| //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Driver/Driver.h" |
| #include "InputInfo.h" |
| #include "ToolChains/AMDGPU.h" |
| #include "ToolChains/AVR.h" |
| #include "ToolChains/Ananas.h" |
| #include "ToolChains/BareMetal.h" |
| #include "ToolChains/Clang.h" |
| #include "ToolChains/CloudABI.h" |
| #include "ToolChains/Contiki.h" |
| #include "ToolChains/CrossWindows.h" |
| #include "ToolChains/Cuda.h" |
| #include "ToolChains/Darwin.h" |
| #include "ToolChains/DragonFly.h" |
| #include "ToolChains/FreeBSD.h" |
| #include "ToolChains/Fuchsia.h" |
| #include "ToolChains/Gnu.h" |
| #include "ToolChains/HIP.h" |
| #include "ToolChains/Haiku.h" |
| #include "ToolChains/Hexagon.h" |
| #include "ToolChains/Lanai.h" |
| #include "ToolChains/Linux.h" |
| #include "ToolChains/MSVC.h" |
| #include "ToolChains/MinGW.h" |
| #include "ToolChains/Minix.h" |
| #include "ToolChains/MipsLinux.h" |
| #include "ToolChains/Myriad.h" |
| #include "ToolChains/NaCl.h" |
| #include "ToolChains/NetBSD.h" |
| #include "ToolChains/OpenBSD.h" |
| #include "ToolChains/PS4CPU.h" |
| #include "ToolChains/RISCV.h" |
| #include "ToolChains/Solaris.h" |
| #include "ToolChains/TCE.h" |
| #include "ToolChains/WebAssembly.h" |
| #include "ToolChains/XCore.h" |
| #include "clang/Basic/Version.h" |
| #include "clang/Basic/VirtualFileSystem.h" |
| #include "clang/Config/config.h" |
| #include "clang/Driver/Action.h" |
| #include "clang/Driver/Compilation.h" |
| #include "clang/Driver/DriverDiagnostic.h" |
| #include "clang/Driver/Job.h" |
| #include "clang/Driver/Options.h" |
| #include "clang/Driver/SanitizerArgs.h" |
| #include "clang/Driver/Tool.h" |
| #include "clang/Driver/ToolChain.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/Option/Arg.h" |
| #include "llvm/Option/ArgList.h" |
| #include "llvm/Option/OptSpecifier.h" |
| #include "llvm/Option/OptTable.h" |
| #include "llvm/Option/Option.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/Process.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| #include <memory> |
| #include <utility> |
| #if LLVM_ON_UNIX |
| #include <unistd.h> // getpid |
| #endif |
| |
| using namespace clang::driver; |
| using namespace clang; |
| using namespace llvm::opt; |
| |
| Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, |
| DiagnosticsEngine &Diags, |
| IntrusiveRefCntPtr<vfs::FileSystem> VFS) |
| : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)), |
| Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), |
| LTOMode(LTOK_None), ClangExecutable(ClangExecutable), |
| SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"), |
| CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr), |
| CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false), |
| CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false), |
| CCGenDiagnostics(false), TargetTriple(TargetTriple), |
| CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true), |
| CCCUsePCH(true), GenReproducer(false), |
| SuppressMissingInputWarning(false) { |
| |
| // Provide a sane fallback if no VFS is specified. |
| if (!this->VFS) |
| this->VFS = vfs::getRealFileSystem(); |
| |
| Name = llvm::sys::path::filename(ClangExecutable); |
| Dir = llvm::sys::path::parent_path(ClangExecutable); |
| InstalledDir = Dir; // Provide a sensible default installed dir. |
| |
| #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) |
| SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; |
| #endif |
| #if defined(CLANG_CONFIG_FILE_USER_DIR) |
| UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; |
| #endif |
| |
| // Compute the path to the resource directory. |
| StringRef ClangResourceDir(CLANG_RESOURCE_DIR); |
| SmallString<128> P(Dir); |
| if (ClangResourceDir != "") { |
| llvm::sys::path::append(P, ClangResourceDir); |
| } else { |
| StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX); |
| P = llvm::sys::path::parent_path(Dir); |
| llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang", |
| CLANG_VERSION_STRING); |
| } |
| ResourceDir = P.str(); |
| } |
| |
| void Driver::ParseDriverMode(StringRef ProgramName, |
| ArrayRef<const char *> Args) { |
| if (ClangNameParts.isEmpty()) |
| ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); |
| setDriverModeFromOption(ClangNameParts.DriverMode); |
| |
| for (const char *ArgPtr : Args) { |
| // Ignore nullptrs, they are the response file's EOL markers. |
| if (ArgPtr == nullptr) |
| continue; |
| const StringRef Arg = ArgPtr; |
| setDriverModeFromOption(Arg); |
| } |
| } |
| |
| void Driver::setDriverModeFromOption(StringRef Opt) { |
| const std::string OptName = |
| getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); |
| if (!Opt.startswith(OptName)) |
| return; |
| StringRef Value = Opt.drop_front(OptName.size()); |
| |
| if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) |
| .Case("gcc", GCCMode) |
| .Case("g++", GXXMode) |
| .Case("cpp", CPPMode) |
| .Case("cl", CLMode) |
| .Default(None)) |
| Mode = *M; |
| else |
| Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; |
| } |
| |
| InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, |
| bool &ContainsError) { |
| llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); |
| ContainsError = false; |
| |
| unsigned IncludedFlagsBitmask; |
| unsigned ExcludedFlagsBitmask; |
| std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = |
| getIncludeExcludeOptionFlagMasks(); |
| |
| unsigned MissingArgIndex, MissingArgCount; |
| InputArgList Args = |
| getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, |
| IncludedFlagsBitmask, ExcludedFlagsBitmask); |
| |
| // Check for missing argument error. |
| if (MissingArgCount) { |
| Diag(diag::err_drv_missing_argument) |
| << Args.getArgString(MissingArgIndex) << MissingArgCount; |
| ContainsError |= |
| Diags.getDiagnosticLevel(diag::err_drv_missing_argument, |
| SourceLocation()) > DiagnosticsEngine::Warning; |
| } |
| |
| // Check for unsupported options. |
| for (const Arg *A : Args) { |
| if (A->getOption().hasFlag(options::Unsupported)) { |
| unsigned DiagID; |
| auto ArgString = A->getAsString(Args); |
| std::string Nearest; |
| if (getOpts().findNearest( |
| ArgString, Nearest, IncludedFlagsBitmask, |
| ExcludedFlagsBitmask | options::Unsupported) > 1) { |
| DiagID = diag::err_drv_unsupported_opt; |
| Diag(DiagID) << ArgString; |
| } else { |
| DiagID = diag::err_drv_unsupported_opt_with_suggestion; |
| Diag(DiagID) << ArgString << Nearest; |
| } |
| ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > |
| DiagnosticsEngine::Warning; |
| continue; |
| } |
| |
| // Warn about -mcpu= without an argument. |
| if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { |
| Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); |
| ContainsError |= Diags.getDiagnosticLevel( |
| diag::warn_drv_empty_joined_argument, |
| SourceLocation()) > DiagnosticsEngine::Warning; |
| } |
| } |
| |
| for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { |
| unsigned DiagID; |
| auto ArgString = A->getAsString(Args); |
| std::string Nearest; |
| if (getOpts().findNearest( |
| ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { |
| DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl |
| : diag::err_drv_unknown_argument; |
| Diags.Report(DiagID) << ArgString; |
| } else { |
| DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion |
| : diag::err_drv_unknown_argument_with_suggestion; |
| Diags.Report(DiagID) << ArgString << Nearest; |
| } |
| ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > |
| DiagnosticsEngine::Warning; |
| } |
| |
| return Args; |
| } |
| |
| // Determine which compilation mode we are in. We look for options which |
| // affect the phase, starting with the earliest phases, and record which |
| // option we used to determine the final phase. |
| phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, |
| Arg **FinalPhaseArg) const { |
| Arg *PhaseArg = nullptr; |
| phases::ID FinalPhase; |
| |
| // -{E,EP,P,M,MM} only run the preprocessor. |
| if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { |
| FinalPhase = phases::Preprocess; |
| |
| // --precompile only runs up to precompilation. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { |
| FinalPhase = phases::Precompile; |
| |
| // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || |
| (PhaseArg = DAL.getLastArg(options::OPT__analyze, |
| options::OPT__analyze_auto)) || |
| (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { |
| FinalPhase = phases::Compile; |
| |
| // -S only runs up to the backend. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { |
| FinalPhase = phases::Backend; |
| |
| // -c compilation only runs up to the assembler. |
| } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { |
| FinalPhase = phases::Assemble; |
| |
| // Otherwise do everything. |
| } else |
| FinalPhase = phases::Link; |
| |
| if (FinalPhaseArg) |
| *FinalPhaseArg = PhaseArg; |
| |
| return FinalPhase; |
| } |
| |
| static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts, |
| StringRef Value, bool Claim = true) { |
| Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, |
| Args.getBaseArgs().MakeIndex(Value), Value.data()); |
| Args.AddSynthesizedArg(A); |
| if (Claim) |
| A->claim(); |
| return A; |
| } |
| |
| DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { |
| DerivedArgList *DAL = new DerivedArgList(Args); |
| |
| bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); |
| bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); |
| for (Arg *A : Args) { |
| // Unfortunately, we have to parse some forwarding options (-Xassembler, |
| // -Xlinker, -Xpreprocessor) because we either integrate their functionality |
| // (assembler and preprocessor), or bypass a previous driver ('collect2'). |
| |
| // Rewrite linker options, to replace --no-demangle with a custom internal |
| // option. |
| if ((A->getOption().matches(options::OPT_Wl_COMMA) || |
| A->getOption().matches(options::OPT_Xlinker)) && |
| A->containsValue("--no-demangle")) { |
| // Add the rewritten no-demangle argument. |
| DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle)); |
| |
| // Add the remaining values as Xlinker arguments. |
| for (StringRef Val : A->getValues()) |
| if (Val != "--no-demangle") |
| DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val); |
| |
| continue; |
| } |
| |
| // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by |
| // some build systems. We don't try to be complete here because we don't |
| // care to encourage this usage model. |
| if (A->getOption().matches(options::OPT_Wp_COMMA) && |
| (A->getValue(0) == StringRef("-MD") || |
| A->getValue(0) == StringRef("-MMD"))) { |
| // Rewrite to -MD/-MMD along with -MF. |
| if (A->getValue(0) == StringRef("-MD")) |
| DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD)); |
| else |
| DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD)); |
| if (A->getNumValues() == 2) |
| DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF), |
| A->getValue(1)); |
| continue; |
| } |
| |
| // Rewrite reserved library names. |
| if (A->getOption().matches(options::OPT_l)) { |
| StringRef Value = A->getValue(); |
| |
| // Rewrite unless -nostdlib is present. |
| if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") { |
| DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx)); |
| continue; |
| } |
| |
| // Rewrite unconditionally. |
| if (Value == "cc_kext") { |
| DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext)); |
| continue; |
| } |
| } |
| |
| // Pick up inputs via the -- option. |
| if (A->getOption().matches(options::OPT__DASH_DASH)) { |
| A->claim(); |
| for (StringRef Val : A->getValues()) |
| DAL->append(MakeInputArg(*DAL, *Opts, Val, false)); |
| continue; |
| } |
| |
| DAL->append(A); |
| } |
| |
| // Enforce -static if -miamcu is present. |
| if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) |
| DAL->AddFlagArg(0, Opts->getOption(options::OPT_static)); |
| |
| // Add a default value of -mlinker-version=, if one was given and the user |
| // didn't specify one. |
| #if defined(HOST_LINK_VERSION) |
| if (!Args.hasArg(options::OPT_mlinker_version_EQ) && |
| strlen(HOST_LINK_VERSION) > 0) { |
| DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ), |
| HOST_LINK_VERSION); |
| DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); |
| } |
| #endif |
| |
| return DAL; |
| } |
| |
| /// Compute target triple from args. |
| /// |
| /// This routine provides the logic to compute a target triple from various |
| /// args passed to the driver and the default triple string. |
| static llvm::Triple computeTargetTriple(const Driver &D, |
| StringRef TargetTriple, |
| const ArgList &Args, |
| StringRef DarwinArchName = "") { |
| // FIXME: Already done in Compilation *Driver::BuildCompilation |
| if (const Arg *A = Args.getLastArg(options::OPT_target)) |
| TargetTriple = A->getValue(); |
| |
| llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); |
| |
| // Handle Apple-specific options available here. |
| if (Target.isOSBinFormatMachO()) { |
| // If an explicit Darwin arch name is given, that trumps all. |
| if (!DarwinArchName.empty()) { |
| tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); |
| return Target; |
| } |
| |
| // Handle the Darwin '-arch' flag. |
| if (Arg *A = Args.getLastArg(options::OPT_arch)) { |
| StringRef ArchName = A->getValue(); |
| tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); |
| } |
| } |
| |
| // Handle pseudo-target flags '-mlittle-endian'/'-EL' and |
| // '-mbig-endian'/'-EB'. |
| if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, |
| options::OPT_mbig_endian)) { |
| if (A->getOption().matches(options::OPT_mlittle_endian)) { |
| llvm::Triple LE = Target.getLittleEndianArchVariant(); |
| if (LE.getArch() != llvm::Triple::UnknownArch) |
| Target = std::move(LE); |
| } else { |
| llvm::Triple BE = Target.getBigEndianArchVariant(); |
| if (BE.getArch() != llvm::Triple::UnknownArch) |
| Target = std::move(BE); |
| } |
| } |
| |
| // Skip further flag support on OSes which don't support '-m32' or '-m64'. |
| if (Target.getArch() == llvm::Triple::tce || |
| Target.getOS() == llvm::Triple::Minix) |
| return Target; |
| |
| // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. |
| Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, |
| options::OPT_m32, options::OPT_m16); |
| if (A) { |
| llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; |
| |
| if (A->getOption().matches(options::OPT_m64)) { |
| AT = Target.get64BitArchVariant().getArch(); |
| if (Target.getEnvironment() == llvm::Triple::GNUX32) |
| Target.setEnvironment(llvm::Triple::GNU); |
| } else if (A->getOption().matches(options::OPT_mx32) && |
| Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { |
| AT = llvm::Triple::x86_64; |
| Target.setEnvironment(llvm::Triple::GNUX32); |
| } else if (A->getOption().matches(options::OPT_m32)) { |
| AT = Target.get32BitArchVariant().getArch(); |
| if (Target.getEnvironment() == llvm::Triple::GNUX32) |
| Target.setEnvironment(llvm::Triple::GNU); |
| } else if (A->getOption().matches(options::OPT_m16) && |
| Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { |
| AT = llvm::Triple::x86; |
| Target.setEnvironment(llvm::Triple::CODE16); |
| } |
| |
| if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) |
| Target.setArch(AT); |
| } |
| |
| // Handle -miamcu flag. |
| if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { |
| if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) |
| D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" |
| << Target.str(); |
| |
| if (A && !A->getOption().matches(options::OPT_m32)) |
| D.Diag(diag::err_drv_argument_not_allowed_with) |
| << "-miamcu" << A->getBaseArg().getAsString(Args); |
| |
| Target.setArch(llvm::Triple::x86); |
| Target.setArchName("i586"); |
| Target.setEnvironment(llvm::Triple::UnknownEnvironment); |
| Target.setEnvironmentName(""); |
| Target.setOS(llvm::Triple::ELFIAMCU); |
| Target.setVendor(llvm::Triple::UnknownVendor); |
| Target.setVendorName("intel"); |
| } |
| |
| return Target; |
| } |
| |
| // Parse the LTO options and record the type of LTO compilation |
| // based on which -f(no-)?lto(=.*)? option occurs last. |
| void Driver::setLTOMode(const llvm::opt::ArgList &Args) { |
| LTOMode = LTOK_None; |
| if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, |
| options::OPT_fno_lto, false)) |
| return; |
| |
| StringRef LTOName("full"); |
| |
| const Arg *A = Args.getLastArg(options::OPT_flto_EQ); |
| if (A) |
| LTOName = A->getValue(); |
| |
| LTOMode = llvm::StringSwitch<LTOKind>(LTOName) |
| .Case("full", LTOK_Full) |
| .Case("thin", LTOK_Thin) |
| .Default(LTOK_Unknown); |
| |
| if (LTOMode == LTOK_Unknown) { |
| assert(A); |
| Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() |
| << A->getValue(); |
| } |
| } |
| |
| /// Compute the desired OpenMP runtime from the flags provided. |
| Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { |
| StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); |
| |
| const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); |
| if (A) |
| RuntimeName = A->getValue(); |
| |
| auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) |
| .Case("libomp", OMPRT_OMP) |
| .Case("libgomp", OMPRT_GOMP) |
| .Case("libiomp5", OMPRT_IOMP5) |
| .Default(OMPRT_Unknown); |
| |
| if (RT == OMPRT_Unknown) { |
| if (A) |
| Diag(diag::err_drv_unsupported_option_argument) |
| << A->getOption().getName() << A->getValue(); |
| else |
| // FIXME: We could use a nicer diagnostic here. |
| Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; |
| } |
| |
| return RT; |
| } |
| |
| void Driver::CreateOffloadingDeviceToolChains(Compilation &C, |
| InputList &Inputs) { |
| |
| // |
| // CUDA/HIP |
| // |
| // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA |
| // or HIP type. However, mixed CUDA/HIP compilation is not supported. |
| bool IsCuda = |
| llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { |
| return types::isCuda(I.first); |
| }); |
| bool IsHIP = |
| llvm::any_of(Inputs, |
| [](std::pair<types::ID, const llvm::opt::Arg *> &I) { |
| return types::isHIP(I.first); |
| }) || |
| C.getInputArgs().hasArg(options::OPT_hip_link); |
| if (IsCuda && IsHIP) { |
| Diag(clang::diag::err_drv_mix_cuda_hip); |
| return; |
| } |
| if (IsCuda) { |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| const llvm::Triple &HostTriple = HostTC->getTriple(); |
| StringRef DeviceTripleStr; |
| auto OFK = Action::OFK_Cuda; |
| DeviceTripleStr = |
| HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; |
| llvm::Triple CudaTriple(DeviceTripleStr); |
| // Use the CUDA and host triples as the key into the ToolChains map, |
| // because the device toolchain we create depends on both. |
| auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; |
| if (!CudaTC) { |
| CudaTC = llvm::make_unique<toolchains::CudaToolChain>( |
| *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); |
| } |
| C.addOffloadDeviceToolChain(CudaTC.get(), OFK); |
| } else if (IsHIP) { |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| const llvm::Triple &HostTriple = HostTC->getTriple(); |
| StringRef DeviceTripleStr; |
| auto OFK = Action::OFK_HIP; |
| DeviceTripleStr = "amdgcn-amd-amdhsa"; |
| llvm::Triple HIPTriple(DeviceTripleStr); |
| // Use the HIP and host triples as the key into the ToolChains map, |
| // because the device toolchain we create depends on both. |
| auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; |
| if (!HIPTC) { |
| HIPTC = llvm::make_unique<toolchains::HIPToolChain>( |
| *this, HIPTriple, *HostTC, C.getInputArgs()); |
| } |
| C.addOffloadDeviceToolChain(HIPTC.get(), OFK); |
| } |
| |
| // |
| // OpenMP |
| // |
| // We need to generate an OpenMP toolchain if the user specified targets with |
| // the -fopenmp-targets option. |
| if (Arg *OpenMPTargets = |
| C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { |
| if (OpenMPTargets->getNumValues()) { |
| // We expect that -fopenmp-targets is always used in conjunction with the |
| // option -fopenmp specifying a valid runtime with offloading support, |
| // i.e. libomp or libiomp. |
| bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( |
| options::OPT_fopenmp, options::OPT_fopenmp_EQ, |
| options::OPT_fno_openmp, false); |
| if (HasValidOpenMPRuntime) { |
| OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); |
| HasValidOpenMPRuntime = |
| OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; |
| } |
| |
| if (HasValidOpenMPRuntime) { |
| llvm::StringMap<const char *> FoundNormalizedTriples; |
| for (const char *Val : OpenMPTargets->getValues()) { |
| llvm::Triple TT(Val); |
| std::string NormalizedName = TT.normalize(); |
| |
| // Make sure we don't have a duplicate triple. |
| auto Duplicate = FoundNormalizedTriples.find(NormalizedName); |
| if (Duplicate != FoundNormalizedTriples.end()) { |
| Diag(clang::diag::warn_drv_omp_offload_target_duplicate) |
| << Val << Duplicate->second; |
| continue; |
| } |
| |
| // Store the current triple so that we can check for duplicates in the |
| // following iterations. |
| FoundNormalizedTriples[NormalizedName] = Val; |
| |
| // If the specified target is invalid, emit a diagnostic. |
| if (TT.getArch() == llvm::Triple::UnknownArch) |
| Diag(clang::diag::err_drv_invalid_omp_target) << Val; |
| else { |
| const ToolChain *TC; |
| // CUDA toolchains have to be selected differently. They pair host |
| // and device in their implementation. |
| if (TT.isNVPTX()) { |
| const ToolChain *HostTC = |
| C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| assert(HostTC && "Host toolchain should be always defined."); |
| auto &CudaTC = |
| ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; |
| if (!CudaTC) |
| CudaTC = llvm::make_unique<toolchains::CudaToolChain>( |
| *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); |
| TC = CudaTC.get(); |
| } else |
| TC = &getToolChain(C.getInputArgs(), TT); |
| C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); |
| } |
| } |
| } else |
| Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); |
| } else |
| Diag(clang::diag::warn_drv_empty_joined_argument) |
| << OpenMPTargets->getAsString(C.getInputArgs()); |
| } |
| |
| // |
| // TODO: Add support for other offloading programming models here. |
| // |
| } |
| |
| /// Looks the given directories for the specified file. |
| /// |
| /// \param[out] FilePath File path, if the file was found. |
| /// \param[in] Dirs Directories used for the search. |
| /// \param[in] FileName Name of the file to search for. |
| /// \return True if file was found. |
| /// |
| /// Looks for file specified by FileName sequentially in directories specified |
| /// by Dirs. |
| /// |
| static bool searchForFile(SmallVectorImpl<char> &FilePath, |
| ArrayRef<std::string> Dirs, |
| StringRef FileName) { |
| SmallString<128> WPath; |
| for (const StringRef &Dir : Dirs) { |
| if (Dir.empty()) |
| continue; |
| WPath.clear(); |
| llvm::sys::path::append(WPath, Dir, FileName); |
| llvm::sys::path::native(WPath); |
| if (llvm::sys::fs::is_regular_file(WPath)) { |
| FilePath = std::move(WPath); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Driver::readConfigFile(StringRef FileName) { |
| // Try reading the given file. |
| SmallVector<const char *, 32> NewCfgArgs; |
| if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { |
| Diag(diag::err_drv_cannot_read_config_file) << FileName; |
| return true; |
| } |
| |
| // Read options from config file. |
| llvm::SmallString<128> CfgFileName(FileName); |
| llvm::sys::path::native(CfgFileName); |
| ConfigFile = CfgFileName.str(); |
| bool ContainErrors; |
| CfgOptions = llvm::make_unique<InputArgList>( |
| ParseArgStrings(NewCfgArgs, ContainErrors)); |
| if (ContainErrors) { |
| CfgOptions.reset(); |
| return true; |
| } |
| |
| if (CfgOptions->hasArg(options::OPT_config)) { |
| CfgOptions.reset(); |
| Diag(diag::err_drv_nested_config_file); |
| return true; |
| } |
| |
| // Claim all arguments that come from a configuration file so that the driver |
| // does not warn on any that is unused. |
| for (Arg *A : *CfgOptions) |
| A->claim(); |
| return false; |
| } |
| |
| bool Driver::loadConfigFile() { |
| std::string CfgFileName; |
| bool FileSpecifiedExplicitly = false; |
| |
| // Process options that change search path for config files. |
| if (CLOptions) { |
| if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { |
| SmallString<128> CfgDir; |
| CfgDir.append( |
| CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); |
| if (!CfgDir.empty()) { |
| if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) |
| SystemConfigDir.clear(); |
| else |
| SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); |
| } |
| } |
| if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { |
| SmallString<128> CfgDir; |
| CfgDir.append( |
| CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); |
| if (!CfgDir.empty()) { |
| if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) |
| UserConfigDir.clear(); |
| else |
| UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); |
| } |
| } |
| } |
| |
| // First try to find config file specified in command line. |
| if (CLOptions) { |
| std::vector<std::string> ConfigFiles = |
| CLOptions->getAllArgValues(options::OPT_config); |
| if (ConfigFiles.size() > 1) { |
| Diag(diag::err_drv_duplicate_config); |
| return true; |
| } |
| |
| if (!ConfigFiles.empty()) { |
| CfgFileName = ConfigFiles.front(); |
| assert(!CfgFileName.empty()); |
| |
| // If argument contains directory separator, treat it as a path to |
| // configuration file. |
| if (llvm::sys::path::has_parent_path(CfgFileName)) { |
| SmallString<128> CfgFilePath; |
| if (llvm::sys::path::is_relative(CfgFileName)) |
| llvm::sys::fs::current_path(CfgFilePath); |
| llvm::sys::path::append(CfgFilePath, CfgFileName); |
| if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { |
| Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; |
| return true; |
| } |
| return readConfigFile(CfgFilePath); |
| } |
| |
| FileSpecifiedExplicitly = true; |
| } |
| } |
| |
| // If config file is not specified explicitly, try to deduce configuration |
| // from executable name. For instance, an executable 'armv7l-clang' will |
| // search for config file 'armv7l-clang.cfg'. |
| if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) |
| CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; |
| |
| if (CfgFileName.empty()) |
| return false; |
| |
| // Determine architecture part of the file name, if it is present. |
| StringRef CfgFileArch = CfgFileName; |
| size_t ArchPrefixLen = CfgFileArch.find('-'); |
| if (ArchPrefixLen == StringRef::npos) |
| ArchPrefixLen = CfgFileArch.size(); |
| llvm::Triple CfgTriple; |
| CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); |
| CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); |
| if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) |
| ArchPrefixLen = 0; |
| |
| if (!StringRef(CfgFileName).endswith(".cfg")) |
| CfgFileName += ".cfg"; |
| |
| // If config file starts with architecture name and command line options |
| // redefine architecture (with options like -m32 -LE etc), try finding new |
| // config file with that architecture. |
| SmallString<128> FixedConfigFile; |
| size_t FixedArchPrefixLen = 0; |
| if (ArchPrefixLen) { |
| // Get architecture name from config file name like 'i386.cfg' or |
| // 'armv7l-clang.cfg'. |
| // Check if command line options changes effective triple. |
| llvm::Triple EffectiveTriple = computeTargetTriple(*this, |
| CfgTriple.getTriple(), *CLOptions); |
| if (CfgTriple.getArch() != EffectiveTriple.getArch()) { |
| FixedConfigFile = EffectiveTriple.getArchName(); |
| FixedArchPrefixLen = FixedConfigFile.size(); |
| // Append the rest of original file name so that file name transforms |
| // like: i386-clang.cfg -> x86_64-clang.cfg. |
| if (ArchPrefixLen < CfgFileName.size()) |
| FixedConfigFile += CfgFileName.substr(ArchPrefixLen); |
| } |
| } |
| |
| // Prepare list of directories where config file is searched for. |
| SmallVector<std::string, 3> CfgFileSearchDirs; |
| CfgFileSearchDirs.push_back(UserConfigDir); |
| CfgFileSearchDirs.push_back(SystemConfigDir); |
| CfgFileSearchDirs.push_back(Dir); |
| |
| // Try to find config file. First try file with corrected architecture. |
| llvm::SmallString<128> CfgFilePath; |
| if (!FixedConfigFile.empty()) { |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) |
| return readConfigFile(CfgFilePath); |
| // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. |
| FixedConfigFile.resize(FixedArchPrefixLen); |
| FixedConfigFile.append(".cfg"); |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) |
| return readConfigFile(CfgFilePath); |
| } |
| |
| // Then try original file name. |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) |
| return readConfigFile(CfgFilePath); |
| |
| // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. |
| if (!ClangNameParts.ModeSuffix.empty() && |
| !ClangNameParts.TargetPrefix.empty()) { |
| CfgFileName.assign(ClangNameParts.TargetPrefix); |
| CfgFileName.append(".cfg"); |
| if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) |
| return readConfigFile(CfgFilePath); |
| } |
| |
| // Report error but only if config file was specified explicitly, by option |
| // --config. If it was deduced from executable name, it is not an error. |
| if (FileSpecifiedExplicitly) { |
| Diag(diag::err_drv_config_file_not_found) << CfgFileName; |
| for (const std::string &SearchDir : CfgFileSearchDirs) |
| if (!SearchDir.empty()) |
| Diag(diag::note_drv_config_file_searched_in) << SearchDir; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { |
| llvm::PrettyStackTraceString CrashInfo("Compilation construction"); |
| |
| // FIXME: Handle environment options which affect driver behavior, somewhere |
| // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. |
| |
| if (Optional<std::string> CompilerPathValue = |
| llvm::sys::Process::GetEnv("COMPILER_PATH")) { |
| StringRef CompilerPath = *CompilerPathValue; |
| while (!CompilerPath.empty()) { |
| std::pair<StringRef, StringRef> Split = |
| CompilerPath.split(llvm::sys::EnvPathSeparator); |
| PrefixDirs.push_back(Split.first); |
| CompilerPath = Split.second; |
| } |
| } |
| |
| // We look for the driver mode option early, because the mode can affect |
| // how other options are parsed. |
| ParseDriverMode(ClangExecutable, ArgList.slice(1)); |
| |
| // FIXME: What are we going to do with -V and -b? |
| |
| // Arguments specified in command line. |
| bool ContainsError; |
| CLOptions = llvm::make_unique<InputArgList>( |
| ParseArgStrings(ArgList.slice(1), ContainsError)); |
| |
| // Try parsing configuration file. |
| if (!ContainsError) |
| ContainsError = loadConfigFile(); |
| bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); |
| |
| // All arguments, from both config file and command line. |
| InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) |
| : std::move(*CLOptions)); |
| if (HasConfigFile) |
| for (auto *Opt : *CLOptions) { |
| if (Opt->getOption().matches(options::OPT_config)) |
| continue; |
| unsigned Index = Args.MakeIndex(Opt->getSpelling()); |
| const Arg *BaseArg = &Opt->getBaseArg(); |
| if (BaseArg == Opt) |
| BaseArg = nullptr; |
| Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), |
| Index, BaseArg); |
| Copy->getValues() = Opt->getValues(); |
| if (Opt->isClaimed()) |
| Copy->claim(); |
| Args.append(Copy); |
| } |
| |
| // FIXME: This stuff needs to go into the Compilation, not the driver. |
| bool CCCPrintPhases; |
| |
| // Silence driver warnings if requested |
| Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); |
| |
| // -no-canonical-prefixes is used very early in main. |
| Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); |
| |
| // Ignore -pipe. |
| Args.ClaimAllArgs(options::OPT_pipe); |
| |
| // Extract -ccc args. |
| // |
| // FIXME: We need to figure out where this behavior should live. Most of it |
| // should be outside in the client; the parts that aren't should have proper |
| // options, either by introducing new ones or by overloading gcc ones like -V |
| // or -b. |
| CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); |
| CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); |
| if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) |
| CCCGenericGCCName = A->getValue(); |
| CCCUsePCH = |
| Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth); |
| GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, |
| options::OPT_fno_crash_diagnostics, |
| !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); |
| // FIXME: TargetTriple is used by the target-prefixed calls to as/ld |
| // and getToolChain is const. |
| if (IsCLMode()) { |
| // clang-cl targets MSVC-style Win32. |
| llvm::Triple T(TargetTriple); |
| T.setOS(llvm::Triple::Win32); |
| T.setVendor(llvm::Triple::PC); |
| T.setEnvironment(llvm::Triple::MSVC); |
| T.setObjectFormat(llvm::Triple::COFF); |
| TargetTriple = T.str(); |
| } |
| if (const Arg *A = Args.getLastArg(options::OPT_target)) |
| TargetTriple = A->getValue(); |
| if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) |
| Dir = InstalledDir = A->getValue(); |
| for (const Arg *A : Args.filtered(options::OPT_B)) { |
| A->claim(); |
| PrefixDirs.push_back(A->getValue(0)); |
| } |
| if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) |
| SysRoot = A->getValue(); |
| if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) |
| DyldPrefix = A->getValue(); |
| |
| if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) |
| ResourceDir = A->getValue(); |
| |
| if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { |
| SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) |
| .Case("cwd", SaveTempsCwd) |
| .Case("obj", SaveTempsObj) |
| .Default(SaveTempsCwd); |
| } |
| |
| setLTOMode(Args); |
| |
| // Process -fembed-bitcode= flags. |
| if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { |
| StringRef Name = A->getValue(); |
| unsigned Model = llvm::StringSwitch<unsigned>(Name) |
| .Case("off", EmbedNone) |
| .Case("all", EmbedBitcode) |
| .Case("bitcode", EmbedBitcode) |
| .Case("marker", EmbedMarker) |
| .Default(~0U); |
| if (Model == ~0U) { |
| Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) |
| << Name; |
| } else |
| BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); |
| } |
| |
| std::unique_ptr<llvm::opt::InputArgList> UArgs = |
| llvm::make_unique<InputArgList>(std::move(Args)); |
| |
| // Perform the default argument translations. |
| DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); |
| |
| // Owned by the host. |
| const ToolChain &TC = getToolChain( |
| *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); |
| |
| // The compilation takes ownership of Args. |
| Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, |
| ContainsError); |
| |
| if (!HandleImmediateArgs(*C)) |
| return C; |
| |
| // Construct the list of inputs. |
| InputList Inputs; |
| BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); |
| |
| // Populate the tool chains for the offloading devices, if any. |
| CreateOffloadingDeviceToolChains(*C, Inputs); |
| |
| // Construct the list of abstract actions to perform for this compilation. On |
| // MachO targets this uses the driver-driver and universal actions. |
| if (TC.getTriple().isOSBinFormatMachO()) |
| BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); |
| else |
| BuildActions(*C, C->getArgs(), Inputs, C->getActions()); |
| |
| if (CCCPrintPhases) { |
| PrintActions(*C); |
| return C; |
| } |
| |
| BuildJobs(*C); |
| |
| return C; |
| } |
| |
| static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { |
| llvm::opt::ArgStringList ASL; |
| for (const auto *A : Args) |
| A->render(Args, ASL); |
| |
| for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { |
| if (I != ASL.begin()) |
| OS << ' '; |
| Command::printArg(OS, *I, true); |
| } |
| OS << '\n'; |
| } |
| |
| bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, |
| SmallString<128> &CrashDiagDir) { |
| using namespace llvm::sys; |
| assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && |
| "Only knows about .crash files on Darwin"); |
| |
| // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ |
| // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern |
| // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. |
| path::home_directory(CrashDiagDir); |
| if (CrashDiagDir.startswith("/var/root")) |
| CrashDiagDir = "/"; |
| path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); |
| int PID = |
| #if LLVM_ON_UNIX |
| getpid(); |
| #else |
| 0; |
| #endif |
| std::error_code EC; |
| fs::file_status FileStatus; |
| TimePoint<> LastAccessTime; |
| SmallString<128> CrashFilePath; |
| // Lookup the .crash files and get the one generated by a subprocess spawned |
| // by this driver invocation. |
| for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; |
| File != FileEnd && !EC; File.increment(EC)) { |
| StringRef FileName = path::filename(File->path()); |
| if (!FileName.startswith(Name)) |
| continue; |
| if (fs::status(File->path(), FileStatus)) |
| continue; |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = |
| llvm::MemoryBuffer::getFile(File->path()); |
| if (!CrashFile) |
| continue; |
| // The first line should start with "Process:", otherwise this isn't a real |
| // .crash file. |
| StringRef Data = CrashFile.get()->getBuffer(); |
| if (!Data.startswith("Process:")) |
| continue; |
| // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" |
| size_t ParentProcPos = Data.find("Parent Process:"); |
| if (ParentProcPos == StringRef::npos) |
| continue; |
| size_t LineEnd = Data.find_first_of("\n", ParentProcPos); |
| if (LineEnd == StringRef::npos) |
| continue; |
| StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); |
| int OpenBracket = -1, CloseBracket = -1; |
| for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { |
| if (ParentProcess[i] == '[') |
| OpenBracket = i; |
| if (ParentProcess[i] == ']') |
| CloseBracket = i; |
| } |
| // Extract the parent process PID from the .crash file and check whether |
| // it matches this driver invocation pid. |
| int CrashPID; |
| if (OpenBracket < 0 || CloseBracket < 0 || |
| ParentProcess.slice(OpenBracket + 1, CloseBracket) |
| .getAsInteger(10, CrashPID) || CrashPID != PID) { |
| continue; |
| } |
| |
| // Found a .crash file matching the driver pid. To avoid getting an older |
| // and misleading crash file, continue looking for the most recent. |
| // FIXME: the driver can dispatch multiple cc1 invocations, leading to |
| // multiple crashes poiting to the same parent process. Since the driver |
| // does not collect pid information for the dispatched invocation there's |
| // currently no way to distinguish among them. |
| const auto FileAccessTime = FileStatus.getLastModificationTime(); |
| if (FileAccessTime > LastAccessTime) { |
| CrashFilePath.assign(File->path()); |
| LastAccessTime = FileAccessTime; |
| } |
| } |
| |
| // If found, copy it over to the location of other reproducer files. |
| if (!CrashFilePath.empty()) { |
| EC = fs::copy_file(CrashFilePath, ReproCrashFilename); |
| if (EC) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // When clang crashes, produce diagnostic information including the fully |
| // preprocessed source file(s). Request that the developer attach the |
| // diagnostic information to a bug report. |
| void Driver::generateCompilationDiagnostics( |
| Compilation &C, const Command &FailingCommand, |
| StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { |
| if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) |
| return; |
| |
| // Don't try to generate diagnostics for link or dsymutil jobs. |
| if (FailingCommand.getCreator().isLinkJob() || |
| FailingCommand.getCreator().isDsymutilJob()) |
| return; |
| |
| // Print the version of the compiler. |
| PrintVersion(C, llvm::errs()); |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " |
| "crash backtrace, preprocessed source, and associated run script."; |
| |
| // Suppress driver output and emit preprocessor output to temp file. |
| Mode = CPPMode; |
| CCGenDiagnostics = true; |
| |
| // Save the original job command(s). |
| Command Cmd = FailingCommand; |
| |
| // Keep track of whether we produce any errors while trying to produce |
| // preprocessed sources. |
| DiagnosticErrorTrap Trap(Diags); |
| |
| // Suppress tool output. |
| C.initCompilationForDiagnostics(); |
| |
| // Construct the list of inputs. |
| InputList Inputs; |
| BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); |
| |
| for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { |
| bool IgnoreInput = false; |
| |
| // Ignore input from stdin or any inputs that cannot be preprocessed. |
| // Check type first as not all linker inputs have a value. |
| if (types::getPreprocessedType(it->first) == types::TY_INVALID) { |
| IgnoreInput = true; |
| } else if (!strcmp(it->second->getValue(), "-")) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - " |
| "ignoring input from stdin."; |
| IgnoreInput = true; |
| } |
| |
| if (IgnoreInput) { |
| it = Inputs.erase(it); |
| ie = Inputs.end(); |
| } else { |
| ++it; |
| } |
| } |
| |
| if (Inputs.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - " |
| "no preprocessable inputs."; |
| return; |
| } |
| |
| // Don't attempt to generate preprocessed files if multiple -arch options are |
| // used, unless they're all duplicates. |
| llvm::StringSet<> ArchNames; |
| for (const Arg *A : C.getArgs()) { |
| if (A->getOption().matches(options::OPT_arch)) { |
| StringRef ArchName = A->getValue(); |
| ArchNames.insert(ArchName); |
| } |
| } |
| if (ArchNames.size() > 1) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s) - cannot generate " |
| "preprocessed source with multiple -arch options."; |
| return; |
| } |
| |
| // Construct the list of abstract actions to perform for this compilation. On |
| // Darwin OSes this uses the driver-driver and builds universal actions. |
| const ToolChain &TC = C.getDefaultToolChain(); |
| if (TC.getTriple().isOSBinFormatMachO()) |
| BuildUniversalActions(C, TC, Inputs); |
| else |
| BuildActions(C, C.getArgs(), Inputs, C.getActions()); |
| |
| BuildJobs(C); |
| |
| // If there were errors building the compilation, quit now. |
| if (Trap.hasErrorOccurred()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| // Generate preprocessed output. |
| SmallVector<std::pair<int, const Command *>, 4> FailingCommands; |
| C.ExecuteJobs(C.getJobs(), FailingCommands); |
| |
| // If any of the preprocessing commands failed, clean up and exit. |
| if (!FailingCommands.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| const ArgStringList &TempFiles = C.getTempFiles(); |
| if (TempFiles.empty()) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating preprocessed source(s)."; |
| return; |
| } |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "\n********************\n\n" |
| "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" |
| "Preprocessed source(s) and associated run script(s) are located at:"; |
| |
| SmallString<128> VFS; |
| SmallString<128> ReproCrashFilename; |
| for (const char *TempFile : TempFiles) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; |
| if (Report) |
| Report->TemporaryFiles.push_back(TempFile); |
| if (ReproCrashFilename.empty()) { |
| ReproCrashFilename = TempFile; |
| llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); |
| } |
| if (StringRef(TempFile).endswith(".cache")) { |
| // In some cases (modules) we'll dump extra data to help with reproducing |
| // the crash into a directory next to the output. |
| VFS = llvm::sys::path::filename(TempFile); |
| llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); |
| } |
| } |
| |
| // Assume associated files are based off of the first temporary file. |
| CrashReportInfo CrashInfo(TempFiles[0], VFS); |
| |
| llvm::SmallString<128> Script(CrashInfo.Filename); |
| llvm::sys::path::replace_extension(Script, "sh"); |
| std::error_code EC; |
| llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); |
| if (EC) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Error generating run script: " << Script << " " << EC.message(); |
| } else { |
| ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" |
| << "# Driver args: "; |
| printArgList(ScriptOS, C.getInputArgs()); |
| ScriptOS << "# Original command: "; |
| Cmd.Print(ScriptOS, "\n", /*Quote=*/true); |
| Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); |
| if (!AdditionalInformation.empty()) |
| ScriptOS << "\n# Additional information: " << AdditionalInformation |
| << "\n"; |
| if (Report) |
| Report->TemporaryFiles.push_back(Script.str()); |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; |
| } |
| |
| // On darwin, provide information about the .crash diagnostic report. |
| if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { |
| SmallString<128> CrashDiagDir; |
| if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << ReproCrashFilename.str(); |
| } else { // Suggest a directory for the user to look for .crash files. |
| llvm::sys::path::append(CrashDiagDir, Name); |
| CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "Crash backtrace is located in"; |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << CrashDiagDir.str(); |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "(choose the .crash file that corresponds to your crash)"; |
| } |
| } |
| |
| for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, |
| options::OPT_frewrite_map_file_EQ)) |
| Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); |
| |
| Diag(clang::diag::note_drv_command_failed_diag_msg) |
| << "\n\n********************"; |
| } |
| |
| void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { |
| // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity |
| // if the tool does not support response files, there is a chance/ that things |
| // will just work without a response file, so we silently just skip it. |
| if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || |
| llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments())) |
| return; |
| |
| std::string TmpName = GetTemporaryPath("response", "txt"); |
| Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); |
| } |
| |
| int Driver::ExecuteCompilation( |
| Compilation &C, |
| SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { |
| // Just print if -### was present. |
| if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { |
| C.getJobs().Print(llvm::errs(), "\n", true); |
| return 0; |
| } |
| |
| // If there were errors building the compilation, quit now. |
| if (Diags.hasErrorOccurred()) |
| return 1; |
| |
| // Set up response file names for each command, if necessary |
| for (auto &Job : C.getJobs()) |
| setUpResponseFiles(C, Job); |
| |
| C.ExecuteJobs(C.getJobs(), FailingCommands); |
| |
| // If the command succeeded, we are done. |
| if (FailingCommands.empty()) |
| return 0; |
| |
| // Otherwise, remove result files and print extra information about abnormal |
| // failures. |
| for (const auto &CmdPair : FailingCommands) { |
| int Res = CmdPair.first; |
| const Command *FailingCommand = CmdPair.second; |
| |
| // Remove result files if we're not saving temps. |
| if (!isSaveTempsEnabled()) { |
| const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); |
| C.CleanupFileMap(C.getResultFiles(), JA, true); |
| |
| // Failure result files are valid unless we crashed. |
| if (Res < 0) |
| C.CleanupFileMap(C.getFailureResultFiles(), JA, true); |
| } |
| |
| // Print extra information about abnormal failures, if possible. |
| // |
| // This is ad-hoc, but we don't want to be excessively noisy. If the result |
| // status was 1, assume the command failed normally. In particular, if it |
| // was the compiler then assume it gave a reasonable error code. Failures |
| // in other tools are less common, and they generally have worse |
| // diagnostics, so always print the diagnostic there. |
| const Tool &FailingTool = FailingCommand->getCreator(); |
| |
| if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) { |
| // FIXME: See FIXME above regarding result code interpretation. |
| if (Res < 0) |
| Diag(clang::diag::err_drv_command_signalled) |
| << FailingTool.getShortName(); |
| else |
| Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName() |
| << Res; |
| } |
| } |
| return 0; |
| } |
| |
| void Driver::PrintHelp(bool ShowHidden) const { |
| unsigned IncludedFlagsBitmask; |
| unsigned ExcludedFlagsBitmask; |
| std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = |
| getIncludeExcludeOptionFlagMasks(); |
| |
| ExcludedFlagsBitmask |= options::NoDriverOption; |
| if (!ShowHidden) |
| ExcludedFlagsBitmask |= HelpHidden; |
| |
| getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(), |
| IncludedFlagsBitmask, ExcludedFlagsBitmask, |
| /*ShowAllAliases=*/false); |
| } |
| |
| void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { |
| // FIXME: The following handlers should use a callback mechanism, we don't |
| // know what the client would like to do. |
| OS << getClangFullVersion() << '\n'; |
| const ToolChain &TC = C.getDefaultToolChain(); |
| OS << "Target: " << TC.getTripleString() << '\n'; |
| |
| // Print the threading model. |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { |
| // Don't print if the ToolChain would have barfed on it already |
| if (TC.isThreadModelSupported(A->getValue())) |
| OS << "Thread model: " << A->getValue(); |
| } else |
| OS << "Thread model: " << TC.getThreadModel(); |
| OS << '\n'; |
| |
| // Print out the install directory. |
| OS << "InstalledDir: " << InstalledDir << '\n'; |
| |
| // If configuration file was used, print its path. |
| if (!ConfigFile.empty()) |
| OS << "Configuration file: " << ConfigFile << '\n'; |
| } |
| |
| /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories |
| /// option. |
| static void PrintDiagnosticCategories(raw_ostream &OS) { |
| // Skip the empty category. |
| for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; |
| ++i) |
| OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; |
| } |
| |
| void Driver::HandleAutocompletions(StringRef PassedFlags) const { |
| if (PassedFlags == "") |
| return; |
| // Print out all options that start with a given argument. This is used for |
| // shell autocompletion. |
| std::vector<std::string> SuggestedCompletions; |
| std::vector<std::string> Flags; |
| |
| unsigned short DisableFlags = |
| options::NoDriverOption | options::Unsupported | options::Ignored; |
| |
| // Parse PassedFlags by "," as all the command-line flags are passed to this |
| // function separated by "," |
| StringRef TargetFlags = PassedFlags; |
| while (TargetFlags != "") { |
| StringRef CurFlag; |
| std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); |
| Flags.push_back(std::string(CurFlag)); |
| } |
| |
| // We want to show cc1-only options only when clang is invoked with -cc1 or |
| // -Xclang. |
| if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() || |
| std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end()) |
| DisableFlags &= ~options::NoDriverOption; |
| |
| StringRef Cur; |
| Cur = Flags.at(Flags.size() - 1); |
| StringRef Prev; |
| if (Flags.size() >= 2) { |
| Prev = Flags.at(Flags.size() - 2); |
| SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur); |
| } |
| |
| if (SuggestedCompletions.empty()) |
| SuggestedCompletions = Opts->suggestValueCompletions(Cur, ""); |
| |
| if (SuggestedCompletions.empty()) { |
| // If the flag is in the form of "--autocomplete=-foo", |
| // we were requested to print out all option names that start with "-foo". |
| // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". |
| SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags); |
| |
| // We have to query the -W flags manually as they're not in the OptTable. |
| // TODO: Find a good way to add them to OptTable instead and them remove |
| // this code. |
| for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) |
| if (S.startswith(Cur)) |
| SuggestedCompletions.push_back(S); |
| } |
| |
| // Sort the autocomplete candidates so that shells print them out in a |
| // deterministic order. We could sort in any way, but we chose |
| // case-insensitive sorting for consistency with the -help option |
| // which prints out options in the case-insensitive alphabetical order. |
| llvm::sort(SuggestedCompletions.begin(), SuggestedCompletions.end(), |
| [](StringRef A, StringRef B) { |
| if (int X = A.compare_lower(B)) |
| return X < 0; |
| return A.compare(B) > 0; |
| }); |
| |
| llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; |
| } |
| |
| bool Driver::HandleImmediateArgs(const Compilation &C) { |
| // The order these options are handled in gcc is all over the place, but we |
| // don't expect inconsistencies w.r.t. that to matter in practice. |
| |
| if (C.getArgs().hasArg(options::OPT_dumpmachine)) { |
| llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_dumpversion)) { |
| // Since -dumpversion is only implemented for pedantic GCC compatibility, we |
| // return an answer which matches our definition of __VERSION__. |
| // |
| // If we want to return a more correct answer some day, then we should |
| // introduce a non-pedantically GCC compatible mode to Clang in which we |
| // provide sensible definitions for -dumpversion, __VERSION__, etc. |
| llvm::outs() << "4.2.1\n"; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { |
| PrintDiagnosticCategories(llvm::outs()); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_help) || |
| C.getArgs().hasArg(options::OPT__help_hidden)) { |
| PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT__version)) { |
| // Follow gcc behavior and use stdout for --version and stderr for -v. |
| PrintVersion(C, llvm::outs()); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_v) || |
| C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { |
| PrintVersion(C, llvm::errs()); |
| SuppressMissingInputWarning = true; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_v)) { |
| if (!SystemConfigDir.empty()) |
| llvm::errs() << "System configuration file directory: " |
| << SystemConfigDir << "\n"; |
| if (!UserConfigDir.empty()) |
| llvm::errs() << "User configuration file directory: " |
| << UserConfigDir << "\n"; |
| } |
| |
| const ToolChain &TC = C.getDefaultToolChain(); |
| |
| if (C.getArgs().hasArg(options::OPT_v)) |
| TC.printVerboseInfo(llvm::errs()); |
| |
| if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { |
| llvm::outs() << ResourceDir << '\n'; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { |
| llvm::outs() << "programs: ="; |
| bool separator = false; |
| for (const std::string &Path : TC.getProgramPaths()) { |
| if (separator) |
| llvm::outs() << ':'; |
| llvm::outs() << Path; |
| separator = true; |
| } |
| llvm::outs() << "\n"; |
| llvm::outs() << "libraries: =" << ResourceDir; |
| |
| StringRef sysroot = C.getSysRoot(); |
| |
| for (const std::string &Path : TC.getFilePaths()) { |
| // Always print a separator. ResourceDir was the first item shown. |
| llvm::outs() << ':'; |
| // Interpretation of leading '=' is needed only for NetBSD. |
| if (Path[0] == '=') |
| llvm::outs() << sysroot << Path.substr(1); |
| else |
| llvm::outs() << Path; |
| } |
| llvm::outs() << "\n"; |
| return false; |
| } |
| |
| // FIXME: The following handlers should use a callback mechanism, we don't |
| // know what the client would like to do. |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { |
| llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; |
| return false; |
| } |
| |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { |
| StringRef ProgName = A->getValue(); |
| |
| // Null program name cannot have a path. |
| if (! ProgName.empty()) |
| llvm::outs() << GetProgramPath(ProgName, TC); |
| |
| llvm::outs() << "\n"; |
| return false; |
| } |
| |
| if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { |
| StringRef PassedFlags = A->getValue(); |
| HandleAutocompletions(PassedFlags); |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { |
| ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); |
| const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); |
| RegisterEffectiveTriple TripleRAII(TC, Triple); |
| switch (RLT) { |
| case ToolChain::RLT_CompilerRT: |
| llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; |
| break; |
| case ToolChain::RLT_Libgcc: |
| llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; |
| break; |
| } |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { |
| for (const Multilib &Multilib : TC.getMultilibs()) |
| llvm::outs() << Multilib << "\n"; |
| return false; |
| } |
| |
| if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { |
| for (const Multilib &Multilib : TC.getMultilibs()) { |
| if (Multilib.gccSuffix().empty()) |
| llvm::outs() << ".\n"; |
| else { |
| StringRef Suffix(Multilib.gccSuffix()); |
| assert(Suffix.front() == '/'); |
| llvm::outs() << Suffix.substr(1) << "\n"; |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| // Display an action graph human-readably. Action A is the "sink" node |
| // and latest-occuring action. Traversal is in pre-order, visiting the |
| // inputs to each action before printing the action itself. |
| static unsigned PrintActions1(const Compilation &C, Action *A, |
| std::map<Action *, unsigned> &Ids) { |
| if (Ids.count(A)) // A was already visited. |
| return Ids[A]; |
| |
| std::string str; |
| llvm::raw_string_ostream os(str); |
| |
| os << Action::getClassName(A->getKind()) << ", "; |
| if (InputAction *IA = dyn_cast<InputAction>(A)) { |
| os << "\"" << IA->getInputArg().getValue() << "\""; |
| } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { |
| os << '"' << BIA->getArchName() << '"' << ", {" |
| << PrintActions1(C, *BIA->input_begin(), Ids) << "}"; |
| } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { |
| bool IsFirst = true; |
| OA->doOnEachDependence( |
| [&](Action *A, const ToolChain *TC, const char *BoundArch) { |
| // E.g. for two CUDA device dependences whose bound arch is sm_20 and |
| // sm_35 this will generate: |
| // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" |
| // (nvptx64-nvidia-cuda:sm_35) {#ID} |
| if (!IsFirst) |
| os << ", "; |
| os << '"'; |
| if (TC) |
| os << A->getOffloadingKindPrefix(); |
| else |
| os << "host"; |
| os << " ("; |
| os << TC->getTriple().normalize(); |
| |
| if (BoundArch) |
| os << ":" << BoundArch; |
| os << ")"; |
| os << '"'; |
| os << " {" << PrintActions1(C, A, Ids) << "}"; |
| IsFirst = false; |
| }); |
| } else { |
| const ActionList *AL = &A->getInputs(); |
| |
| if (AL->size()) { |
| const char *Prefix = "{"; |
| for (Action *PreRequisite : *AL) { |
| os << Prefix << PrintActions1(C, PreRequisite, Ids); |
| Prefix = ", "; |
| } |
| os << "}"; |
| } else |
| os << "{}"; |
| } |
| |
| // Append offload info for all options other than the offloading action |
| // itself (e.g. (cuda-device, sm_20) or (cuda-host)). |
| std::string offload_str; |
| llvm::raw_string_ostream offload_os(offload_str); |
| if (!isa<OffloadAction>(A)) { |
| auto S = A->getOffloadingKindPrefix(); |
| if (!S.empty()) { |
| offload_os << ", (" << S; |
| if (A->getOffloadingArch()) |
| offload_os << ", " << A->getOffloadingArch(); |
| offload_os << ")"; |
| } |
| } |
| |
| unsigned Id = Ids.size(); |
| Ids[A] = Id; |
| llvm::errs() << Id << ": " << os.str() << ", " |
| << types::getTypeName(A->getType()) << offload_os.str() << "\n"; |
| |
| return Id; |
| } |
| |
| // Print the action graphs in a compilation C. |
| // For example "clang -c file1.c file2.c" is composed of two subgraphs. |
| void Driver::PrintActions(const Compilation &C) const { |
| std::map<Action *, unsigned> Ids; |
| for (Action *A : C.getActions()) |
| PrintActions1(C, A, Ids); |
| } |
| |
| /// Check whether the given input tree contains any compilation or |
| /// assembly actions. |
| static bool ContainsCompileOrAssembleAction(const Action *A) { |
| if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || |
| isa<AssembleJobAction>(A)) |
| return true; |
| |
| for (const Action *Input : A->inputs()) |
| if (ContainsCompileOrAssembleAction(Input)) |
| return true; |
| |
| return false; |
| } |
| |
| void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, |
| const InputList &BAInputs) const { |
| DerivedArgList &Args = C.getArgs(); |
| ActionList &Actions = C.getActions(); |
| llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); |
| // Collect the list of architectures. Duplicates are allowed, but should only |
| // be handled once (in the order seen). |
| llvm::StringSet<> ArchNames; |
| SmallVector<const char *, 4> Archs; |
| for (Arg *A : Args) { |
| if (A->getOption().matches(options::OPT_arch)) { |
| // Validate the option here; we don't save the type here because its |
| // particular spelling may participate in other driver choices. |
| llvm::Triple::ArchType Arch = |
| tools::darwin::getArchTypeForMachOArchName(A->getValue()); |
| if (Arch == llvm::Triple::UnknownArch) { |
| Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); |
| continue; |
| } |
| |
| A->claim(); |
| if (ArchNames.insert(A->getValue()).second) |
| Archs.push_back(A->getValue()); |
| } |
| } |
| |
| // When there is no explicit arch for this platform, make sure we still bind |
| // the architecture (to the default) so that -Xarch_ is handled correctly. |
| if (!Archs.size()) |
| Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); |
| |
| ActionList SingleActions; |
| BuildActions(C, Args, BAInputs, SingleActions); |
| |
| // Add in arch bindings for every top level action, as well as lipo and |
| // dsymutil steps if needed. |
| for (Action* Act : SingleActions) { |
| // Make sure we can lipo this kind of output. If not (and it is an actual |
| // output) then we disallow, since we can't create an output file with the |
| // right name without overwriting it. We could remove this oddity by just |
| // changing the output names to include the arch, which would also fix |
| // -save-temps. Compatibility wins for now. |
| |
| if (Archs.size() > 1 && !types::canLipoType(Act->getType())) |
| Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) |
| << types::getTypeName(Act->getType()); |
| |
| ActionList Inputs; |
| for (unsigned i = 0, e = Archs.size(); i != e; ++i) |
| Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); |
| |
| // Lipo if necessary, we do it this way because we need to set the arch flag |
| // so that -Xarch_ gets overwritten. |
| if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) |
| Actions.append(Inputs.begin(), Inputs.end()); |
| else |
| Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); |
| |
| // Handle debug info queries. |
| Arg *A = Args.getLastArg(options::OPT_g_Group); |
| if (A && !A->getOption().matches(options::OPT_g0) && |
| !A->getOption().matches(options::OPT_gstabs) && |
| ContainsCompileOrAssembleAction(Actions.back())) { |
| |
| // Add a 'dsymutil' step if necessary, when debug info is enabled and we |
| // have a compile input. We need to run 'dsymutil' ourselves in such cases |
| // because the debug info will refer to a temporary object file which |
| // will be removed at the end of the compilation process. |
| if (Act->getType() == types::TY_Image) { |
| ActionList Inputs; |
| Inputs.push_back(Actions.back()); |
| Actions.pop_back(); |
| Actions.push_back( |
| C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); |
| } |
| |
| // Verify the debug info output. |
| if (Args.hasArg(options::OPT_verify_debug_info)) { |
| Action* LastAction = Actions.back(); |
| Actions.pop_back(); |
| Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( |
| LastAction, types::TY_Nothing)); |
| } |
| } |
| } |
| } |
| |
| /// Check that the file referenced by Value exists. If it doesn't, |
| /// issue a diagnostic and return false. |
| static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, |
| StringRef Value, types::ID Ty) { |
| if (!D.getCheckInputsExist()) |
| return true; |
| |
| // stdin always exists. |
| if (Value == "-") |
| return true; |
| |
| SmallString<64> Path(Value); |
| if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) { |
| if (!llvm::sys::path::is_absolute(Path)) { |
| SmallString<64> Directory(WorkDir->getValue()); |
| llvm::sys::path::append(Directory, Value); |
| Path.assign(Directory); |
| } |
| } |
| |
| if (llvm::sys::fs::exists(Twine(Path))) |
| return true; |
| |
| if (D.IsCLMode()) { |
| if (!llvm::sys::path::is_absolute(Twine(Path)) && |
| llvm::sys::Process::FindInEnvPath("LIB", Value)) |
| return true; |
| |
| if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { |
| // Arguments to the /link flag might cause the linker to search for object |
| // and library files in paths we don't know about. Don't error in such |
| // cases. |
| return true; |
| } |
| } |
| |
| D.Diag(clang::diag::err_drv_no_such_file) << Path; |
| return false; |
| } |
| |
| // Construct a the list of inputs and their types. |
| void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, |
| InputList &Inputs) const { |
| // Track the current user specified (-x) input. We also explicitly track the |
| // argument used to set the type; we only want to claim the type when we |
| // actually use it, so we warn about unused -x arguments. |
| types::ID InputType = types::TY_Nothing; |
| Arg *InputTypeArg = nullptr; |
| |
| // The last /TC or /TP option sets the input type to C or C++ globally. |
| if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, |
| options::OPT__SLASH_TP)) { |
| InputTypeArg = TCTP; |
| InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) |
| ? types::TY_C |
| : types::TY_CXX; |
| |
| Arg *Previous = nullptr; |
| bool ShowNote = false; |
| for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { |
| if (Previous) { |
| Diag(clang::diag::warn_drv_overriding_flag_option) |
| << Previous->getSpelling() << A->getSpelling(); |
| ShowNote = true; |
| } |
| Previous = A; |
| } |
| if (ShowNote) |
| Diag(clang::diag::note_drv_t_option_is_global); |
| |
| // No driver mode exposes -x and /TC or /TP; we don't support mixing them. |
| assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); |
| } |
| |
| for (Arg *A : Args) { |
| if (A->getOption().getKind() == Option::InputClass) { |
| const char *Value = A->getValue(); |
| types::ID Ty = types::TY_INVALID; |
| |
| // Infer the input type if necessary. |
| if (InputType == types::TY_Nothing) { |
| // If there was an explicit arg for this, claim it. |
| if (InputTypeArg) |
| InputTypeArg->claim(); |
| |
| // stdin must be handled specially. |
| if (memcmp(Value, "-", 2) == 0) { |
| // If running with -E, treat as a C input (this changes the builtin |
| // macros, for example). This may be overridden by -ObjC below. |
| // |
| // Otherwise emit an error but still use a valid type to avoid |
| // spurious errors (e.g., no inputs). |
| if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) |
| Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl |
| : clang::diag::err_drv_unknown_stdin_type); |
| Ty = types::TY_C; |
| } else { |
| // Otherwise lookup by extension. |
| // Fallback is C if invoked as C preprocessor or Object otherwise. |
| // We use a host hook here because Darwin at least has its own |
| // idea of what .s is. |
| if (const char *Ext = strrchr(Value, '.')) |
| Ty = TC.LookupTypeForExtension(Ext + 1); |
| |
| if (Ty == types::TY_INVALID) { |
| if (CCCIsCPP()) |
| Ty = types::TY_C; |
| else |
| Ty = types::TY_Object; |
| } |
| |
| // If the driver is invoked as C++ compiler (like clang++ or c++) it |
| // should autodetect some input files as C++ for g++ compatibility. |
| if (CCCIsCXX()) { |
| types::ID OldTy = Ty; |
| Ty = types::lookupCXXTypeForCType(Ty); |
| |
| if (Ty != OldTy) |
| Diag(clang::diag::warn_drv_treating_input_as_cxx) |
| << getTypeName(OldTy) << getTypeName(Ty); |
| } |
| } |
| |
| // -ObjC and -ObjC++ override the default language, but only for "source |
| // files". We just treat everything that isn't a linker input as a |
| // source file. |
| // |
| // FIXME: Clean this up if we move the phase sequence into the type. |
| if (Ty != types::TY_Object) { |
| if (Args.hasArg(options::OPT_ObjC)) |
| Ty = types::TY_ObjC; |
| else if (Args.hasArg(options::OPT_ObjCXX)) |
| Ty = types::TY_ObjCXX; |
| } |
| } else { |
| assert(InputTypeArg && "InputType set w/o InputTypeArg"); |
| if (!InputTypeArg->getOption().matches(options::OPT_x)) { |
| // If emulating cl.exe, make sure that /TC and /TP don't affect input |
| // object files. |
| const char *Ext = strrchr(Value, '.'); |
| if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) |
| Ty = types::TY_Object; |
| } |
| if (Ty == types::TY_INVALID) { |
| Ty = InputType; |
| InputTypeArg->claim(); |
| } |
| } |
| |
| if (DiagnoseInputExistence(*this, Args, Value, Ty)) |
| Inputs.push_back(std::make_pair(Ty, A)); |
| |
| } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { |
| StringRef Value = A->getValue(); |
| if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) { |
| Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); |
| Inputs.push_back(std::make_pair(types::TY_C, InputArg)); |
| } |
| A->claim(); |
| } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { |
| StringRef Value = A->getValue(); |
| if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) { |
| Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); |
| Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); |
| } |
| A->claim(); |
| } else if (A->getOption().hasFlag(options::LinkerInput)) { |
| // Just treat as object type, we could make a special type for this if |
| // necessary. |
| Inputs.push_back(std::make_pair(types::TY_Object, A)); |
| |
| } else if (A->getOption().matches(options::OPT_x)) { |
| InputTypeArg = A; |
| InputType = types::lookupTypeForTypeSpecifier(A->getValue()); |
| A->claim(); |
| |
| // Follow gcc behavior and treat as linker input for invalid -x |
| // options. Its not clear why we shouldn't just revert to unknown; but |
| // this isn't very important, we might as well be bug compatible. |
| if (!InputType) { |
| Diag(clang::diag::err_drv_unknown_language) << A->getValue(); |
| InputType = types::TY_Object; |
| } |
| } else if (A->getOption().getID() == options::OPT__SLASH_U) { |
| assert(A->getNumValues() == 1 && "The /U option has one value."); |
| StringRef Val = A->getValue(0); |
| if (Val.find_first_of("/\\") != StringRef::npos) { |
| // Warn about e.g. "/Users/me/myfile.c". |
| Diag(diag::warn_slash_u_filename) << Val; |
| Diag(diag::note_use_dashdash); |
| } |
| } |
| } |
| if (CCCIsCPP() && Inputs.empty()) { |
| // If called as standalone preprocessor, stdin is processed |
| // if no other input is present. |
| Arg *A = MakeInputArg(Args, *Opts, "-"); |
| Inputs.push_back(std::make_pair(types::TY_C, A)); |
| } |
| } |
| |
| namespace { |
| /// Provides a convenient interface for different programming models to generate |
| /// the required device actions. |
| class OffloadingActionBuilder final { |
| /// Flag used to trace errors in the builder. |
| bool IsValid = false; |
| |
| /// The compilation that is using this builder. |
| Compilation &C; |
| |
| /// Map between an input argument and the offload kinds used to process it. |
| std::map<const Arg *, unsigned> InputArgToOffloadKindMap; |
| |
| /// Builder interface. It doesn't build anything or keep any state. |
| class DeviceActionBuilder { |
| public: |
| typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy; |
| |
| enum ActionBuilderReturnCode { |
| // The builder acted successfully on the current action. |
| ABRT_Success, |
| // The builder didn't have to act on the current action. |
| ABRT_Inactive, |
| // The builder was successful and requested the host action to not be |
| // generated. |
| ABRT_Ignore_Host, |
| }; |
| |
| protected: |
| /// Compilation associated with this builder. |
| Compilation &C; |
| |
| /// Tool chains associated with this builder. The same programming |
| /// model may have associated one or more tool chains. |
| SmallVector<const ToolChain *, 2> ToolChains; |
| |
| /// The derived arguments associated with this builder. |
| DerivedArgList &Args; |
| |
| /// The inputs associated with this builder. |
| const Driver::InputList &Inputs; |
| |
| /// The associated offload kind. |
| Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; |
| |
| public: |
| DeviceActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs, |
| Action::OffloadKind AssociatedOffloadKind) |
| : C(C), Args(Args), Inputs(Inputs), |
| AssociatedOffloadKind(AssociatedOffloadKind) {} |
| virtual ~DeviceActionBuilder() {} |
| |
| /// Fill up the array \a DA with all the device dependences that should be |
| /// added to the provided host action \a HostAction. By default it is |
| /// inactive. |
| virtual ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) { |
| return ABRT_Inactive; |
| } |
| |
| /// Update the state to include the provided host action \a HostAction as a |
| /// dependency of the current device action. By default it is inactive. |
| virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { |
| return ABRT_Inactive; |
| } |
| |
| /// Append top level actions generated by the builder. Return true if errors |
| /// were found. |
| virtual void appendTopLevelActions(ActionList &AL) {} |
| |
| /// Append linker actions generated by the builder. Return true if errors |
| /// were found. |
| virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} |
| |
| /// Initialize the builder. Return true if any initialization errors are |
| /// found. |
| virtual bool initialize() { return false; } |
| |
| /// Return true if the builder can use bundling/unbundling. |
| virtual bool canUseBundlerUnbundler() const { return false; } |
| |
| /// Return true if this builder is valid. We have a valid builder if we have |
| /// associated device tool chains. |
| bool isValid() { return !ToolChains.empty(); } |
| |
| /// Return the associated offload kind. |
| Action::OffloadKind getAssociatedOffloadKind() { |
| return AssociatedOffloadKind; |
| } |
| }; |
| |
| /// Base class for CUDA/HIP action builder. It injects device code in |
| /// the host backend action. |
| class CudaActionBuilderBase : public DeviceActionBuilder { |
| protected: |
| /// Flags to signal if the user requested host-only or device-only |
| /// compilation. |
| bool CompileHostOnly = false; |
| bool CompileDeviceOnly = false; |
| |
| /// List of GPU architectures to use in this compilation. |
| SmallVector<CudaArch, 4> GpuArchList; |
| |
| /// The CUDA actions for the current input. |
| ActionList CudaDeviceActions; |
| |
| /// The CUDA fat binary if it was generated for the current input. |
| Action *CudaFatBinary = nullptr; |
| |
| /// Flag that is set to true if this builder acted on the current input. |
| bool IsActive = false; |
| public: |
| CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs, |
| Action::OffloadKind OFKind) |
| : DeviceActionBuilder(C, Args, Inputs, OFKind) {} |
| |
| ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { |
| // While generating code for CUDA, we only depend on the host input action |
| // to trigger the creation of all the CUDA device actions. |
| |
| // If we are dealing with an input action, replicate it for each GPU |
| // architecture. If we are in host-only mode we return 'success' so that |
| // the host uses the CUDA offload kind. |
| if (auto *IA = dyn_cast<InputAction>(HostAction)) { |
| assert(!GpuArchList.empty() && |
| "We should have at least one GPU architecture."); |
| |
| // If the host input is not CUDA or HIP, we don't need to bother about |
| // this input. |
| if (IA->getType() != types::TY_CUDA && |
| IA->getType() != types::TY_HIP) { |
| // The builder will ignore this input. |
| IsActive = false; |
| return ABRT_Inactive; |
| } |
| |
| // Set the flag to true, so that the builder acts on the current input. |
| IsActive = true; |
| |
| if (CompileHostOnly) |
| return ABRT_Success; |
| |
| // Replicate inputs for each GPU architecture. |
| auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE |
| : types::TY_CUDA_DEVICE; |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { |
| CudaDeviceActions.push_back( |
| C.MakeAction<InputAction>(IA->getInputArg(), Ty)); |
| } |
| |
| return ABRT_Success; |
| } |
| |
| // If this is an unbundling action use it as is for each CUDA toolchain. |
| if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { |
| CudaDeviceActions.clear(); |
| for (auto Arch : GpuArchList) { |
| CudaDeviceActions.push_back(UA); |
| UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), |
| AssociatedOffloadKind); |
| } |
| return ABRT_Success; |
| } |
| |
| return IsActive ? ABRT_Success : ABRT_Inactive; |
| } |
| |
| void appendTopLevelActions(ActionList &AL) override { |
| // Utility to append actions to the top level list. |
| auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { |
| OffloadAction::DeviceDependences Dep; |
| Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), |
| AssociatedOffloadKind); |
| AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); |
| }; |
| |
| // If we have a fat binary, add it to the list. |
| if (CudaFatBinary) { |
| AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); |
| CudaDeviceActions.clear(); |
| CudaFatBinary = nullptr; |
| return; |
| } |
| |
| if (CudaDeviceActions.empty()) |
| return; |
| |
| // If we have CUDA actions at this point, that's because we have a have |
| // partial compilation, so we should have an action for each GPU |
| // architecture. |
| assert(CudaDeviceActions.size() == GpuArchList.size() && |
| "Expecting one action per GPU architecture."); |
| assert(ToolChains.size() == 1 && |
| "Expecting to have a sing CUDA toolchain."); |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) |
| AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); |
| |
| CudaDeviceActions.clear(); |
| } |
| |
| bool initialize() override { |
| assert(AssociatedOffloadKind == Action::OFK_Cuda || |
| AssociatedOffloadKind == Action::OFK_HIP); |
| |
| // We don't need to support CUDA. |
| if (AssociatedOffloadKind == Action::OFK_Cuda && |
| !C.hasOffloadToolChain<Action::OFK_Cuda>()) |
| return false; |
| |
| // We don't need to support HIP. |
| if (AssociatedOffloadKind == Action::OFK_HIP && |
| !C.hasOffloadToolChain<Action::OFK_HIP>()) |
| return false; |
| |
| const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); |
| assert(HostTC && "No toolchain for host compilation."); |
| if (HostTC->getTriple().isNVPTX() || |
| HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { |
| // We do not support targeting NVPTX/AMDGCN for host compilation. Throw |
| // an error and abort pipeline construction early so we don't trip |
| // asserts that assume device-side compilation. |
| C.getDriver().Diag(diag::err_drv_cuda_host_arch) |
| << HostTC->getTriple().getArchName(); |
| return true; |
| } |
| |
| ToolChains.push_back( |
| AssociatedOffloadKind == Action::OFK_Cuda |
| ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() |
| : C.getSingleOffloadToolChain<Action::OFK_HIP>()); |
| |
| Arg *PartialCompilationArg = Args.getLastArg( |
| options::OPT_cuda_host_only, options::OPT_cuda_device_only, |
| options::OPT_cuda_compile_host_device); |
| CompileHostOnly = PartialCompilationArg && |
| PartialCompilationArg->getOption().matches( |
| options::OPT_cuda_host_only); |
| CompileDeviceOnly = PartialCompilationArg && |
| PartialCompilationArg->getOption().matches( |
| options::OPT_cuda_device_only); |
| |
| // Collect all cuda_gpu_arch parameters, removing duplicates. |
| std::set<CudaArch> GpuArchs; |
| bool Error = false; |
| for (Arg *A : Args) { |
| if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || |
| A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) |
| continue; |
| A->claim(); |
| |
| const StringRef ArchStr = A->getValue(); |
| if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && |
| ArchStr == "all") { |
| GpuArchs.clear(); |
| continue; |
| } |
| CudaArch Arch = StringToCudaArch(ArchStr); |
| if (Arch == CudaArch::UNKNOWN) { |
| C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; |
| Error = true; |
| } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) |
| GpuArchs.insert(Arch); |
| else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) |
| GpuArchs.erase(Arch); |
| else |
| llvm_unreachable("Unexpected option."); |
| } |
| |
| // Collect list of GPUs remaining in the set. |
| for (CudaArch Arch : GpuArchs) |
| GpuArchList.push_back(Arch); |
| |
| // Default to sm_20 which is the lowest common denominator for |
| // supported GPUs. sm_20 code should work correctly, if |
| // suboptimally, on all newer GPUs. |
| if (GpuArchList.empty()) |
| GpuArchList.push_back(CudaArch::SM_20); |
| |
| return Error; |
| } |
| }; |
| |
| /// \brief CUDA action builder. It injects device code in the host backend |
| /// action. |
| class CudaActionBuilder final : public CudaActionBuilderBase { |
| public: |
| CudaActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs) |
| : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {} |
| |
| ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) override { |
| if (!IsActive) |
| return ABRT_Inactive; |
| |
| // If we don't have more CUDA actions, we don't have any dependences to |
| // create for the host. |
| if (CudaDeviceActions.empty()) |
| return ABRT_Success; |
| |
| assert(CudaDeviceActions.size() == GpuArchList.size() && |
| "Expecting one action per GPU architecture."); |
| assert(!CompileHostOnly && |
| "Not expecting CUDA actions in host-only compilation."); |
| |
| // If we are generating code for the device or we are in a backend phase, |
| // we attempt to generate the fat binary. We compile each arch to ptx and |
| // assemble to cubin, then feed the cubin *and* the ptx into a device |
| // "link" action, which uses fatbinary to combine these cubins into one |
| // fatbin. The fatbin is then an input to the host action if not in |
| // device-only mode. |
| if (CompileDeviceOnly || CurPhase == phases::Backend) { |
| ActionList DeviceActions; |
| for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { |
| // Produce the device action from the current phase up to the assemble |
| // phase. |
| for (auto Ph : Phases) { |
| // Skip the phases that were already dealt with. |
| if (Ph < CurPhase) |
| continue; |
| // We have to be consistent with the host final phase. |
| if (Ph > FinalPhase) |
| break; |
| |
| CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( |
| C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); |
| |
| if (Ph == phases::Assemble) |
| break; |
| } |
| |
| // If we didn't reach the assemble phase, we can't generate the fat |
| // binary. We don't need to generate the fat binary if we are not in |
| // device-only mode. |
| if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || |
| CompileDeviceOnly) |
| continue; |
| |
| Action *AssembleAction = CudaDeviceActions[I]; |
| assert(AssembleAction->getType() == types::TY_Object); |
| assert(AssembleAction->getInputs().size() == 1); |
| |
| Action *BackendAction = AssembleAction->getInputs()[0]; |
| assert(BackendAction->getType() == types::TY_PP_Asm); |
| |
| for (auto &A : {AssembleAction, BackendAction}) { |
| OffloadAction::DeviceDependences DDep; |
| DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), |
| Action::OFK_Cuda); |
| DeviceActions.push_back( |
| C.MakeAction<OffloadAction>(DDep, A->getType())); |
| } |
| } |
| |
| // We generate the fat binary if we have device input actions. |
| if (!DeviceActions.empty()) { |
| CudaFatBinary = |
| C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); |
| |
| if (!CompileDeviceOnly) { |
| DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, |
| Action::OFK_Cuda); |
| // Clear the fat binary, it is already a dependence to an host |
| // action. |
| CudaFatBinary = nullptr; |
| } |
| |
| // Remove the CUDA actions as they are already connected to an host |
| // action or fat binary. |
| CudaDeviceActions.clear(); |
| } |
| |
| // We avoid creating host action in device-only mode. |
| return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; |
| } else if (CurPhase > phases::Backend) { |
| // If we are past the backend phase and still have a device action, we |
| // don't have to do anything as this action is already a device |
| // top-level action. |
| return ABRT_Success; |
| } |
| |
| assert(CurPhase < phases::Backend && "Generating single CUDA " |
| "instructions should only occur " |
| "before the backend phase!"); |
| |
| // By default, we produce an action for each device arch. |
| for (Action *&A : CudaDeviceActions) |
| A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); |
| |
| return ABRT_Success; |
| } |
| }; |
| /// \brief HIP action builder. It injects device code in the host backend |
| /// action. |
| class HIPActionBuilder final : public CudaActionBuilderBase { |
| /// The linker inputs obtained for each device arch. |
| SmallVector<ActionList, 8> DeviceLinkerInputs; |
| |
| public: |
| HIPActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs) |
| : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {} |
| |
| bool canUseBundlerUnbundler() const override { return true; } |
| |
| ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) override { |
| // amdgcn does not support linking of object files, therefore we skip |
| // backend and assemble phases to output LLVM IR. |
| if (CudaDeviceActions.empty() || CurPhase == phases::Backend || |
| CurPhase == phases::Assemble) |
| return ABRT_Success; |
| |
| assert((CurPhase == phases::Link || |
| CudaDeviceActions.size() == GpuArchList.size()) && |
| "Expecting one action per GPU architecture."); |
| assert(!CompileHostOnly && |
| "Not expecting CUDA actions in host-only compilation."); |
| |
| // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. |
| // This happens to each device action originated from each input file. |
| // Later on, device actions in DeviceLinkerInputs are used to create |
| // device link actions in appendLinkDependences and the created device |
| // link actions are passed to the offload action as device dependence. |
| if (CurPhase == phases::Link) { |
| DeviceLinkerInputs.resize(CudaDeviceActions.size()); |
| auto LI = DeviceLinkerInputs.begin(); |
| for (auto *A : CudaDeviceActions) { |
| LI->push_back(A); |
| ++LI; |
| } |
| |
| // We will pass the device action as a host dependence, so we don't |
| // need to do anything else with them. |
| CudaDeviceActions.clear(); |
| return ABRT_Success; |
| } |
| |
| // By default, we produce an action for each device arch. |
| for (Action *&A : CudaDeviceActions) |
| A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, |
| AssociatedOffloadKind); |
| |
| return ABRT_Success; |
| } |
| |
| void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { |
| // Append a new link action for each device. |
| unsigned I = 0; |
| for (auto &LI : DeviceLinkerInputs) { |
| auto *DeviceLinkAction = |
| C.MakeAction<LinkJobAction>(LI, types::TY_Image); |
| DA.add(*DeviceLinkAction, *ToolChains[0], |
| CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); |
| ++I; |
| } |
| } |
| }; |
| |
| /// OpenMP action builder. The host bitcode is passed to the device frontend |
| /// and all the device linked images are passed to the host link phase. |
| class OpenMPActionBuilder final : public DeviceActionBuilder { |
| /// The OpenMP actions for the current input. |
| ActionList OpenMPDeviceActions; |
| |
| /// The linker inputs obtained for each toolchain. |
| SmallVector<ActionList, 8> DeviceLinkerInputs; |
| |
| public: |
| OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs) |
| : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} |
| |
| ActionBuilderReturnCode |
| getDeviceDependences(OffloadAction::DeviceDependences &DA, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| PhasesTy &Phases) override { |
| |
| // We should always have an action for each input. |
| assert(OpenMPDeviceActions.size() == ToolChains.size() && |
| "Number of OpenMP actions and toolchains do not match."); |
| |
| // The host only depends on device action in the linking phase, when all |
| // the device images have to be embedded in the host image. |
| if (CurPhase == phases::Link) { |
| assert(ToolChains.size() == DeviceLinkerInputs.size() && |
| "Toolchains and linker inputs sizes do not match."); |
| auto LI = DeviceLinkerInputs.begin(); |
| for (auto *A : OpenMPDeviceActions) { |
| LI->push_back(A); |
| ++LI; |
| } |
| |
| // We passed the device action as a host dependence, so we don't need to |
| // do anything else with them. |
| OpenMPDeviceActions.clear(); |
| return ABRT_Success; |
| } |
| |
| // By default, we produce an action for each device arch. |
| for (Action *&A : OpenMPDeviceActions) |
| A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); |
| |
| return ABRT_Success; |
| } |
| |
| ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { |
| |
| // If this is an input action replicate it for each OpenMP toolchain. |
| if (auto *IA = dyn_cast<InputAction>(HostAction)) { |
| OpenMPDeviceActions.clear(); |
| for (unsigned I = 0; I < ToolChains.size(); ++I) |
| OpenMPDeviceActions.push_back( |
| C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); |
| return ABRT_Success; |
| } |
| |
| // If this is an unbundling action use it as is for each OpenMP toolchain. |
| if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { |
| OpenMPDeviceActions.clear(); |
| for (unsigned I = 0; I < ToolChains.size(); ++I) { |
| OpenMPDeviceActions.push_back(UA); |
| UA->registerDependentActionInfo( |
| ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); |
| } |
| return ABRT_Success; |
| } |
| |
| // When generating code for OpenMP we use the host compile phase result as |
| // a dependence to the device compile phase so that it can learn what |
| // declarations should be emitted. However, this is not the only use for |
| // the host action, so we prevent it from being collapsed. |
| if (isa<CompileJobAction>(HostAction)) { |
| HostAction->setCannotBeCollapsedWithNextDependentAction(); |
| assert(ToolChains.size() == OpenMPDeviceActions.size() && |
| "Toolchains and device action sizes do not match."); |
| OffloadAction::HostDependence HDep( |
| *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), |
| /*BoundArch=*/nullptr, Action::OFK_OpenMP); |
| auto TC = ToolChains.begin(); |
| for (Action *&A : OpenMPDeviceActions) { |
| assert(isa<CompileJobAction>(A)); |
| OffloadAction::DeviceDependences DDep; |
| DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); |
| A = C.MakeAction<OffloadAction>(HDep, DDep); |
| ++TC; |
| } |
| } |
| return ABRT_Success; |
| } |
| |
| void appendTopLevelActions(ActionList &AL) override { |
| if (OpenMPDeviceActions.empty()) |
| return; |
| |
| // We should always have an action for each input. |
| assert(OpenMPDeviceActions.size() == ToolChains.size() && |
| "Number of OpenMP actions and toolchains do not match."); |
| |
| // Append all device actions followed by the proper offload action. |
| auto TI = ToolChains.begin(); |
| for (auto *A : OpenMPDeviceActions) { |
| OffloadAction::DeviceDependences Dep; |
| Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); |
| AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); |
| ++TI; |
| } |
| // We no longer need the action stored in this builder. |
| OpenMPDeviceActions.clear(); |
| } |
| |
| void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { |
| assert(ToolChains.size() == DeviceLinkerInputs.size() && |
| "Toolchains and linker inputs sizes do not match."); |
| |
| // Append a new link action for each device. |
| auto TC = ToolChains.begin(); |
| for (auto &LI : DeviceLinkerInputs) { |
| auto *DeviceLinkAction = |
| C.MakeAction<LinkJobAction>(LI, types::TY_Image); |
| DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, |
| Action::OFK_OpenMP); |
| ++TC; |
| } |
| } |
| |
| bool initialize() override { |
| // Get the OpenMP toolchains. If we don't get any, the action builder will |
| // know there is nothing to do related to OpenMP offloading. |
| auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); |
| for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; |
| ++TI) |
| ToolChains.push_back(TI->second); |
| |
| DeviceLinkerInputs.resize(ToolChains.size()); |
| return false; |
| } |
| |
| bool canUseBundlerUnbundler() const override { |
| // OpenMP should use bundled files whenever possible. |
| return true; |
| } |
| }; |
| |
| /// |
| /// TODO: Add the implementation for other specialized builders here. |
| /// |
| |
| /// Specialized builders being used by this offloading action builder. |
| SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; |
| |
| /// Flag set to true if all valid builders allow file bundling/unbundling. |
| bool CanUseBundler; |
| |
| public: |
| OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, |
| const Driver::InputList &Inputs) |
| : C(C) { |
| // Create a specialized builder for each device toolchain. |
| |
| IsValid = true; |
| |
| // Create a specialized builder for CUDA. |
| SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); |
| |
| // Create a specialized builder for HIP. |
| SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); |
| |
| // Create a specialized builder for OpenMP. |
| SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); |
| |
| // |
| // TODO: Build other specialized builders here. |
| // |
| |
| // Initialize all the builders, keeping track of errors. If all valid |
| // builders agree that we can use bundling, set the flag to true. |
| unsigned ValidBuilders = 0u; |
| unsigned ValidBuildersSupportingBundling = 0u; |
| for (auto *SB : SpecializedBuilders) { |
| IsValid = IsValid && !SB->initialize(); |
| |
| // Update the counters if the builder is valid. |
| if (SB->isValid()) { |
| ++ValidBuilders; |
| if (SB->canUseBundlerUnbundler()) |
| ++ValidBuildersSupportingBundling; |
| } |
| } |
| CanUseBundler = |
| ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; |
| } |
| |
| ~OffloadingActionBuilder() { |
| for (auto *SB : SpecializedBuilders) |
| delete SB; |
| } |
| |
| /// Generate an action that adds device dependences (if any) to a host action. |
| /// If no device dependence actions exist, just return the host action \a |
| /// HostAction. If an error is found or if no builder requires the host action |
| /// to be generated, return nullptr. |
| Action * |
| addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, |
| phases::ID CurPhase, phases::ID FinalPhase, |
| DeviceActionBuilder::PhasesTy &Phases) { |
| if (!IsValid) |
| return nullptr; |
| |
| if (SpecializedBuilders.empty()) |
| return HostAction; |
| |
| assert(HostAction && "Invalid host action!"); |
| |
| OffloadAction::DeviceDependences DDeps; |
| // Check if all the programming models agree we should not emit the host |
| // action. Also, keep track of the offloading kinds employed. |
| auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; |
| unsigned InactiveBuilders = 0u; |
| unsigned IgnoringBuilders = 0u; |
| for (auto *SB : SpecializedBuilders) { |
| if (!SB->isValid()) { |
| ++InactiveBuilders; |
| continue; |
| } |
| |
| auto RetCode = |
| SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); |
| |
| // If the builder explicitly says the host action should be ignored, |
| // we need to increment the variable that tracks the builders that request |
| // the host object to be ignored. |
| if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) |
| ++IgnoringBuilders; |
| |
| // Unless the builder was inactive for this action, we have to record the |
| // offload kind because the host will have to use it. |
| if (RetCode != DeviceActionBuilder::ABRT_Inactive) |
| OffloadKind |= SB->getAssociatedOffloadKind(); |
| } |
| |
| // If all builders agree that the host object should be ignored, just return |
| // nullptr. |
| if (IgnoringBuilders && |
| SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) |
| return nullptr; |
| |
| if (DDeps.getActions().empty()) |
| return HostAction; |
| |
| // We have dependences we need to bundle together. We use an offload action |
| // for that. |
| OffloadAction::HostDependence HDep( |
| *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), |
| /*BoundArch=*/nullptr, DDeps); |
| return C.MakeAction<OffloadAction>(HDep, DDeps); |
| } |
| |
| /// Generate an action that adds a host dependence to a device action. The |
| /// results will be kept in this action builder. Return true if an error was |
| /// found. |
| bool addHostDependenceToDeviceActions(Action *&HostAction, |
| const Arg *InputArg) { |
| if (!IsValid) |
| return true; |
| |
| // If we are supporting bundling/unbundling and the current action is an |
| // input action of non-source file, we replace the host action by the |
| // unbundling action. The bundler tool has the logic to detect if an input |
| // is a bundle or not and if the input is not a bundle it assumes it is a |
| // host file. Therefore it is safe to create an unbundling action even if |
| // the input is not a bundle. |
| if (CanUseBundler && isa<InputAction>(HostAction) && |
| InputArg->getOption().getKind() == llvm::opt::Option::InputClass && |
| !types::isSrcFile(HostAction->getType())) { |
| auto UnbundlingHostAction = |
| C.MakeAction<OffloadUnbundlingJobAction>(HostAction); |
| UnbundlingHostAction->registerDependentActionInfo( |
| C.getSingleOffloadToolChain<Action::OFK_Host>(), |
| /*BoundArch=*/StringRef(), Action::OFK_Host); |
| HostAction = UnbundlingHostAction; |
| } |
| |
| assert(HostAction && "Invalid host action!"); |
| |
| // Register the offload kinds that are used. |
| auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; |
| for (auto *SB : SpecializedBuilders) { |
| if (!SB->isValid()) |
| continue; |
| |
| auto RetCode = SB->addDeviceDepences(HostAction); |
| |
| // Host dependences for device actions are not compatible with that same |
| // action being ignored. |
| assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && |
| "Host dependence not expected to be ignored.!"); |
| |
| // Unless the builder was inactive for this action, we have to record the |
| // offload kind because the host will have to use it. |
| if (RetCode != DeviceActionBuilder::ABRT_Inactive) |
| OffloadKind |= SB->getAssociatedOffloadKind(); |
| } |
| |
| return false; |
| } |
| |
| /// Add the offloading top level actions to the provided action list. This |
| /// function can replace the host action by a bundling action if the |
| /// programming models allow it. |
| bool appendTopLevelActions(ActionList &AL, Action *HostAction, |
| const Arg *InputArg) { |
| // Get the device actions to be appended. |
| ActionList OffloadAL; |
| for (auto *SB : SpecializedBuilders) { |
| if (!SB->isValid()) |
| continue; |
| SB->appendTopLevelActions(OffloadAL); |
| } |
| |
| // If we can use the bundler, replace the host action by the bundling one in |
| // the resulting list. Otherwise, just append the device actions. |
| if (CanUseBundler && !OffloadAL.empty()) { |
| // Add the host action to the list in order to create the bundling action. |
| OffloadAL.push_back(HostAction); |
| |
| // We expect that the host action was just appended to the action list |
| // before this method was called. |
| assert(HostAction == AL.back() && "Host action not in the list??"); |
| HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); |
| AL.back() = HostAction; |
| } else |
| AL.append(OffloadAL.begin(), OffloadAL.end()); |
| |
| // Propagate to the current host action (if any) the offload information |
| // associated with the current input. |
| if (HostAction) |
| HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], |
| /*BoundArch=*/nullptr); |
| return false; |
| } |
| |
| /// Processes the host linker action. This currently consists of replacing it |
| /// with an offload action if there are device link objects and propagate to |
| /// the host action all the offload kinds used in the current compilation. The |
| /// resulting action is returned. |
| Action *processHostLinkAction(Action *HostAction) { |
| // Add all the dependences from the device linking actions. |
| OffloadAction::DeviceDependences DDeps; |
| for (auto *SB : SpecializedBuilders) { |
| if (!SB->isValid()) |
| continue; |
| |
| SB->appendLinkDependences(DDeps); |
| } |
| |
| // Calculate all the offload kinds used in the current compilation. |
| unsigned ActiveOffloadKinds = 0u; |
| for (auto &I : InputArgToOffloadKindMap) |
| ActiveOffloadKinds |= I.second; |
| |
| // If we don't have device dependencies, we don't have to create an offload |
| // action. |
| if (DDeps.getActions().empty()) { |
| // Propagate all the active kinds to host action. Given that it is a link |
| // action it is assumed to depend on all actions generated so far. |
| HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, |
| /*BoundArch=*/nullptr); |
| return HostAction; |
| } |
| |
| // Create the offload action with all dependences. When an offload action |
| // is created the kinds are propagated to the host action, so we don't have |
| // to do that explicitly here. |
| OffloadAction::HostDependence HDep( |
| *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), |
| /*BoundArch*/ nullptr, ActiveOffloadKinds); |
| return C.MakeAction<OffloadAction>(HDep, DDeps); |
| } |
| }; |
| } // anonymous namespace. |
| |
| void Driver::BuildActions(Compilation &C, DerivedArgList &Args, |
| const InputList &Inputs, ActionList &Actions) const { |
| llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); |
| |
| if (!SuppressMissingInputWarning && Inputs.empty()) { |
| Diag(clang::diag::err_drv_no_input_files); |
| return; |
| } |
| |
| Arg *FinalPhaseArg; |
| phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); |
| |
| if (FinalPhase == phases::Link) { |
| if (Args.hasArg(options::OPT_emit_llvm)) |
| Diag(clang::diag::err_drv_emit_llvm_link); |
| if (IsCLMode() && LTOMode != LTOK_None && |
| !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) |
| Diag(clang::diag::err_drv_lto_without_lld); |
| } |
| |
| // Reject -Z* at the top level, these options should never have been exposed |
| // by gcc. |
| if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) |
| Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); |
| |
| // Diagnose misuse of /Fo. |
| if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { |
| StringRef V = A->getValue(); |
| if (Inputs.size() > 1 && !V.empty() && |
| !llvm::sys::path::is_separator(V.back())) { |
| // Check whether /Fo tries to name an output file for multiple inputs. |
| Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) |
| << A->getSpelling() << V; |
| Args.eraseArg(options::OPT__SLASH_Fo); |
| } |
| } |
| |
| // Diagnose misuse of /Fa. |
| if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { |
| StringRef V = A->getValue(); |
| if (Inputs.size() > 1 && !V.empty() && |
| !llvm::sys::path::is_separator(V.back())) { |
| // Check whether /Fa tries to name an asm file for multiple inputs. |
| Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) |
| << A->getSpelling() << V; |
| Args.eraseArg(options::OPT__SLASH_Fa); |
| } |
| } |
| |
| // Diagnose misuse of /o. |
| if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { |
| if (A->getValue()[0] == '\0') { |
| // It has to have a value. |
| Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; |
| Args.eraseArg(options::OPT__SLASH_o); |
| } |
| } |
| |
| // Diagnose unsupported forms of /Yc /Yu. Ignore /Yc/Yu for now if: |
| // * no filename after it |
| // * both /Yc and /Yu passed but with different filenames |
| // * corresponding file not also passed as /FI |
| Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); |
| Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); |
| if (YcArg && YcArg->getValue()[0] == '\0') { |
| Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YcArg->getSpelling(); |
| Args.eraseArg(options::OPT__SLASH_Yc); |
| YcArg = nullptr; |
| } |
| if (YuArg && YuArg->getValue()[0] == '\0') { |
| Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YuArg->getSpelling(); |
| Args.eraseArg(options::OPT__SLASH_Yu); |
| YuArg = nullptr; |
| } |
| if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { |
| Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); |
| Args.eraseArg(options::OPT__SLASH_Yc); |
| Args.eraseArg(options::OPT__SLASH_Yu); |
| YcArg = YuArg = nullptr; |
| } |
| if (YcArg && Inputs.size() > 1) { |
| Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); |
| Args.eraseArg(options::OPT__SLASH_Yc); |
| YcArg = nullptr; |
| } |
| if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { |
| // If only preprocessing or /Y- is used, all pch handling is disabled. |
| // Rather than check for it everywhere, just remove clang-cl pch-related |
| // flags here. |
| Args.eraseArg(options::OPT__SLASH_Fp); |
| Args.eraseArg(options::OPT__SLASH_Yc); |
| Args.eraseArg(options::OPT__SLASH_Yu); |
| YcArg = YuArg = nullptr; |
| } |
| |
| // Builder to be used to build offloading actions. |
| OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); |
| |
| // Construct the actions to perform. |
| ActionList LinkerInputs; |
| |
| llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; |
| for (auto &I : Inputs) { |
| types::ID InputType = I.first; |
| const Arg *InputArg = I.second; |
| |
| PL.clear(); |
| types::getCompilationPhases(InputType, PL); |
| |
| // If the first step comes after the final phase we are doing as part of |
| // this compilation, warn the user about it. |
| phases::ID InitialPhase = PL[0]; |
| if (InitialPhase > FinalPhase) { |
| if (InputArg->isClaimed()) |
| continue; |
| |
| // Claim here to avoid the more general unused warning. |
| InputArg->claim(); |
| |
| // Suppress all unused style warnings with -Qunused-arguments |
| if (Args.hasArg(options::OPT_Qunused_arguments)) |
| continue; |
| |
| // Special case when final phase determined by binary name, rather than |
| // by a command-line argument with a corresponding Arg. |
| if (CCCIsCPP()) |
| Diag(clang::diag::warn_drv_input_file_unused_by_cpp) |
| << InputArg->getAsString(Args) << getPhaseName(InitialPhase); |
| // Special case '-E' warning on a previously preprocessed file to make |
| // more sense. |
| else if (InitialPhase == phases::Compile && |
| FinalPhase == phases::Preprocess && |
| getPreprocessedType(InputType) == types::TY_INVALID) |
| Diag(clang::diag::warn_drv_preprocessed_input_file_unused) |
| << InputArg->getAsString(Args) << !!FinalPhaseArg |
| << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); |
| else |
| Diag(clang::diag::warn_drv_input_file_unused) |
| << InputArg->getAsString(Args) << getPhaseName(InitialPhase) |
| << !!FinalPhaseArg |
| << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); |
| continue; |
| } |
| |
| if (YcArg) { |
| // Add a separate precompile phase for the compile phase. |
| if (FinalPhase >= phases::Compile) { |
| const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); |
| llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; |
| types::getCompilationPhases(HeaderType, PCHPL); |
| // Build the pipeline for the pch file. |
| Action *ClangClPch = |
| C.MakeAction<InputAction>(*InputArg, HeaderType); |
| for (phases::ID Phase : PCHPL) |
| ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); |
| assert(ClangClPch); |
| Actions.push_back(ClangClPch); |
| // The driver currently exits after the first failed command. This |
| // relies on that behavior, to make sure if the pch generation fails, |
| // the main compilation won't run. |
| // FIXME: If the main compilation fails, the PCH generation should |
| // probably not be considered successful either. |
| } |
| } |
| |
| // Build the pipeline for this file. |
| Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); |
| |
| // Use the current host action in any of the offloading actions, if |
| // required. |
| if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) |
| break; |
| |
| for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end(); |
| i != e; ++i) { |
| phases::ID Phase = *i; |
| |
| // We are done if this step is past what the user requested. |
| if (Phase > FinalPhase) |
| break; |
| |
| // Add any offload action the host action depends on. |
| Current = OffloadBuilder.addDeviceDependencesToHostAction( |
| Current, InputArg, Phase, FinalPhase, PL); |
| if (!Current) |
| break; |
| |
| // Queue linker inputs. |
| if (Phase == phases::Link) { |
| assert((i + 1) == e && "linking must be final compilation step."); |
| LinkerInputs.push_back(Current); |
| Current = nullptr; |
| break; |
| } |
| |
| // Otherwise construct the appropriate action. |
| auto *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); |
| |
| // We didn't create a new action, so we will just move to the next phase. |
| if (NewCurrent == Current) |
| continue; |
| |
| Current = NewCurrent; |
| |
| // Use the current host action in any of the offloading actions, if |
| // required. |
| if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) |
| break; |
| |
| if (Current->getType() == types::TY_Nothing) |
| break; |
| } |
| |
| // If we ended with something, add to the output list. |
| if (Current) |
| Actions.push_back(Current); |
| |
| // Add any top level actions generated for offloading. |
| OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); |
| } |
| |
| // Add a link action if necessary. |
| if (!LinkerInputs.empty()) { |
| Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); |
| LA = OffloadBuilder.processHostLinkAction(LA); |
| Actions.push_back(LA); |
| } |
| |
| // If we are linking, claim any options which are obviously only used for |
| // compilation. |
| if (FinalPhase == phases::Link && PL.size() == 1) { |
| Args.ClaimAllArgs(options::OPT_CompileOnly_Group); |
| Args.ClaimAllArgs(options::OPT_cl_compile_Group); |
| } |
| |
| // Claim ignored clang-cl options. |
| Args.ClaimAllArgs(options::OPT_cl_ignored_Group); |
| |
| // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed |
| // to non-CUDA compilations and should not trigger warnings there. |
| Args.ClaimAllArgs(options::OPT_cuda_host_only); |
| Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); |
| } |
| |
| Action *Driver::ConstructPhaseAction( |
| Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, |
| Action::OffloadKind TargetDeviceOffloadKind) const { |
| llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); |
| |
| // Some types skip the assembler phase (e.g., llvm-bc), but we can't |
| // encode this in the steps because the intermediate type depends on |
| // arguments. Just special case here. |
| if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) |
| return Input; |
| |
| // Build the appropriate action. |
| switch (Phase) { |
| case phases::Link: |
| llvm_unreachable("link action invalid here."); |
| case phases::Preprocess: { |
| types::ID OutputTy; |
| // -{M, MM} alter the output type. |
| if (Args.hasArg(options::OPT_M, options::OPT_MM)) { |
| OutputTy = types::TY_Dependencies; |
| } else { |
| OutputTy = Input->getType(); |
| if (!Args.hasFlag(options::OPT_frewrite_includes, |
| options::OPT_fno_rewrite_includes, false) && |
| !Args.hasFlag(options::OPT_frewrite_imports, |
| options::OPT_fno_rewrite_imports, false) && |
| !CCGenDiagnostics) |
| OutputTy = types::getPreprocessedType(OutputTy); |
| assert(OutputTy != types::TY_INVALID && |
| "Cannot preprocess this input type!"); |
| } |
| return C.MakeAction<PreprocessJobAction>(Input, OutputTy); |
| } |
| case phases::Precompile: { |
| types::ID OutputTy = getPrecompiledType(Input->getType()); |
| assert(OutputTy != types::TY_INVALID && |
| "Cannot precompile this input type!"); |
| if (Args.hasArg(options::OPT_fsyntax_only)) { |
| // Syntax checks should not emit a PCH file |
| OutputTy = types::TY_Nothing; |
| } |
| return C.MakeAction<PrecompileJobAction>(Input, OutputTy); |
| } |
| case phases::Compile: { |
| if (Args.hasArg(options::OPT_fsyntax_only)) |
| return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); |
| if (Args.hasArg(options::OPT_rewrite_objc)) |
| return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); |
| if (Args.hasArg(options::OPT_rewrite_legacy_objc)) |
| return C.MakeAction<CompileJobAction>(Input, |
| types::TY_RewrittenLegacyObjC); |
| if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) |
| return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); |
| if (Args.hasArg(options::OPT__migrate)) |
| return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); |
| if (Args.hasArg(options::OPT_emit_ast)) |
| return C.MakeAction<CompileJobAction>(Input, types::TY_AST); |
| if (Args.hasArg(options::OPT_module_file_info)) |
| return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); |
| if (Args.hasArg(options::OPT_verify_pch)) |
| return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); |
| return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); |
| } |
| case phases::Backend: { |
| if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { |
| types::ID Output = |
| Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; |
| return C.MakeAction<BackendJobAction>(Input, Output); |
| } |
| if (Args.hasArg(options::OPT_emit_llvm)) { |
| types::ID Output = |
| Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; |
| return C.MakeAction<BackendJobAction>(Input, Output); |
| } |
| return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); |
| } |
| case phases::Assemble: |
| return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); |
| } |
| |
| llvm_unreachable("invalid phase in ConstructPhaseAction"); |
| } |
| |
| void Driver::BuildJobs(Compilation &C) const { |
| llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); |
| |
| Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); |
| |
| // It is an error to provide a -o option if we are making multiple output |
| // files. |
| if (FinalOutput) { |
| unsigned NumOutputs = 0; |
| for (const Action *A : C.getActions()) |
| if (A->getType() != types::TY_Nothing) |
| ++NumOutputs; |
| |
| if (NumOutputs > 1) { |
| Diag(clang::diag::err_drv_output_argument_with_multiple_files); |
| FinalOutput = nullptr; |
| } |
| } |
| |
| // Collect the list of architectures. |
| llvm::StringSet<> ArchNames; |
| if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) |
| for (const Arg *A : C.getArgs()) |
| if (A->getOption().matches(options::OPT_arch)) |
| ArchNames.insert(A->getValue()); |
| |
| // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. |
| std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; |
| for (Action *A : C.getActions()) { |
| // If we are linking an image for multiple archs then the linker wants |
| // -arch_multiple and -final_output <final image name>. Unfortunately, this |
| // doesn't fit in cleanly because we have to pass this information down. |
| // |
| // FIXME: This is a hack; find a cleaner way to integrate this into the |
| // process. |
| const char *LinkingOutput = nullptr; |
| if (isa<LipoJobAction>(A)) { |
| if (FinalOutput) |
| LinkingOutput = FinalOutput->getValue(); |
| else |
| LinkingOutput = getDefaultImageName(); |
| } |
| |
| BuildJobsForAction(C, A, &C.getDefaultToolChain(), |
| /*BoundArch*/ StringRef(), |
| /*AtTopLevel*/ true, |
| /*MultipleArchs*/ ArchNames.size() > 1, |
| /*LinkingOutput*/ LinkingOutput, CachedResults, |
| /*TargetDeviceOffloadKind*/ Action::OFK_None); |
| } |
| |
| // If the user passed -Qunused-arguments or there were errors, don't warn |
| // about any unused arguments. |
| if (Diags.hasErrorOccurred() || |
| C.getArgs().hasArg(options::OPT_Qunused_arguments)) |
| return; |
| |
| // Claim -### here. |
| (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); |
| |
| // Claim --driver-mode, --rsp-quoting, it was handled earlier. |
| (void)C.getArgs().hasArg(options::OPT_driver_mode); |
| (void)C.getArgs().hasArg(options::OPT_rsp_quoting); |
| |
| for (Arg *A : C.getArgs()) { |
| // FIXME: It would be nice to be able to send the argument to the |
| // DiagnosticsEngine, so that extra values, position, and so on could be |
| // printed. |
| if (!A->isClaimed()) { |
| if (A->getOption().hasFlag(options::NoArgumentUnused)) |
| continue; |
| |
| // Suppress the warning automatically if this is just a flag, and it is an |
| // instance of an argument we already claimed. |
| const Option &Opt = A->getOption(); |
| if (Opt.getKind() == Option::FlagClass) { |
| bool DuplicateClaimed = false; |
| |
| for (const Arg *AA : C.getArgs().filtered(&Opt)) { |
| if (AA->isClaimed()) { |
| DuplicateClaimed = true; |
| break; |
| } |
| } |
| |
| if (DuplicateClaimed) |
| continue; |
| } |
| |
| // In clang-cl, don't mention unknown arguments here since they have |
| // already been warned about. |
| if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) |
| Diag(clang::diag::warn_drv_unused_argument) |
| << A->getAsString(C.getArgs()); |
| } |
| } |
| } |
| |
| namespace { |
| /// Utility class to control the collapse of dependent actions and select the |
| /// tools accordingly. |
| class ToolSelector final { |
| /// The tool chain this selector refers to. |
| const ToolChain &TC; |
| |
| /// The compilation this selector refers to. |
| const Compilation &C; |
| |
| /// The base action this selector refers to. |
| const JobAction *BaseAction; |
| |
| /// Set to true if the current toolchain refers to host actions. |
| bool IsHostSelector; |
| |
| /// Set to true if save-temps and embed-bitcode functionalities are active. |
| bool SaveTemps; |
| bool EmbedBitcode; |
| |
| /// Get previous dependent action or null if that does not exist. If |
| /// \a CanBeCollapsed is false, that action must be legal to collapse or |
| /// null will be returned. |
| const JobAction *getPrevDependentAction(const ActionList &Inputs, |
| ActionList &SavedOffloadAction, |
| bool CanBeCollapsed = true) { |
| // An option can be collapsed only if it has a single input. |
| if (Inputs.size() != 1) |
| return nullptr; |
| |
| Action *CurAction = *Inputs.begin(); |
| if (CanBeCollapsed && |
| !CurAction->isCollapsingWithNextDependentActionLegal()) |
| return nullptr; |
| |
| // If the input action is an offload action. Look through it and save any |
| // offload action that can be dropped in the event of a collapse. |
| if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { |
| // If the dependent action is a device action, we will attempt to collapse |
| // only with other device actions. Otherwise, we would do the same but |
| // with host actions only. |
| if (!IsHostSelector) { |
| if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { |
| CurAction = |
| OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); |
| if (CanBeCollapsed && |
| !CurAction->isCollapsingWithNextDependentActionLegal()) |
| return nullptr; |
| SavedOffloadAction.push_back(OA); |
| return dyn_cast<JobAction>(CurAction); |
| } |
| } else if (OA->hasHostDependence()) { |
| CurAction = OA->getHostDependence(); |
| if (CanBeCollapsed && |
| !CurAction->isCollapsingWithNextDependentActionLegal()) |
| return nullptr; |
| SavedOffloadAction.push_back(OA); |
| return dyn_cast<JobAction>(CurAction); |
| } |
| return nullptr; |
| } |
| |
| return dyn_cast<JobAction>(CurAction); |
| } |
| |
| /// Return true if an assemble action can be collapsed. |
| bool canCollapseAssembleAction() const { |
| return TC.useIntegratedAs() && !SaveTemps && |
| !C.getArgs().hasArg(options::OPT_via_file_asm) && |
| !C.getArgs().hasArg(options::OPT__SLASH_FA) && |
| !C.getArgs().hasArg(options::OPT__SLASH_Fa); |
| } |
| |
| /// Return true if a preprocessor action can be collapsed. |
| bool canCollapsePreprocessorAction() const { |
| return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && |
| !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && |
| !C.getArgs().hasArg(options::OPT_rewrite_objc); |
| } |
| |
| /// Struct that relates an action with the offload actions that would be |
| /// collapsed with it. |
| struct JobActionInfo final { |
| /// The action this info refers to. |
| const JobAction *JA = nullptr; |
| /// The offload actions we need to take care off if this action is |
| /// collapsed. |
| ActionList SavedOffloadAction; |
| }; |
| |
| /// Append collapsed offload actions from the give nnumber of elements in the |
| /// action info array. |
| static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, |
| ArrayRef<JobActionInfo> &ActionInfo, |
| unsigned ElementNum) { |
| assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); |
| for (unsigned I = 0; I < ElementNum; ++I) |
| CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), |
| ActionInfo[I].SavedOffloadAction.end()); |
| } |
| |
| /// Functions that attempt to perform the combining. They detect if that is |
| /// legal, and if so they update the inputs \a Inputs and the offload action |
| /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with |
| /// the combined action is returned. If the combining is not legal or if the |
| /// tool does not exist, null is returned. |
| /// Currently three kinds of collapsing are supported: |
| /// - Assemble + Backend + Compile; |
| /// - Assemble + Backend ; |
| /// - Backend + Compile. |
| const Tool * |
| combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, |
| const ActionList *&Inputs, |
| ActionList &CollapsedOffloadAction) { |
| if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) |
| return nullptr; |
| auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); |
| auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); |
| auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); |
| if (!AJ || !BJ || !CJ) |
| return nullptr; |
| |
| // Get compiler tool. |
| const Tool *T = TC.SelectTool(*CJ); |
| if (!T) |
| return nullptr; |
| |
| // When using -fembed-bitcode, it is required to have the same tool (clang) |
| // for both CompilerJA and BackendJA. Otherwise, combine two stages. |
| if (EmbedBitcode) { |
| const Tool *BT = TC.SelectTool(*BJ); |
| if (BT == T) |
| return nullptr; |
| } |
| |
| if (!T->hasIntegratedAssembler()) |
| return nullptr; |
| |
| Inputs = &CJ->getInputs(); |
| AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, |
| /*NumElements=*/3); |
| return T; |
| } |
| const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, |
| const ActionList *&Inputs, |
| ActionList &CollapsedOffloadAction) { |
| if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) |
| return nullptr; |
| auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); |
| auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); |
| if (!AJ || !BJ) |
| return nullptr; |
| |
| // Retrieve the compile job, backend action must always be preceded by one. |
| ActionList CompileJobOffloadActions; |
| auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions, |
| /*CanBeCollapsed=*/false); |
| if (!AJ || !BJ || !CJ) |
| return nullptr; |
| |
| assert(isa<CompileJobAction>(CJ) && |
| "Expecting compile job preceding backend job."); |
| |
| // Get compiler tool. |
| const Tool *T = TC.SelectTool(*CJ); |
| if (!T) |
| return nullptr; |
| |
| if (!T->hasIntegratedAssembler()) |
| return nullptr; |
| |
| Inputs = &BJ->getInputs(); |
| AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, |
| /*NumElements=*/2); |
| return T; |
| } |
| const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, |
| const ActionList *&Inputs, |
| ActionList &CollapsedOffloadAction) { |
| if (ActionInfo.size() < 2) |
| return nullptr; |
| auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); |
| auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); |
| if (!BJ || !CJ) |
| return nullptr; |
| |
| // Check if the initial input (to the compile job or its predessor if one |
| // exists) is LLVM bitcode. In that case, no preprocessor step is required |
| // and we can still collapse the compile and backend jobs when we have |
| // -save-temps. I.e. there is no need for a separate compile job just to |
| // emit unoptimized bitcode. |
| bool InputIsBitcode = true; |
| for (size_t i = 1; i < ActionInfo.size(); i++) |
| if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && |
| ActionInfo[i].JA->getType() != types::TY_LTO_BC) { |
| InputIsBitcode = false; |
| break; |
| } |
| if (!InputIsBitcode && !canCollapsePreprocessorAction()) |
| return nullptr; |
| |
| // Get compiler tool. |
| const Tool *T = TC.SelectTool(*CJ); |
| if (!T) |
| return nullptr; |
| |
| if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) |
| return nullptr; |
| |
| Inputs = &CJ->getInputs(); |
| AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, |
| /*NumElements=*/2); |
| return T; |
| } |
| |
| /// Updates the inputs if the obtained tool supports combining with |
| /// preprocessor action, and the current input is indeed a preprocessor |
| /// action. If combining results in the collapse of offloading actions, those |
| /// are appended to \a CollapsedOffloadAction. |
| void combineWithPreprocessor(const Tool *T, const ActionList *&Inputs, |
| ActionList &CollapsedOffloadAction) { |
| if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) |
| return; |
| |
| // Attempt to get a preprocessor action dependence. |
| ActionList PreprocessJobOffloadActions; |
| auto *PJ = getPrevDependentAction(*Inputs, PreprocessJobOffloadActions); |
| if (!PJ || !isa<PreprocessJobAction>(PJ)) |
| return; |
| |
| // This is legal to combine. Append any offload action we found and set the |
| // current inputs to preprocessor inputs. |
| CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), |
| PreprocessJobOffloadActions.end()); |
| Inputs = &PJ->getInputs(); |
| } |
| |
| public: |
| ToolSelector(const JobAction *BaseAction, const ToolChain &TC, |
| const Compilation &C, bool SaveTemps, bool EmbedBitcode) |
| : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), |
| EmbedBitcode(EmbedBitcode) { |
| assert(BaseAction && "Invalid base action."); |
| IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; |
| } |
| |
| /// Check if a chain of actions can be combined and return the tool that can |
| /// handle the combination of actions. The pointer to the current inputs \a |
| /// Inputs and the list of offload actions \a CollapsedOffloadActions |
| /// connected to collapsed actions are updated accordingly. The latter enables |
| /// the caller of the selector to process them afterwards instead of just |
| /// dropping them. If no suitable tool is found, null will be returned. |
| const Tool *getTool(const ActionList *&Inputs, |
| ActionList &CollapsedOffloadAction) { |
| // |
| // Get the largest chain of actions that we could combine. |
| // |
| |
| SmallVector<JobActionInfo, 5> ActionChain(1); |
| ActionChain.back().JA = BaseAction; |
| while (ActionChain.back().JA) { |
| const Action *CurAction = ActionChain.back().JA; |
| |
| // Grow the chain by one element. |
| ActionChain.resize(ActionChain.size() + 1); |
| JobActionInfo &AI = ActionChain.back(); |
| |
| // Attempt to fill it with the |
| AI.JA = |
| getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); |
| } |
| |
| // Pop the last action info as it could not be filled. |
| ActionChain.pop_back(); |
| |
| // |
| // Attempt to combine actions. If all combining attempts failed, just return |
| // the tool of the provided action. At the end we attempt to combine the |
| // action with any preprocessor action it may depend on. |
| // |
| |
| const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, |
| CollapsedOffloadAction); |
| if (!T) |
| T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); |
| if (!T) |
| T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); |
| if (!T) { |
| Inputs = &BaseAction->getInputs(); |
| T = TC.SelectTool(*BaseAction); |
| } |
| |
| combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); |
| return T; |
| } |
| }; |
| } |
| |
| /// Return a string that uniquely identifies the result of a job. The bound arch |
| /// is not necessarily represented in the toolchain's triple -- for example, |
| /// armv7 and armv7s both map to the same triple -- so we need both in our map. |
| /// Also, we need to add the offloading device kind, as the same tool chain can |
| /// be used for host and device for some programming models, e.g. OpenMP. |
| static std::string GetTriplePlusArchString(const ToolChain *TC, |
| StringRef BoundArch, |
| Action::OffloadKind OffloadKind) { |
| std::string TriplePlusArch = TC->getTriple().normalize(); |
| if (!BoundArch.empty()) { |
| TriplePlusArch += "-"; |
| TriplePlusArch += BoundArch; |
| } |
| TriplePlusArch += "-"; |
| TriplePlusArch += Action::GetOffloadKindName(OffloadKind); |
| return TriplePlusArch; |
| } |
| |
| InputInfo Driver::BuildJobsForAction( |
| Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, |
| bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, |
| std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, |
| Action::OffloadKind TargetDeviceOffloadKind) const { |
| std::pair<const Action *, std::string> ActionTC = { |
| A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; |
| auto CachedResult = CachedResults.find(ActionTC); |
| if (CachedResult != CachedResults.end()) { |
| return CachedResult->second; |
| } |
| InputInfo Result = BuildJobsForActionNoCache( |
| C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, |
| CachedResults, TargetDeviceOffloadKind); |
| CachedResults[ActionTC] = Result; |
| return Result; |
| } |
| |
| InputInfo Driver::BuildJobsForActionNoCache( |
| Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, |
| bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, |
| std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, |
| Action::OffloadKind TargetDeviceOffloadKind) const { |
| llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); |
| |
| InputInfoList OffloadDependencesInputInfo; |
| bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; |
| if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { |
| // The 'Darwin' toolchain is initialized only when its arguments are |
| // computed. Get the default arguments for OFK_None to ensure that |
| // initialization is performed before processing the offload action. |
| // FIXME: Remove when darwin's toolchain is initialized during construction. |
| C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); |
| |
| // The offload action is expected to be used in four different situations. |
| // |
| // a) Set a toolchain/architecture/kind for a host action: |
| // Host Action 1 -> OffloadAction -> Host Action 2 |
| // |
| // b) Set a toolchain/architecture/kind for a device action; |
| // Device Action 1 -> OffloadAction -> Device Action 2 |
| // |
| // c) Specify a device dependence to a host action; |
| // Device Action 1 _ |
| // \ |
| // Host Action 1 ---> OffloadAction -> Host Action 2 |
| // |
| // d) Specify a host dependence to a device action. |
| // Host Action 1 _ |
| // \ |
| // Device Action 1 ---> OffloadAction -> Device Action 2 |
| // |
| // For a) and b), we just return the job generated for the dependence. For |
| // c) and d) we override the current action with the host/device dependence |
| // if the current toolchain is host/device and set the offload dependences |
| // info with the jobs obtained from the device/host dependence(s). |
| |
| // If there is a single device option, just generate the job for it. |
| if (OA->hasSingleDeviceDependence()) { |
| InputInfo DevA; |
| OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, |
| const char *DepBoundArch) { |
| DevA = |
| BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, |
| /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, |
| CachedResults, DepA->getOffloadingDeviceKind()); |
| }); |
| return DevA; |
| } |
| |
| // If 'Action 2' is host, we generate jobs for the device dependences and |
| // override the current action with the host dependence. Otherwise, we |
| // generate the host dependences and override the action with the device |
| // dependence. The dependences can't therefore be a top-level action. |
| OA->doOnEachDependence( |
| /*IsHostDependence=*/BuildingForOffloadDevice, |
| [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { |
| OffloadDependencesInputInfo.push_back(BuildJobsForAction( |
| C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, |
| /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, |
| DepA->getOffloadingDeviceKind())); |
| }); |
| |
| A = BuildingForOffloadDevice |
| ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) |
| : OA->getHostDependence(); |
| } |
| |
| if (const InputAction *IA = dyn_cast<InputAction>(A)) { |
| // FIXME: It would be nice to not claim this here; maybe the old scheme of |
| // just using Args was better? |
| const Arg &Input = IA->getInputArg(); |
| Input.claim(); |
| if (Input.getOption().matches(options::OPT_INPUT)) { |
| const char *Name = Input.getValue(); |
| return InputInfo(A, Name, /* BaseInput = */ Name); |
| } |
| return InputInfo(A, &Input, /* BaseInput = */ ""); |
| } |
| |
| if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { |
| const ToolChain *TC; |
| StringRef ArchName = BAA->getArchName(); |
| |
| if (!ArchName.empty()) |
| TC = &getToolChain(C.getArgs(), |
| computeTargetTriple(*this, TargetTriple, |
| C.getArgs(), ArchName)); |
| else |
| TC = &C.getDefaultToolChain(); |
| |
| return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, |
| MultipleArchs, LinkingOutput, CachedResults, |
| TargetDeviceOffloadKind); |
| } |
| |
| |
| const ActionList *Inputs = &A->getInputs(); |
| |
| const JobAction *JA = cast<JobAction>(A); |
| ActionList CollapsedOffloadActions; |
| |
| ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), |
| embedBitcodeInObject() && !isUsingLTO()); |
| const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); |
| |
| if (!T) |
| return InputInfo(); |
| |
| // If we've collapsed action list that contained OffloadAction we |
| // need to build jobs for host/device-side inputs it may have held. |
| for (const auto *OA : CollapsedOffloadActions) |
| cast<OffloadAction>(OA)->doOnEachDependence( |
| /*IsHostDependence=*/BuildingForOffloadDevice, |
| [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { |
| OffloadDependencesInputInfo.push_back(BuildJobsForAction( |
| C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, |
| /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, |
| DepA->getOffloadingDeviceKind())); |
| }); |
| |
| // Only use pipes when there is exactly one input. |
| InputInfoList InputInfos; |
| for (const Action *Input : *Inputs) { |
| // Treat dsymutil and verify sub-jobs as being at the top-level too, they |
| // shouldn't get temporary output names. |
| // FIXME: Clean this up. |
| bool SubJobAtTopLevel = |
| AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); |
| InputInfos.push_back(BuildJobsForAction( |
| C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, |
| CachedResults, A->getOffloadingDeviceKind())); |
| } |
| |
| // Always use the first input as the base input. |
| const char *BaseInput = InputInfos[0].getBaseInput(); |
| |
| // ... except dsymutil actions, which use their actual input as the base |
| // input. |
| if (JA->getType() == types::TY_dSYM) |
| BaseInput = InputInfos[0].getFilename(); |
| |
| // Append outputs of offload device jobs to the input list |
| if (!OffloadDependencesInputInfo.empty()) |
| InputInfos.append(OffloadDependencesInputInfo.begin(), |
| OffloadDependencesInputInfo.end()); |
| |
| // Set the effective triple of the toolchain for the duration of this job. |
| llvm::Triple EffectiveTriple; |
| const ToolChain &ToolTC = T->getToolChain(); |
| const ArgList &Args = |
| C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); |
| if (InputInfos.size() != 1) { |
| EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); |
| } else { |
| // Pass along the input type if it can be unambiguously determined. |
| EffectiveTriple = llvm::Triple( |
| ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); |
| } |
| RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); |
| |
| // Determine the place to write output to, if any. |
| InputInfo Result; |
| InputInfoList UnbundlingResults; |
| if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { |
| // If we have an unbundling job, we need to create results for all the |
| // outputs. We also update the results cache so that other actions using |
| // this unbundling action can get the right results. |
| for (auto &UI : UA->getDependentActionsInfo()) { |
| assert(UI.DependentOffloadKind != Action::OFK_None && |
| "Unbundling with no offloading??"); |
| |
| // Unbundling actions are never at the top level. When we generate the |
| // offloading prefix, we also do that for the host file because the |
| // unbundling action does not change the type of the output which can |
| // cause a overwrite. |
| std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( |
| UI.DependentOffloadKind, |
| UI.DependentToolChain->getTriple().normalize(), |
| /*CreatePrefixForHost=*/true); |
| auto CurI = InputInfo( |
| UA, |
| GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, |
| /*AtTopLevel=*/false, |
| MultipleArchs || |
| UI.DependentOffloadKind == Action::OFK_HIP, |
| OffloadingPrefix), |
| BaseInput); |
| // Save the unbundling result. |
| UnbundlingResults.push_back(CurI); |
| |
| // Get the unique string identifier for this dependence and cache the |
| // result. |
| StringRef Arch; |
| if (TargetDeviceOffloadKind == Action::OFK_HIP) { |
| if (UI.DependentOffloadKind == Action::OFK_Host) |
| Arch = StringRef(); |
| else |
| Arch = UI.DependentBoundArch; |
| } else |
| Arch = BoundArch; |
| |
| CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, |
| UI.DependentOffloadKind)}] = |
| CurI; |
| } |
| |
| // Now that we have all the results generated, select the one that should be |
| // returned for the current depending action. |
| std::pair<const Action *, std::string> ActionTC = { |
| A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; |
| assert(CachedResults.find(ActionTC) != CachedResults.end() && |
| "Result does not exist??"); |
| Result = CachedResults[ActionTC]; |
| } else if (JA->getType() == types::TY_Nothing) |
| Result = InputInfo(A, BaseInput); |
| else { |
| // We only have to generate a prefix for the host if this is not a top-level |
| // action. |
| std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( |
| A->getOffloadingDeviceKind(), TC->getTriple().normalize(), |
| /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && |
| !AtTopLevel); |
| Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, |
| AtTopLevel, MultipleArchs, |
| OffloadingPrefix), |
| BaseInput); |
| } |
| |
| if (CCCPrintBindings && !CCGenDiagnostics) { |
| llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' |
| << " - \"" << T->getName() << "\", inputs: ["; |
| for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { |
| llvm::errs() << InputInfos[i].getAsString(); |
| if (i + 1 != e) |
| llvm::errs() << ", "; |
| } |
| if (UnbundlingResults.empty()) |
| llvm::errs() << "], output: " << Result.getAsString() << "\n"; |
| else { |
| llvm::errs() << "], outputs: ["; |
| for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { |
| llvm::errs() << UnbundlingResults[i].getAsString(); |
| if (i + 1 != e) |
| llvm::errs() << ", "; |
| } |
| llvm::errs() << "] \n"; |
| } |
| } else { |
| if (UnbundlingResults.empty()) |
| T->ConstructJob( |
| C, *JA, Result, InputInfos, |
| C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), |
| LinkingOutput); |
| else |
| T->ConstructJobMultipleOutputs( |
| C, *JA, UnbundlingResults, InputInfos, |
| C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), |
| LinkingOutput); |
| } |
| return Result; |
| } |
| |
| const char *Driver::getDefaultImageName() const { |
| llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); |
| return Target.isOSWindows() ? "a.exe" : "a.out"; |
| } |
| |
| /// Create output filename based on ArgValue, which could either be a |
| /// full filename, filename without extension, or a directory. If ArgValue |
| /// does not provide a filename, then use BaseName, and use the extension |
| /// suitable for FileType. |
| static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, |
| StringRef BaseName, |
| types::ID FileType) { |
| SmallString<128> Filename = ArgValue; |
| |
| if (ArgValue.empty()) { |
| // If the argument is empty, output to BaseName in the current dir. |
| Filename = BaseName; |
| } else if (llvm::sys::path::is_separator(Filename.back())) { |
| // If the argument is a directory, output to BaseName in that dir. |
| llvm::sys::path::append(Filename, BaseName); |
| } |
| |
| if (!llvm::sys::path::has_extension(ArgValue)) { |
| // If the argument didn't provide an extension, then set it. |
| const char *Extension = types::getTypeTempSuffix(FileType, true); |
| |
| if (FileType == types::TY_Image && |
| Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { |
| // The output file is a dll. |
| Extension = "dll"; |
| } |
| |
| llvm::sys::path::replace_extension(Filename, Extension); |
| } |
| |
| return Args.MakeArgString(Filename.c_str()); |
| } |
| |
| const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, |
| const char *BaseInput, |
| StringRef BoundArch, bool AtTopLevel, |
| bool MultipleArchs, |
| StringRef OffloadingPrefix) const { |
| llvm::PrettyStackTraceString CrashInfo("Computing output path"); |
| // Output to a user requested destination? |
| if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { |
| if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) |
| return C.addResultFile(FinalOutput->getValue(), &JA); |
| } |
| |
| // For /P, preprocess to file named after BaseInput. |
| if (C.getArgs().hasArg(options::OPT__SLASH_P)) { |
| assert(AtTopLevel && isa<PreprocessJobAction>(JA)); |
| StringRef BaseName = llvm::sys::path::filename(BaseInput); |
| StringRef NameArg; |
| if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) |
| NameArg = A->getValue(); |
| return C.addResultFile( |
| MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), |
| &JA); |
| } |
| |
| // Default to writing to stdout? |
| if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) |
| return "-"; |
| |
| // Is this the assembly listing for /FA? |
| if (JA.getType() == types::TY_PP_Asm && |
| (C.getArgs().hasArg(options::OPT__SLASH_FA) || |
| C.getArgs().hasArg(options::OPT__SLASH_Fa))) { |
| // Use /Fa and the input filename to determine the asm file name. |
| StringRef BaseName = llvm::sys::path::filename(BaseInput); |
| StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); |
| return C.addResultFile( |
| MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), |
| &JA); |
| } |
| |
| // Output to a temporary file? |
| if ((!AtTopLevel && !isSaveTempsEnabled() && |
| !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || |
| CCGenDiagnostics) { |
| StringRef Name = llvm::sys::path::filename(BaseInput); |
| std::pair<StringRef, StringRef> Split = Name.split('.'); |
| SmallString<128> TmpName; |
| const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); |
| Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); |
| if (CCGenDiagnostics && A) { |
| SmallString<128> CrashDirectory(A->getValue()); |
| llvm::sys::path::append(CrashDirectory, Split.first); |
| const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; |
| std::error_code EC = |
| llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName); |
| if (EC) { |
| Diag(clang::diag::err_unable_to_make_temp) << EC.message(); |
| return ""; |
| } |
| } else { |
| TmpName = GetTemporaryPath(Split.first, Suffix); |
| } |
| return C.addTempFile(C.getArgs().MakeArgString(TmpName)); |
| } |
| |
| SmallString<128> BasePath(BaseInput); |
| StringRef BaseName; |
| |
| // Dsymutil actions should use the full path. |
| if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) |
| BaseName = BasePath; |
| else |
| BaseName = llvm::sys::path::filename(BasePath); |
| |
| // Determine what the derived output name should be. |
| const char *NamedOutput; |
| |
| if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && |
| C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { |
| // The /Fo or /o flag decides the object filename. |
| StringRef Val = |
| C.getArgs() |
| .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) |
| ->getValue(); |
| NamedOutput = |
| MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); |
| } else if (JA.getType() == types::TY_Image && |
| C.getArgs().hasArg(options::OPT__SLASH_Fe, |
| options::OPT__SLASH_o)) { |
| // The /Fe or /o flag names the linked file. |
| StringRef Val = |
| C.getArgs() |
| .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) |
| ->getValue(); |
| NamedOutput = |
| MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); |
| } else if (JA.getType() == types::TY_Image) { |
| if (IsCLMode()) { |
| // clang-cl uses BaseName for the executable name. |
| NamedOutput = |
| MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); |
| } else { |
| SmallString<128> Output(getDefaultImageName()); |
| Output += OffloadingPrefix; |
| if (MultipleArchs && !BoundArch.empty()) { |
| Output += "-"; |
| Output.append(BoundArch); |
| } |
| NamedOutput = C.getArgs().MakeArgString(Output.c_str()); |
| } |
| } else if (JA.getType() == types::TY_PCH && IsCLMode()) { |
| NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); |
| } else { |
| const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); |
| assert(Suffix && "All types used for output should have a suffix."); |
| |
| std::string::size_type End = std::string::npos; |
| if (!types::appendSuffixForType(JA.getType())) |
| End = BaseName.rfind('.'); |
| SmallString<128> Suffixed(BaseName.substr(0, End)); |
| Suffixed += OffloadingPrefix; |
| if (MultipleArchs && !BoundArch.empty()) { |
| Suffixed += "-"; |
| Suffixed.append(BoundArch); |
| } |
| // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for |
| // the unoptimized bitcode so that it does not get overwritten by the ".bc" |
| // optimized bitcode output. |
| if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && |
| JA.getType() == types::TY_LLVM_BC) |
| Suffixed += ".tmp"; |
| Suffixed += '.'; |
| Suffixed += Suffix; |
| NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); |
| } |
| |
| // Prepend object file path if -save-temps=obj |
| if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && |
| JA.getType() != types::TY_PCH) { |
| Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); |
| SmallString<128> TempPath(FinalOutput->getValue()); |
| llvm::sys::path::remove_filename(TempPath); |
| StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); |
| llvm::sys::path::append(TempPath, OutputFileName); |
| NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); |
| } |
| |
| // If we're saving temps and the temp file conflicts with the input file, |
| // then avoid overwriting input file. |
| if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { |
| bool SameFile = false; |
| SmallString<256> Result; |
| llvm::sys::fs::current_path(Result); |
| llvm::sys::path::append(Result, BaseName); |
| llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); |
| // Must share the same path to conflict. |
| if (SameFile) { |
| StringRef Name = llvm::sys::path::filename(BaseInput); |
| std::pair<StringRef, StringRef> Split = Name.split('.'); |
| std::string TmpName = GetTemporaryPath( |
| Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); |
| return C.addTempFile(C.getArgs().MakeArgString(TmpName)); |
| } |
| } |
| |
| // As an annoying special case, PCH generation doesn't strip the pathname. |
| if (JA.getType() == types::TY_PCH && !IsCLMode()) { |
| llvm::sys::path::remove_filename(BasePath); |
| if (BasePath.empty()) |
| BasePath = NamedOutput; |
| else |
| llvm::sys::path::append(BasePath, NamedOutput); |
| return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); |
| } else { |
| return C.addResultFile(NamedOutput, &JA); |
| } |
| } |
| |
| std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { |
| // Respect a limited subset of the '-Bprefix' functionality in GCC by |
| // attempting to use this prefix when looking for file paths. |
| for (const std::string &Dir : PrefixDirs) { |
| if (Dir.empty()) |
| continue; |
| SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); |
| llvm::sys::path::append(P, Name); |
| if (llvm::sys::fs::exists(Twine(P))) |
| return P.str(); |
| } |
| |
| SmallString<128> R(ResourceDir); |
| llvm::sys::path::append(R, Name); |
| if (llvm::sys::fs::exists(Twine(R))) |
| return R.str(); |
| |
| SmallString<128> P(TC.getCompilerRTPath()); |
| llvm::sys::path::append(P, Name); |
| if (llvm::sys::fs::exists(Twine(P))) |
| return P.str(); |
| |
| for (const std::string &Dir : TC.getFilePaths()) { |
| if (Dir.empty()) |
| continue; |
| SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); |
| llvm::sys::path::append(P, Name); |
| if (llvm::sys::fs::exists(Twine(P))) |
| return P.str(); |
| } |
| |
| return Name; |
| } |
| |
| void Driver::generatePrefixedToolNames( |
| StringRef Tool, const ToolChain &TC, |
| SmallVectorImpl<std::string> &Names) const { |
| // FIXME: Needs a better variable than TargetTriple |
| Names.emplace_back((TargetTriple + "-" + Tool).str()); |
| Names.emplace_back(Tool); |
| |
| // Allow the discovery of tools prefixed with LLVM's default target triple. |
| std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); |
| if (DefaultTargetTriple != TargetTriple) |
| Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); |
| } |
| |
| static bool ScanDirForExecutable(SmallString<128> &Dir, |
| ArrayRef<std::string> Names) { |
| for (const auto &Name : Names) { |
| llvm::sys::path::append(Dir, Name); |
| if (llvm::sys::fs::can_execute(Twine(Dir))) |
| return true; |
| llvm::sys::path::remove_filename(Dir); |
| } |
| return false; |
| } |
| |
| std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { |
| SmallVector<std::string, 2> TargetSpecificExecutables; |
| generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); |
| |
| // Respect a limited subset of the '-Bprefix' functionality in GCC by |
| // attempting to use this prefix when looking for program paths. |
| for (const auto &PrefixDir : PrefixDirs) { |
| if (llvm::sys::fs::is_directory(PrefixDir)) { |
| SmallString<128> P(PrefixDir); |
| if (ScanDirForExecutable(P, TargetSpecificExecutables)) |
| return P.str(); |
| } else { |
| SmallString<128> P((PrefixDir + Name).str()); |
| if (llvm::sys::fs::can_execute(Twine(P))) |
| return P.str(); |
| } |
| } |
| |
| const ToolChain::path_list &List = TC.getProgramPaths(); |
| for (const auto &Path : List) { |
| SmallString<128> P(Path); |
| if (ScanDirForExecutable(P, TargetSpecificExecutables)) |
| return P.str(); |
| } |
| |
| // If all else failed, search the path. |
| for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) |
| if (llvm::ErrorOr<std::string> P = |
| llvm::sys::findProgramByName(TargetSpecificExecutable)) |
| return *P; |
| |
| return Name; |
| } |
| |
| std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { |
| SmallString<128> Path; |
| std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); |
| if (EC) { |
| Diag(clang::diag::err_unable_to_make_temp) << EC.message(); |
| return ""; |
| } |
| |
| return Path.str(); |
| } |
| |
| std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { |
| SmallString<128> Output; |
| if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { |
| // FIXME: If anybody needs it, implement this obscure rule: |
| // "If you specify a directory without a file name, the default file name |
| // is VCx0.pch., where x is the major version of Visual C++ in use." |
| Output = FpArg->getValue(); |
| |
| // "If you do not specify an extension as part of the path name, an |
| // extension of .pch is assumed. " |
| if (!llvm::sys::path::has_extension(Output)) |
| Output += ".pch"; |
| } else if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) { |
| Output = YcArg->getValue(); |
| llvm::sys::path::replace_extension(Output, ".pch"); |
| } else { |
| Output = BaseName; |
| llvm::sys::path::replace_extension(Output, ".pch"); |
| } |
| return Output.str(); |
| } |
| |
| const ToolChain &Driver::getToolChain(const ArgList &Args, |
| const llvm::Triple &Target) const { |
| |
| auto &TC = ToolChains[Target.str()]; |
| if (!TC) { |
| switch (Target.getOS()) { |
| case llvm::Triple::Haiku: |
| TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args); |
| break; |
| case llvm::Triple::Ananas: |
| TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args); |
| break; |
| case llvm::Triple::CloudABI: |
| TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args); |
| break; |
| case llvm::Triple::Darwin: |
| case llvm::Triple::MacOSX: |
| case llvm::Triple::IOS: |
| case llvm::Triple::TvOS: |
| case llvm::Triple::WatchOS: |
| TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args); |
| break; |
| case llvm::Triple::DragonFly: |
| TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args); |
| break; |
| case llvm::Triple::OpenBSD: |
| TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args); |
| break; |
| case llvm::Triple::NetBSD: |
| TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args); |
| break; |
| case llvm::Triple::FreeBSD: |
| TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args); |
| break; |
| case llvm::Triple::Minix: |
| TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args); |
| break; |
| case llvm::Triple::Linux: |
| case llvm::Triple::ELFIAMCU: |
| if (Target.getArch() == llvm::Triple::hexagon) |
| TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, |
| Args); |
| else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && |
| !Target.hasEnvironment()) |
| TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, |
| Args); |
| else |
| TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args); |
| break; |
| case llvm::Triple::NaCl: |
| TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::Fuchsia: |
| TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args); |
| break; |
| case llvm::Triple::Solaris: |
| TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args); |
| break; |
| case llvm::Triple::AMDHSA: |
| TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::Win32: |
| switch (Target.getEnvironment()) { |
| default: |
| if (Target.isOSBinFormatELF()) |
| TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); |
| else if (Target.isOSBinFormatMachO()) |
| TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); |
| else |
| TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); |
| break; |
| case llvm::Triple::GNU: |
| TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args); |
| break; |
| case llvm::Triple::Itanium: |
| TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, |
| Args); |
| break; |
| case llvm::Triple::MSVC: |
| case llvm::Triple::UnknownEnvironment: |
| if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) |
| .startswith_lower("bfd")) |
| TC = llvm::make_unique<toolchains::CrossWindowsToolChain>( |
| *this, Target, Args); |
| else |
| TC = |
| llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); |
| break; |
| } |
| break; |
| case llvm::Triple::PS4: |
| TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args); |
| break; |
| case llvm::Triple::Contiki: |
| TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args); |
| break; |
| default: |
| // Of these targets, Hexagon is the only one that might have |
| // an OS of Linux, in which case it got handled above already. |
| switch (Target.getArch()) { |
| case llvm::Triple::tce: |
| TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::tcele: |
| TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::hexagon: |
| TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, |
| Args); |
| break; |
| case llvm::Triple::lanai: |
| TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::xcore: |
| TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::wasm32: |
| case llvm::Triple::wasm64: |
| TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args); |
| break; |
| case llvm::Triple::avr: |
| TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args); |
| break; |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); |
| break; |
| default: |
| if (Target.getVendor() == llvm::Triple::Myriad) |
| TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target, |
| Args); |
| else if (toolchains::BareMetal::handlesTarget(Target)) |
| TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args); |
| else if (Target.isOSBinFormatELF()) |
| TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); |
| else if (Target.isOSBinFormatMachO()) |
| TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); |
| else |
| TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); |
| } |
| } |
| } |
| |
| // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA |
| // compiles always need two toolchains, the CUDA toolchain and the host |
| // toolchain. So the only valid way to create a CUDA toolchain is via |
| // CreateOffloadingDeviceToolChains. |
| |
| return *TC; |
| } |
| |
| bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { |
| // Say "no" if there is not exactly one input of a type clang understands. |
| if (JA.size() != 1 || |
| !types::isAcceptedByClang((*JA.input_begin())->getType())) |
| return false; |
| |
| // And say "no" if this is not a kind of action clang understands. |
| if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && |
| !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) |
| return false; |
| |
| return true; |
| } |
| |
| /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the |
| /// grouped values as integers. Numbers which are not provided are set to 0. |
| /// |
| /// \return True if the entire string was parsed (9.2), or all groups were |
| /// parsed (10.3.5extrastuff). |
| bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, |
| unsigned &Micro, bool &HadExtra) { |
| HadExtra = false; |
| |
| Major = Minor = Micro = 0; |
| if (Str.empty()) |
| return false; |
| |
| if (Str.consumeInteger(10, Major)) |
| return false; |
| if (Str.empty()) |
| return true; |
| if (Str[0] != '.') |
| return false; |
| |
| Str = Str.drop_front(1); |
| |
| if (Str.consumeInteger(10, Minor)) |
| return false; |
| if (Str.empty()) |
| return true; |
| if (Str[0] != '.') |
| return false; |
| Str = Str.drop_front(1); |
| |
| if (Str.consumeInteger(10, Micro)) |
| return false; |
| if (!Str.empty()) |
| HadExtra = true; |
| return true; |
| } |
| |
| /// Parse digits from a string \p Str and fulfill \p Digits with |
| /// the parsed numbers. This method assumes that the max number of |
| /// digits to look for is equal to Digits.size(). |
| /// |
| /// \return True if the entire string was parsed and there are |
| /// no extra characters remaining at the end. |
| bool Driver::GetReleaseVersion(StringRef Str, |
| MutableArrayRef<unsigned> Digits) { |
| if (Str.empty()) |
| return false; |
| |
| unsigned CurDigit = 0; |
| while (CurDigit < Digits.size()) { |
| unsigned Digit; |
| if (Str.consumeInteger(10, Digit)) |
| return false; |
| Digits[CurDigit] = Digit; |
| if (Str.empty()) |
| return true; |
| if (Str[0] != '.') |
| return false; |
| Str = Str.drop_front(1); |
| CurDigit++; |
| } |
| |
| // More digits than requested, bail out... |
| return false; |
| } |
| |
| std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const { |
| unsigned IncludedFlagsBitmask = 0; |
| unsigned ExcludedFlagsBitmask = options::NoDriverOption; |
| |
| if (Mode == CLMode) { |
| // Include CL and Core options. |
| IncludedFlagsBitmask |= options::CLOption; |
| IncludedFlagsBitmask |= options::CoreOption; |
| } else { |
| ExcludedFlagsBitmask |= options::CLOption; |
| } |
| |
| return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); |
| } |
| |
| bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { |
| return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); |
| } |