDrawState* ds = this->drawState(); |
| ds->setVertexAttribs<genericVertexAttribs>(numVertexAttribs + 1, runningStride); |
| currAttribIndex = numVertexAttribs + 1; |
| break; |
| } |
| } |
| for (int s = 0; s < numStages;) { |
| SkAutoTUnref<const GrFragmentProcessor> effect( |
| GrProcessorTestFactory<GrFragmentProcessor>::CreateStage( |
| &random, |
| this->getContext(), |
| *this->caps(), |
| dummyTextures)); |
| SkASSERT(effect); |
| |
| // If adding this effect would exceed the max texture coord set count then generate a |
| // new random effect. |
| if (usePathRendering && this->glPathRendering()->texturingMode() == |
| GrGLPathRendering::FixedFunction_TexturingMode) {; |
| int numTransforms = effect->numTransforms(); |
| if (currTextureCoordSet + numTransforms > this->glCaps().maxFixedFunctionTextureCoords()) { |
| continue; |
| } |
| currTextureCoordSet += numTransforms; |
| } |
| GrFragmentStage* stage = SkNEW_ARGS(GrFragmentStage, (effect.get())); |
| |
| stages[s] = stage; |
| ++s; |
| } |
| const GrTexture* dstTexture = random.nextBool() ? dummyTextures[0] : dummyTextures[1]; |
| if (!pdesc.setRandom(&random, |
| this, |
| dummyTextures[0]->asRenderTarget(), |
| dstTexture, |
| geometryProcessor.get(), |
| stages.get(), |
| numColorStages, |
| numCoverageStages, |
| currAttribIndex, |
| drawType)) { |
| return false; |
| } |
| |
| SkAutoTUnref<GrGLProgram> program(GrGLProgram::Create(this, |
| pdesc, |
| geometryProcessor.get(), |
| stages, |
| stages + numColorStages)); |
| for (int s = 0; s < numStages; ++s) { |
| SkDELETE(stages[s]); |
| } |
| if (NULL == program.get()) { |
| return false; |
| } |
| |
| // We have to reset the drawstate because we might have added a gp |
| this->drawState()->reset(); |
| } |
| return true; |
| } |
| |
| DEF_GPUTEST(GLPrograms, reporter, factory) { |
| for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { |
| GrContext* context = factory->get(static_cast<GrContextFactory::GLContextType>(type)); |
| if (context) { |
| GrGpuGL* gpu = static_cast<GrGpuGL*>(context->getGpu()); |
| int maxStages = 6; |
| #if SK_ANGLE |
| // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. |
| if (type == GrContextFactory::kANGLE_GLContextType) { |
| maxStages = 3; |
| } |
| #endif |
| REPORTER_ASSERT(reporter, gpu->programUnitTest(maxStages)); |
| } |
| } |
| } |
| |
| // This is evil evil evil. The linker may throw away whole translation units as dead code if it |
| // thinks none of the functions are called. It will do this even if there are static initializers |
| // in the unit that could pass pointers to functions from the unit out to other translation units! |
| // We force some of the effects that would otherwise be discarded to link here. |
| |
| #include "SkAlphaThresholdFilter.h" |
| #include "SkColorMatrixFilter.h" |
| #include "SkLightingImageFilter.h" |
| #include "SkMagnifierImageFilter.h" |
| |
| void forceLinking(); |
| |
| void forceLinking() { |
| SkLightingImageFilter::CreateDistantLitDiffuse(SkPoint3(0,0,0), 0, 0, 0); |
| SkAlphaThresholdFilter::Create(SkRegion(), .5f, .5f); |
| SkAutoTUnref<SkImageFilter> mag(SkMagnifierImageFilter::Create( |
| SkRect::MakeWH(SK_Scalar1, SK_Scalar1), SK_Scalar1)); |
| GrConfigConversionEffect::Create(NULL, |
| false, |
| GrConfigConversionEffect::kNone_PMConversion, |
| SkMatrix::I()); |
| SkScalar matrix[20]; |
| SkAutoTUnref<SkColorMatrixFilter> cmf(SkColorMatrixFilter::Create(matrix)); |
| } |
| |
| #endif |