blob: 2bbc5adbf145f36231b203bf7f1cbea4468b9965 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/row.h"
#include <stdio.h>
#include <string.h> // For memcpy and memset.
#include "libyuv/basic_types.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// llvm x86 is poor at ternary operator, so use branchless min/max.
#define USE_BRANCHLESS 1
#if USE_BRANCHLESS
static __inline int32_t clamp0(int32_t v) {
return ((-(v) >> 31) & (v));
}
static __inline int32_t clamp255(int32_t v) {
return (((255 - (v)) >> 31) | (v)) & 255;
}
static __inline int32_t clamp1023(int32_t v) {
return (((1023 - (v)) >> 31) | (v)) & 1023;
}
static __inline uint32_t Abs(int32_t v) {
int m = v >> 31;
return (v + m) ^ m;
}
#else // USE_BRANCHLESS
static __inline int32_t clamp0(int32_t v) {
return (v < 0) ? 0 : v;
}
static __inline int32_t clamp255(int32_t v) {
return (v > 255) ? 255 : v;
}
static __inline int32_t clamp1023(int32_t v) {
return (v > 1023) ? 1023 : v;
}
static __inline uint32_t Abs(int32_t v) {
return (v < 0) ? -v : v;
}
#endif // USE_BRANCHLESS
static __inline uint32_t Clamp(int32_t val) {
int v = clamp0(val);
return (uint32_t)(clamp255(v));
}
static __inline uint32_t Clamp10(int32_t val) {
int v = clamp0(val);
return (uint32_t)(clamp1023(v));
}
// Little Endian
#if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \
defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define WRITEWORD(p, v) *(uint32_t*)(p) = v
#else
static inline void WRITEWORD(uint8_t* p, uint32_t v) {
p[0] = (uint8_t)(v & 255);
p[1] = (uint8_t)((v >> 8) & 255);
p[2] = (uint8_t)((v >> 16) & 255);
p[3] = (uint8_t)((v >> 24) & 255);
}
#endif
void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb24[0];
uint8_t g = src_rgb24[1];
uint8_t r = src_rgb24[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb24 += 3;
}
}
void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_raw[0];
uint8_t g = src_raw[1];
uint8_t b = src_raw[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_raw += 3;
}
}
void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t r = src_raw[0];
uint8_t g = src_raw[1];
uint8_t b = src_raw[2];
dst_rgb24[0] = b;
dst_rgb24[1] = g;
dst_rgb24[2] = r;
dst_rgb24 += 3;
src_raw += 3;
}
}
void RGB565ToARGBRow_C(const uint8_t* src_rgb565,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb565[0] & 0x1f;
uint8_t g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8_t r = src_rgb565[1] >> 3;
dst_argb[0] = (b << 3) | (b >> 2);
dst_argb[1] = (g << 2) | (g >> 4);
dst_argb[2] = (r << 3) | (r >> 2);
dst_argb[3] = 255u;
dst_argb += 4;
src_rgb565 += 2;
}
}
void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb1555[0] & 0x1f;
uint8_t g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8_t r = (src_argb1555[1] & 0x7c) >> 2;
uint8_t a = src_argb1555[1] >> 7;
dst_argb[0] = (b << 3) | (b >> 2);
dst_argb[1] = (g << 3) | (g >> 2);
dst_argb[2] = (r << 3) | (r >> 2);
dst_argb[3] = -a;
dst_argb += 4;
src_argb1555 += 2;
}
}
void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb4444[0] & 0x0f;
uint8_t g = src_argb4444[0] >> 4;
uint8_t r = src_argb4444[1] & 0x0f;
uint8_t a = src_argb4444[1] >> 4;
dst_argb[0] = (b << 4) | b;
dst_argb[1] = (g << 4) | g;
dst_argb[2] = (r << 4) | r;
dst_argb[3] = (a << 4) | a;
dst_argb += 4;
src_argb4444 += 2;
}
}
void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30 = *(const uint32_t*)src_ar30;
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
*(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24);
dst_argb += 4;
src_ar30 += 4;
}
}
void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30 = *(const uint32_t*)src_ar30;
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
*(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24);
dst_abgr += 4;
src_ar30 += 4;
}
}
void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t ar30 = *(const uint32_t*)src_ar30;
uint32_t b = ar30 & 0x3ff;
uint32_t ga = ar30 & 0xc00ffc00;
uint32_t r = (ar30 >> 20) & 0x3ff;
*(uint32_t*)(dst_ab30) = r | ga | (b << 20);
dst_ab30 += 4;
src_ar30 += 4;
}
}
void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
dst_rgb[0] = b;
dst_rgb[1] = g;
dst_rgb[2] = r;
dst_rgb += 3;
src_argb += 4;
}
}
void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb[0];
uint8_t g = src_argb[1];
uint8_t r = src_argb[2];
dst_rgb[0] = r;
dst_rgb[1] = g;
dst_rgb[2] = b;
dst_rgb += 3;
src_argb += 4;
}
}
void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 2;
uint8_t r0 = src_argb[2] >> 3;
uint8_t b1 = src_argb[4] >> 3;
uint8_t g1 = src_argb[5] >> 2;
uint8_t r1 = src_argb[6] >> 3;
WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) |
(r1 << 27));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 2;
uint8_t r0 = src_argb[2] >> 3;
*(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11);
}
}
// dither4 is a row of 4 values from 4x4 dither matrix.
// The 4x4 matrix contains values to increase RGB. When converting to
// fewer bits (565) this provides an ordered dither.
// The order in the 4x4 matrix in first byte is upper left.
// The 4 values are passed as an int, then referenced as an array, so
// endian will not affect order of the original matrix. But the dither4
// will containing the first pixel in the lower byte for little endian
// or the upper byte for big endian.
void ARGBToRGB565DitherRow_C(const uint8_t* src_argb,
uint8_t* dst_rgb,
const uint32_t dither4,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
int dither0 = ((const unsigned char*)(&dither4))[x & 3];
int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3];
uint8_t b0 = clamp255(src_argb[0] + dither0) >> 3;
uint8_t g0 = clamp255(src_argb[1] + dither0) >> 2;
uint8_t r0 = clamp255(src_argb[2] + dither0) >> 3;
uint8_t b1 = clamp255(src_argb[4] + dither1) >> 3;
uint8_t g1 = clamp255(src_argb[5] + dither1) >> 2;
uint8_t r1 = clamp255(src_argb[6] + dither1) >> 3;
WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) |
(r1 << 27));
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3];
uint8_t b0 = clamp255(src_argb[0] + dither0) >> 3;
uint8_t g0 = clamp255(src_argb[1] + dither0) >> 2;
uint8_t r0 = clamp255(src_argb[2] + dither0) >> 3;
*(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11);
}
}
void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 3;
uint8_t r0 = src_argb[2] >> 3;
uint8_t a0 = src_argb[3] >> 7;
uint8_t b1 = src_argb[4] >> 3;
uint8_t g1 = src_argb[5] >> 3;
uint8_t r1 = src_argb[6] >> 3;
uint8_t a1 = src_argb[7] >> 7;
*(uint32_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) |
(b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31);
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 3;
uint8_t g0 = src_argb[1] >> 3;
uint8_t r0 = src_argb[2] >> 3;
uint8_t a0 = src_argb[3] >> 7;
*(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15);
}
}
void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb[0] >> 4;
uint8_t g0 = src_argb[1] >> 4;
uint8_t r0 = src_argb[2] >> 4;
uint8_t a0 = src_argb[3] >> 4;
uint8_t b1 = src_argb[4] >> 4;
uint8_t g1 = src_argb[5] >> 4;
uint8_t r1 = src_argb[6] >> 4;
uint8_t a1 = src_argb[7] >> 4;
*(uint32_t*)(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) |
(b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28);
dst_rgb += 4;
src_argb += 8;
}
if (width & 1) {
uint8_t b0 = src_argb[0] >> 4;
uint8_t g0 = src_argb[1] >> 4;
uint8_t r0 = src_argb[2] >> 4;
uint8_t a0 = src_argb[3] >> 4;
*(uint16_t*)(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12);
}
}
void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t b0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2);
uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2);
uint32_t r0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2);
uint32_t a0 = (src_abgr[3] >> 6);
*(uint32_t*)(dst_ar30) = r0 | (g0 << 10) | (b0 << 20) | (a0 << 30);
dst_ar30 += 4;
src_abgr += 4;
}
}
void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) {
int x;
for (x = 0; x < width; ++x) {
uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2);
uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2);
uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2);
uint32_t a0 = (src_argb[3] >> 6);
*(uint32_t*)(dst_ar30) = b0 | (g0 << 10) | (r0 << 20) | (a0 << 30);
dst_ar30 += 4;
src_argb += 4;
}
}
static __inline int RGBToY(uint8_t r, uint8_t g, uint8_t b) {
return (66 * r + 129 * g + 25 * b + 0x1080) >> 8;
}
static __inline int RGBToU(uint8_t r, uint8_t g, uint8_t b) {
return (112 * b - 74 * g - 38 * r + 0x8080) >> 8;
}
static __inline int RGBToV(uint8_t r, uint8_t g, uint8_t b) {
return (112 * r - 94 * g - 18 * b + 0x8080) >> 8;
}
// ARGBToY_C and ARGBToUV_C
#define MAKEROWY(NAME, R, G, B, BPP) \
void NAME##ToYRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \
src_argb0 += BPP; \
dst_y += 1; \
} \
} \
void NAME##ToUVRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \
uint8_t* dst_u, uint8_t* dst_v, int width) { \
const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8_t ab = (src_rgb0[B] + src_rgb0[B + BPP] + src_rgb1[B] + \
src_rgb1[B + BPP]) >> \
2; \
uint8_t ag = (src_rgb0[G] + src_rgb0[G + BPP] + src_rgb1[G] + \
src_rgb1[G + BPP]) >> \
2; \
uint8_t ar = (src_rgb0[R] + src_rgb0[R + BPP] + src_rgb1[R] + \
src_rgb1[R + BPP]) >> \
2; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
src_rgb0 += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8_t ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \
uint8_t ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \
uint8_t ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
} \
}
MAKEROWY(ARGB, 2, 1, 0, 4)
MAKEROWY(BGRA, 1, 2, 3, 4)
MAKEROWY(ABGR, 0, 1, 2, 4)
MAKEROWY(RGBA, 3, 2, 1, 4)
MAKEROWY(RGB24, 2, 1, 0, 3)
MAKEROWY(RAW, 0, 1, 2, 3)
#undef MAKEROWY
// JPeg uses a variation on BT.601-1 full range
// y = 0.29900 * r + 0.58700 * g + 0.11400 * b
// u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center
// v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center
// BT.601 Mpeg range uses:
// b 0.1016 * 255 = 25.908 = 25
// g 0.5078 * 255 = 129.489 = 129
// r 0.2578 * 255 = 65.739 = 66
// JPeg 8 bit Y (not used):
// b 0.11400 * 256 = 29.184 = 29
// g 0.58700 * 256 = 150.272 = 150
// r 0.29900 * 256 = 76.544 = 77
// JPeg 7 bit Y:
// b 0.11400 * 128 = 14.592 = 15
// g 0.58700 * 128 = 75.136 = 75
// r 0.29900 * 128 = 38.272 = 38
// JPeg 8 bit U:
// b 0.50000 * 255 = 127.5 = 127
// g -0.33126 * 255 = -84.4713 = -84
// r -0.16874 * 255 = -43.0287 = -43
// JPeg 8 bit V:
// b -0.08131 * 255 = -20.73405 = -20
// g -0.41869 * 255 = -106.76595 = -107
// r 0.50000 * 255 = 127.5 = 127
static __inline int RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
return (38 * r + 75 * g + 15 * b + 64) >> 7;
}
static __inline int RGBToUJ(uint8_t r, uint8_t g, uint8_t b) {
return (127 * b - 84 * g - 43 * r + 0x8080) >> 8;
}
static __inline int RGBToVJ(uint8_t r, uint8_t g, uint8_t b) {
return (127 * r - 107 * g - 20 * b + 0x8080) >> 8;
}
#define AVGB(a, b) (((a) + (b) + 1) >> 1)
// ARGBToYJ_C and ARGBToUVJ_C
#define MAKEROWYJ(NAME, R, G, B, BPP) \
void NAME##ToYJRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \
int x; \
for (x = 0; x < width; ++x) { \
dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]); \
src_argb0 += BPP; \
dst_y += 1; \
} \
} \
void NAME##ToUVJRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \
uint8_t* dst_u, uint8_t* dst_v, int width) { \
const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \
int x; \
for (x = 0; x < width - 1; x += 2) { \
uint8_t ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]), \
AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP])); \
uint8_t ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]), \
AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP])); \
uint8_t ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]), \
AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP])); \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
src_rgb0 += BPP * 2; \
src_rgb1 += BPP * 2; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8_t ab = AVGB(src_rgb0[B], src_rgb1[B]); \
uint8_t ag = AVGB(src_rgb0[G], src_rgb1[G]); \
uint8_t ar = AVGB(src_rgb0[R], src_rgb1[R]); \
dst_u[0] = RGBToUJ(ar, ag, ab); \
dst_v[0] = RGBToVJ(ar, ag, ab); \
} \
}
MAKEROWYJ(ARGB, 2, 1, 0, 4)
#undef MAKEROWYJ
void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_rgb565[0] & 0x1f;
uint8_t g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8_t r = src_rgb565[1] >> 3;
b = (b << 3) | (b >> 2);
g = (g << 2) | (g >> 4);
r = (r << 3) | (r >> 2);
dst_y[0] = RGBToY(r, g, b);
src_rgb565 += 2;
dst_y += 1;
}
}
void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb1555[0] & 0x1f;
uint8_t g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8_t r = (src_argb1555[1] & 0x7c) >> 2;
b = (b << 3) | (b >> 2);
g = (g << 3) | (g >> 2);
r = (r << 3) | (r >> 2);
dst_y[0] = RGBToY(r, g, b);
src_argb1555 += 2;
dst_y += 1;
}
}
void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t b = src_argb4444[0] & 0x0f;
uint8_t g = src_argb4444[0] >> 4;
uint8_t r = src_argb4444[1] & 0x0f;
b = (b << 4) | b;
g = (g << 4) | g;
r = (r << 4) | r;
dst_y[0] = RGBToY(r, g, b);
src_argb4444 += 2;
dst_y += 1;
}
}
void RGB565ToUVRow_C(const uint8_t* src_rgb565,
int src_stride_rgb565,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_rgb565[0] & 0x1f;
uint8_t g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8_t r0 = src_rgb565[1] >> 3;
uint8_t b1 = src_rgb565[2] & 0x1f;
uint8_t g1 = (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3);
uint8_t r1 = src_rgb565[3] >> 3;
uint8_t b2 = next_rgb565[0] & 0x1f;
uint8_t g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3);
uint8_t r2 = next_rgb565[1] >> 3;
uint8_t b3 = next_rgb565[2] & 0x1f;
uint8_t g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3);
uint8_t r3 = next_rgb565[3] >> 3;
uint8_t b = (b0 + b1 + b2 + b3); // 565 * 4 = 787.
uint8_t g = (g0 + g1 + g2 + g3);
uint8_t r = (r0 + r1 + r2 + r3);
b = (b << 1) | (b >> 6); // 787 -> 888.
r = (r << 1) | (r >> 6);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_rgb565 += 4;
next_rgb565 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = src_rgb565[0] & 0x1f;
uint8_t g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3);
uint8_t r0 = src_rgb565[1] >> 3;
uint8_t b2 = next_rgb565[0] & 0x1f;
uint8_t g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3);
uint8_t r2 = next_rgb565[1] >> 3;
uint8_t b = (b0 + b2); // 565 * 2 = 676.
uint8_t g = (g0 + g2);
uint8_t r = (r0 + r2);
b = (b << 2) | (b >> 4); // 676 -> 888
g = (g << 1) | (g >> 6);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGB1555ToUVRow_C(const uint8_t* src_argb1555,
int src_stride_argb1555,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb1555[0] & 0x1f;
uint8_t g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8_t r0 = (src_argb1555[1] & 0x7c) >> 2;
uint8_t b1 = src_argb1555[2] & 0x1f;
uint8_t g1 = (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3);
uint8_t r1 = (src_argb1555[3] & 0x7c) >> 2;
uint8_t b2 = next_argb1555[0] & 0x1f;
uint8_t g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3);
uint8_t r2 = (next_argb1555[1] & 0x7c) >> 2;
uint8_t b3 = next_argb1555[2] & 0x1f;
uint8_t g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3);
uint8_t r3 = (next_argb1555[3] & 0x7c) >> 2;
uint8_t b = (b0 + b1 + b2 + b3); // 555 * 4 = 777.
uint8_t g = (g0 + g1 + g2 + g3);
uint8_t r = (r0 + r1 + r2 + r3);
b = (b << 1) | (b >> 6); // 777 -> 888.
g = (g << 1) | (g >> 6);
r = (r << 1) | (r >> 6);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb1555 += 4;
next_argb1555 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = src_argb1555[0] & 0x1f;
uint8_t g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3);
uint8_t r0 = (src_argb1555[1] & 0x7c) >> 2;
uint8_t b2 = next_argb1555[0] & 0x1f;
uint8_t g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3);
uint8_t r2 = next_argb1555[1] >> 3;
uint8_t b = (b0 + b2); // 555 * 2 = 666.
uint8_t g = (g0 + g2);
uint8_t r = (r0 + r2);
b = (b << 2) | (b >> 4); // 666 -> 888.
g = (g << 2) | (g >> 4);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGB4444ToUVRow_C(const uint8_t* src_argb4444,
int src_stride_argb4444,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444;
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t b0 = src_argb4444[0] & 0x0f;
uint8_t g0 = src_argb4444[0] >> 4;
uint8_t r0 = src_argb4444[1] & 0x0f;
uint8_t b1 = src_argb4444[2] & 0x0f;
uint8_t g1 = src_argb4444[2] >> 4;
uint8_t r1 = src_argb4444[3] & 0x0f;
uint8_t b2 = next_argb4444[0] & 0x0f;
uint8_t g2 = next_argb4444[0] >> 4;
uint8_t r2 = next_argb4444[1] & 0x0f;
uint8_t b3 = next_argb4444[2] & 0x0f;
uint8_t g3 = next_argb4444[2] >> 4;
uint8_t r3 = next_argb4444[3] & 0x0f;
uint8_t b = (b0 + b1 + b2 + b3); // 444 * 4 = 666.
uint8_t g = (g0 + g1 + g2 + g3);
uint8_t r = (r0 + r1 + r2 + r3);
b = (b << 2) | (b >> 4); // 666 -> 888.
g = (g << 2) | (g >> 4);
r = (r << 2) | (r >> 4);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
src_argb4444 += 4;
next_argb4444 += 4;
dst_u += 1;
dst_v += 1;
}
if (width & 1) {
uint8_t b0 = src_argb4444[0] & 0x0f;
uint8_t g0 = src_argb4444[0] >> 4;
uint8_t r0 = src_argb4444[1] & 0x0f;
uint8_t b2 = next_argb4444[0] & 0x0f;
uint8_t g2 = next_argb4444[0] >> 4;
uint8_t r2 = next_argb4444[1] & 0x0f;
uint8_t b = (b0 + b2); // 444 * 2 = 555.
uint8_t g = (g0 + g2);
uint8_t r = (r0 + r2);
b = (b << 3) | (b >> 2); // 555 -> 888.
g = (g << 3) | (g >> 2);
r = (r << 3) | (r >> 2);
dst_u[0] = RGBToU(r, g, b);
dst_v[0] = RGBToV(r, g, b);
}
}
void ARGBToUV444Row_C(const uint8_t* src_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t ab = src_argb[0];
uint8_t ag = src_argb[1];
uint8_t ar = src_argb[2];
dst_u[0] = RGBToU(ar, ag, ab);
dst_v[0] = RGBToV(ar, ag, ab);
src_argb += 4;
dst_u += 1;
dst_v += 1;
}
}
void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]);
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = src_argb[3];
dst_argb += 4;
src_argb += 4;
}
}
// Convert a row of image to Sepia tone.
void ARGBSepiaRow_C(uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int sb = (b * 17 + g * 68 + r * 35) >> 7;
int sg = (b * 22 + g * 88 + r * 45) >> 7;
int sr = (b * 24 + g * 98 + r * 50) >> 7;
// b does not over flow. a is preserved from original.
dst_argb[0] = sb;
dst_argb[1] = clamp255(sg);
dst_argb[2] = clamp255(sr);
dst_argb += 4;
}
}
// Apply color matrix to a row of image. Matrix is signed.
// TODO(fbarchard): Consider adding rounding (+32).
void ARGBColorMatrixRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
const int8_t* matrix_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = src_argb[0];
int g = src_argb[1];
int r = src_argb[2];
int a = src_argb[3];
int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] +
a * matrix_argb[3]) >>
6;
int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] +
a * matrix_argb[7]) >>
6;
int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] +
a * matrix_argb[11]) >>
6;
int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] +
a * matrix_argb[15]) >>
6;
dst_argb[0] = Clamp(sb);
dst_argb[1] = Clamp(sg);
dst_argb[2] = Clamp(sr);
dst_argb[3] = Clamp(sa);
src_argb += 4;
dst_argb += 4;
}
}
// Apply color table to a row of image.
void ARGBColorTableRow_C(uint8_t* dst_argb,
const uint8_t* table_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
int a = dst_argb[3];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb[3] = table_argb[a * 4 + 3];
dst_argb += 4;
}
}
// Apply color table to a row of image.
void RGBColorTableRow_C(uint8_t* dst_argb,
const uint8_t* table_argb,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = table_argb[b * 4 + 0];
dst_argb[1] = table_argb[g * 4 + 1];
dst_argb[2] = table_argb[r * 4 + 2];
dst_argb += 4;
}
}
void ARGBQuantizeRow_C(uint8_t* dst_argb,
int scale,
int interval_size,
int interval_offset,
int width) {
int x;
for (x = 0; x < width; ++x) {
int b = dst_argb[0];
int g = dst_argb[1];
int r = dst_argb[2];
dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset;
dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset;
dst_argb += 4;
}
}
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v* f >> 24
void ARGBShadeRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
int width,
uint32_t value) {
const uint32_t b_scale = REPEAT8(value & 0xff);
const uint32_t g_scale = REPEAT8((value >> 8) & 0xff);
const uint32_t r_scale = REPEAT8((value >> 16) & 0xff);
const uint32_t a_scale = REPEAT8(value >> 24);
int i;
for (i = 0; i < width; ++i) {
const uint32_t b = REPEAT8(src_argb[0]);
const uint32_t g = REPEAT8(src_argb[1]);
const uint32_t r = REPEAT8(src_argb[2]);
const uint32_t a = REPEAT8(src_argb[3]);
dst_argb[0] = SHADE(b, b_scale);
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
src_argb += 4;
dst_argb += 4;
}
}
#undef REPEAT8
#undef SHADE
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v* f >> 16
void ARGBMultiplyRow_C(const uint8_t* src_argb0,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const uint32_t b = REPEAT8(src_argb0[0]);
const uint32_t g = REPEAT8(src_argb0[1]);
const uint32_t r = REPEAT8(src_argb0[2]);
const uint32_t a = REPEAT8(src_argb0[3]);
const uint32_t b_scale = src_argb1[0];
const uint32_t g_scale = src_argb1[1];
const uint32_t r_scale = src_argb1[2];
const uint32_t a_scale = src_argb1[3];
dst_argb[0] = SHADE(b, b_scale);
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef REPEAT8
#undef SHADE
#define SHADE(f, v) clamp255(v + f)
void ARGBAddRow_C(const uint8_t* src_argb0,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb0[0];
const int g = src_argb0[1];
const int r = src_argb0[2];
const int a = src_argb0[3];
const int b_add = src_argb1[0];
const int g_add = src_argb1[1];
const int r_add = src_argb1[2];
const int a_add = src_argb1[3];
dst_argb[0] = SHADE(b, b_add);
dst_argb[1] = SHADE(g, g_add);
dst_argb[2] = SHADE(r, r_add);
dst_argb[3] = SHADE(a, a_add);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
#define SHADE(f, v) clamp0(f - v)
void ARGBSubtractRow_C(const uint8_t* src_argb0,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
const int b = src_argb0[0];
const int g = src_argb0[1];
const int r = src_argb0[2];
const int a = src_argb0[3];
const int b_sub = src_argb1[0];
const int g_sub = src_argb1[1];
const int r_sub = src_argb1[2];
const int a_sub = src_argb1[3];
dst_argb[0] = SHADE(b, b_sub);
dst_argb[1] = SHADE(g, g_sub);
dst_argb[2] = SHADE(r, r_sub);
dst_argb[3] = SHADE(a, a_sub);
src_argb0 += 4;
src_argb1 += 4;
dst_argb += 4;
}
}
#undef SHADE
// Sobel functions which mimics SSSE3.
void SobelXRow_C(const uint8_t* src_y0,
const uint8_t* src_y1,
const uint8_t* src_y2,
uint8_t* dst_sobelx,
int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i];
int b = src_y1[i];
int c = src_y2[i];
int a_sub = src_y0[i + 2];
int b_sub = src_y1[i + 2];
int c_sub = src_y2[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobelx[i] = (uint8_t)(clamp255(sobel));
}
}
void SobelYRow_C(const uint8_t* src_y0,
const uint8_t* src_y1,
uint8_t* dst_sobely,
int width) {
int i;
for (i = 0; i < width; ++i) {
int a = src_y0[i + 0];
int b = src_y0[i + 1];
int c = src_y0[i + 2];
int a_sub = src_y1[i + 0];
int b_sub = src_y1[i + 1];
int c_sub = src_y1[i + 2];
int a_diff = a - a_sub;
int b_diff = b - b_sub;
int c_diff = c - c_sub;
int sobel = Abs(a_diff + b_diff * 2 + c_diff);
dst_sobely[i] = (uint8_t)(clamp255(sobel));
}
}
void SobelRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_argb[0] = (uint8_t)(s);
dst_argb[1] = (uint8_t)(s);
dst_argb[2] = (uint8_t)(s);
dst_argb[3] = (uint8_t)(255u);
dst_argb += 4;
}
}
void SobelToPlaneRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_y,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int s = clamp255(r + b);
dst_y[i] = (uint8_t)(s);
}
}
void SobelXYRow_C(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
int r = src_sobelx[i];
int b = src_sobely[i];
int g = clamp255(r + b);
dst_argb[0] = (uint8_t)(b);
dst_argb[1] = (uint8_t)(g);
dst_argb[2] = (uint8_t)(r);
dst_argb[3] = (uint8_t)(255u);
dst_argb += 4;
}
}
void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) {
// Copy a Y to RGB.
int x;
for (x = 0; x < width; ++x) {
uint8_t y = src_y[0];
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = 255u;
dst_argb += 4;
++src_y;
}
}
// TODO(fbarchard): Unify these structures to be platform independent.
// TODO(fbarchard): Generate SIMD structures from float matrix.
// BT.601 YUV to RGB reference
// R = (Y - 16) * 1.164 - V * -1.596
// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
// B = (Y - 16) * 1.164 - U * -2.018
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
// U and V contributions to R,G,B.
#define UB -128 /* max(-128, round(-2.018 * 64)) */
#define UG 25 /* round(0.391 * 64) */
#define VG 52 /* round(0.813 * 64) */
#define VR -102 /* round(-1.596 * 64) */
// Bias values to subtract 16 from Y and 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__) // 64 bit arm
const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{UG, VG, UG, VG, UG, VG, UG, VG},
{UG, VG, UG, VG, UG, VG, UG, VG},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{VG, UG, VG, UG, VG, UG, VG, UG},
{VG, UG, VG, UG, VG, UG, VG, UG},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#elif defined(__arm__) // 32 bit arm
const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
{UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
{VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#else
const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
{UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
{0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
{VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
{VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
{0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// JPEG YUV to RGB reference
// * R = Y - V * -1.40200
// * G = Y - U * 0.34414 - V * 0.71414
// * B = Y - U * -1.77200
// Y contribution to R,G,B. Scale and bias.
#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
#define YGB 32 /* 64 / 2 */
// U and V contributions to R,G,B.
#define UB -113 /* round(-1.77200 * 64) */
#define UG 22 /* round(0.34414 * 64) */
#define VG 46 /* round(0.71414 * 64) */
#define VR -90 /* round(-1.40200 * 64) */
// Bias values to round, and subtract 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{UG, VG, UG, VG, UG, VG, UG, VG},
{UG, VG, UG, VG, UG, VG, UG, VG},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{VG, UG, VG, UG, VG, UG, VG, UG},
{VG, UG, VG, UG, VG, UG, VG, UG},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#elif defined(__arm__)
const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
{UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
{VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#else
const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
{UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
{0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
{VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
{VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
{0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// BT.709 YUV to RGB reference
// R = (Y - 16) * 1.164 - V * -1.793
// G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533
// B = (Y - 16) * 1.164 - U * -2.112
// See also http://www.equasys.de/colorconversion.html
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
// TODO(fbarchard): Find way to express 2.112 instead of 2.0.
// U and V contributions to R,G,B.
#define UB -128 /* max(-128, round(-2.112 * 64)) */
#define UG 14 /* round(0.213 * 64) */
#define VG 34 /* round(0.533 * 64) */
#define VR -115 /* round(-1.793 * 64) */
// Bias values to round, and subtract 128 from U and V.
#define BB (UB * 128 + YGB)
#define BG (UG * 128 + VG * 128 + YGB)
#define BR (VR * 128 + YGB)
#if defined(__aarch64__)
const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
{UG, VG, UG, VG, UG, VG, UG, VG},
{UG, VG, UG, VG, UG, VG, UG, VG},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
{VG, UG, VG, UG, VG, UG, VG, UG},
{VG, UG, VG, UG, VG, UG, VG, UG},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#elif defined(__arm__)
const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
{UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
{BB, BG, BR, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
{VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
{BR, BG, BB, 0, 0, 0, 0, 0},
{0x0101 * YG, 0, 0, 0}};
#else
const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
{UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
{0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
{VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
{VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
{0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
{BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
{BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
{BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
{YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
#endif
#undef BB
#undef BG
#undef BR
#undef YGB
#undef UB
#undef UG
#undef VG
#undef VR
#undef YG
// C reference code that mimics the YUV assembly.
// Reads 8 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel(uint8_t y,
uint8_t u,
uint8_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
#if defined(__aarch64__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = -yuvconstants->kUVToRB[1];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#elif defined(__arm__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[4];
int vr = -yuvconstants->kUVToRB[4];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#else
int ub = yuvconstants->kUVToB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = yuvconstants->kUVToR[1];
int bb = yuvconstants->kUVBiasB[0];
int bg = yuvconstants->kUVBiasG[0];
int br = yuvconstants->kUVBiasR[0];
int yg = yuvconstants->kYToRgb[0];
#endif
uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
*b = Clamp((int32_t)(-(u * ub) + y1 + bb) >> 6);
*g = Clamp((int32_t)(-(u * ug + v * vg) + y1 + bg) >> 6);
*r = Clamp((int32_t)(-(v * vr) + y1 + br) >> 6);
}
// Reads 8 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel8_16(uint8_t y,
uint8_t u,
uint8_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
#if defined(__aarch64__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = -yuvconstants->kUVToRB[1];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#elif defined(__arm__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[4];
int vr = -yuvconstants->kUVToRB[4];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#else
int ub = yuvconstants->kUVToB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = yuvconstants->kUVToR[1];
int bb = yuvconstants->kUVBiasB[0];
int bg = yuvconstants->kUVBiasG[0];
int br = yuvconstants->kUVBiasR[0];
int yg = yuvconstants->kYToRgb[0];
#endif
uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
*b = (int)(-(u * ub) + y1 + bb);
*g = (int)(-(u * ug + v * vg) + y1 + bg);
*r = (int)(-(v * vr) + y1 + br);
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 10 bit YUV and leaves result as 16 bit.
static __inline void YuvPixel16(int16_t y,
int16_t u,
int16_t v,
int* b,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
#if defined(__aarch64__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = -yuvconstants->kUVToRB[1];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#elif defined(__arm__)
int ub = -yuvconstants->kUVToRB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[4];
int vr = -yuvconstants->kUVToRB[4];
int bb = yuvconstants->kUVBiasBGR[0];
int bg = yuvconstants->kUVBiasBGR[1];
int br = yuvconstants->kUVBiasBGR[2];
int yg = yuvconstants->kYToRgb[0] / 0x0101;
#else
int ub = yuvconstants->kUVToB[0];
int ug = yuvconstants->kUVToG[0];
int vg = yuvconstants->kUVToG[1];
int vr = yuvconstants->kUVToR[1];
int bb = yuvconstants->kUVBiasB[0];
int bg = yuvconstants->kUVBiasG[0];
int br = yuvconstants->kUVBiasR[0];
int yg = yuvconstants->kYToRgb[0];
#endif
uint32_t y1 = (uint32_t)((y << 6) * yg) >> 16;
u = clamp255(u >> 2);
v = clamp255(v >> 2);
*b = (int)(-(u * ub) + y1 + bb);
*g = (int)(-(u * ug + v * vg) + y1 + bg);
*r = (int)(-(v * vr) + y1 + br);
}
// C reference code that mimics the YUV 10 bit assembly.
// Reads 10 bit YUV and clamps down to 8 bit RGB.
static __inline void YuvPixel10(uint16_t y,
uint16_t u,
uint16_t v,
uint8_t* b,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
int b16;
int g16;
int r16;
YuvPixel16(y, u, v, &b16, &g16, &r16, yuvconstants);
*b = Clamp(b16 >> 6);
*g = Clamp(g16 >> 6);
*r = Clamp(r16 >> 6);
}
// Y contribution to R,G,B. Scale and bias.
#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
// C reference code that mimics the YUV assembly.
static __inline void YPixel(uint8_t y, uint8_t* b, uint8_t* g, uint8_t* r) {
uint32_t y1 = (uint32_t)(y * 0x0101 * YG) >> 16;
*b = Clamp((int32_t)(y1 + YGB) >> 6);
*g = Clamp((int32_t)(y1 + YGB) >> 6);
*r = Clamp((int32_t)(y1 + YGB) >> 6);
}
#undef YG
#undef YGB
#if !defined(LIBYUV_DISABLE_NEON) && \
(defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON))
// C mimic assembly.
// TODO(fbarchard): Remove subsampling from Neon.
void I444ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
uint8_t u = (src_u[0] + src_u[1] + 1) >> 1;
uint8_t v = (src_v[0] + src_v[1] + 1) >> 1;
YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2,
yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6,
yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 2;
src_v += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
#else
void I444ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width; ++x) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
src_y += 1;
src_u += 1;
src_v += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
#endif
// Also used for 420
void I422ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
// 10 bit YUV to ARGB
void I210ToARGBRow_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) {
uint32_t ar30;
b = b >> 4; // convert 10.6 to 10 bit.
g = g >> 4;
r = r >> 4;
b = Clamp10(b);
g = Clamp10(g);
r = Clamp10(r);
ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000;
(*(uint32_t*)rgb_buf) = ar30;
}
// 10 bit YUV to 10 bit AR30
void I210ToAR30Row_C(const uint16_t* src_y,
const uint16_t* src_u,
const uint16_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
YuvPixel16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
// 8 bit YUV to 10 bit AR30
// Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits.
void I422ToAR30Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
int b;
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
void I422AlphaToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = src_a[1];
src_y += 2;
src_u += 1;
src_v += 1;
src_a += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = src_a[0];
}
}
void I422ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_u += 1;
src_v += 1;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void I422ToARGB4444Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
b1 = b1 >> 4;
g1 = g1 >> 4;
r1 = r1 >> 4;
*(uint32_t*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | (b1 << 16) |
(g1 << 20) | (r1 << 24) | 0xf000f000;
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb4444 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 4;
g0 = g0 >> 4;
r0 = r0 >> 4;
*(uint16_t*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | 0xf000;
}
}
void I422ToARGB1555Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 3;
r1 = r1 >> 3;
*(uint32_t*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | (b1 << 16) |
(g1 << 21) | (r1 << 26) | 0x80008000;
src_y += 2;
src_u += 1;
src_v += 1;
dst_argb1555 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 3;
r0 = r0 >> 3;
*(uint16_t*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | 0x8000;
}
}
void I422ToRGB565Row_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint32_t*)(dst_rgb565) =
b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27);
src_y += 2;
src_u += 1;
src_v += 1;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11);
}
}
void NV12ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_uv += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV21ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
src_vu += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void NV12ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_uv += 2;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void NV21ToRGB24Row_C(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 3, rgb_buf + 4,
rgb_buf + 5, yuvconstants);
src_y += 2;
src_vu += 2;
rgb_buf += 6; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
}
}
void NV12ToRGB565Row_C(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
uint8_t b0;
uint8_t g0;
uint8_t r0;
uint8_t b1;
uint8_t g1;
uint8_t r1;
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
*(uint32_t*)(dst_rgb565) =
b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27);
src_y += 2;
src_uv += 2;
dst_rgb565 += 4; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
b0 = b0 >> 3;
g0 = g0 >> 2;
r0 = r0 >> 3;
*(uint16_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11);
}
}
void YUY2ToARGBRow_C(const uint8_t* src_yuy2,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_yuy2 += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void UYVYToARGBRow_C(const uint8_t* src_uyvy,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], rgb_buf + 4, rgb_buf + 5,
rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_uyvy += 4;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
void I422ToRGBARow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* rgb_buf,
const struct YuvConstants* yuvconstants,
int width) {
int x;
for