| //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "gtest/gtest.h" |
| #include <limits> |
| #include <vector> |
| using namespace llvm; |
| |
| // Check that the ArrayRef-of-pointer converting constructor only allows adding |
| // cv qualifiers (not removing them, or otherwise changing the type) |
| static_assert( |
| std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value, |
| "Adding const"); |
| static_assert( |
| std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value, |
| "Adding volatile"); |
| static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value, |
| "Changing pointer of one type to a pointer of another"); |
| static_assert( |
| !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value, |
| "Removing const"); |
| static_assert( |
| !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value, |
| "Removing volatile"); |
| |
| // Check that we can't accidentally assign a temporary location to an ArrayRef. |
| // (Unfortunately we can't make use of the same thing with constructors.) |
| // |
| // Disable this check under MSVC; even MSVC 2015 isn't inconsistent between |
| // std::is_assignable and actually writing such an assignment. |
| #if !defined(_MSC_VER) |
| static_assert( |
| !std::is_assignable<ArrayRef<int *>&, int *>::value, |
| "Assigning from single prvalue element"); |
| static_assert( |
| !std::is_assignable<ArrayRef<int *>&, int * &&>::value, |
| "Assigning from single xvalue element"); |
| static_assert( |
| std::is_assignable<ArrayRef<int *>&, int * &>::value, |
| "Assigning from single lvalue element"); |
| static_assert( |
| !std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value, |
| "Assigning from an initializer list"); |
| #endif |
| |
| namespace { |
| |
| TEST(ArrayRefTest, AllocatorCopy) { |
| BumpPtrAllocator Alloc; |
| static const uint16_t Words1[] = { 1, 4, 200, 37 }; |
| ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4); |
| static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 }; |
| ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5); |
| ArrayRef<uint16_t> Array1c = Array1.copy(Alloc); |
| ArrayRef<uint16_t> Array2c = Array2.copy(Alloc); |
| EXPECT_TRUE(Array1.equals(Array1c)); |
| EXPECT_NE(Array1.data(), Array1c.data()); |
| EXPECT_TRUE(Array2.equals(Array2c)); |
| EXPECT_NE(Array2.data(), Array2c.data()); |
| |
| // Check that copy can cope with uninitialized memory. |
| struct NonAssignable { |
| const char *Ptr; |
| |
| NonAssignable(const char *Ptr) : Ptr(Ptr) {} |
| NonAssignable(const NonAssignable &RHS) = default; |
| void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); } |
| bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; } |
| } Array3Src[] = {"hello", "world"}; |
| ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc); |
| EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy); |
| EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data()); |
| } |
| |
| TEST(ArrayRefTest, SizeTSizedOperations) { |
| ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max()); |
| |
| // Check that drop_back accepts size_t-sized numbers. |
| EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size()); |
| |
| // Check that drop_front accepts size_t-sized numbers. |
| EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size()); |
| |
| // Check that slice accepts size_t-sized numbers. |
| EXPECT_EQ(1U, AR.slice(AR.size() - 1).size()); |
| EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size()); |
| } |
| |
| TEST(ArrayRefTest, DropBack) { |
| static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> AR2(TheNumbers, AR1.size() - 1); |
| EXPECT_TRUE(AR1.drop_back().equals(AR2)); |
| } |
| |
| TEST(ArrayRefTest, DropFront) { |
| static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2); |
| EXPECT_TRUE(AR1.drop_front(2).equals(AR2)); |
| } |
| |
| TEST(ArrayRefTest, DropWhile) { |
| static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> Expected = AR1.drop_front(3); |
| EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; })); |
| |
| EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; })); |
| EXPECT_EQ(ArrayRef<int>(), |
| AR1.drop_while([](const int &N) { return N > 0; })); |
| } |
| |
| TEST(ArrayRefTest, DropUntil) { |
| static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> Expected = AR1.drop_front(3); |
| EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; })); |
| |
| EXPECT_EQ(ArrayRef<int>(), |
| AR1.drop_until([](const int &N) { return N < 0; })); |
| EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; })); |
| } |
| |
| TEST(ArrayRefTest, TakeBack) { |
| static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> AR2(AR1.end() - 1, 1); |
| EXPECT_TRUE(AR1.take_back().equals(AR2)); |
| } |
| |
| TEST(ArrayRefTest, TakeFront) { |
| static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> AR2(AR1.data(), 2); |
| EXPECT_TRUE(AR1.take_front(2).equals(AR2)); |
| } |
| |
| TEST(ArrayRefTest, TakeWhile) { |
| static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> Expected = AR1.take_front(3); |
| EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; })); |
| |
| EXPECT_EQ(ArrayRef<int>(), |
| AR1.take_while([](const int &N) { return N < 0; })); |
| EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; })); |
| } |
| |
| TEST(ArrayRefTest, TakeUntil) { |
| static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; |
| ArrayRef<int> AR1(TheNumbers); |
| ArrayRef<int> Expected = AR1.take_front(3); |
| EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; })); |
| |
| EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; })); |
| EXPECT_EQ(ArrayRef<int>(), |
| AR1.take_until([](const int &N) { return N > 0; })); |
| } |
| |
| TEST(ArrayRefTest, Equals) { |
| static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| ArrayRef<int> AR1(A1); |
| EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8})); |
| EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7})); |
| EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1})); |
| EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7})); |
| EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8})); |
| EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8})); |
| EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42})); |
| EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7})); |
| EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9})); |
| |
| ArrayRef<int> AR1a = AR1.drop_back(); |
| EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7})); |
| EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8})); |
| |
| ArrayRef<int> AR1b = AR1a.slice(2, 4); |
| EXPECT_TRUE(AR1b.equals({3, 4, 5, 6})); |
| EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6})); |
| EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7})); |
| } |
| |
| TEST(ArrayRefTest, EmptyEquals) { |
| EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>()); |
| } |
| |
| TEST(ArrayRefTest, ConstConvert) { |
| int buf[4]; |
| for (int i = 0; i < 4; ++i) |
| buf[i] = i; |
| |
| static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]}; |
| ArrayRef<const int *> a((ArrayRef<int *>(A))); |
| a = ArrayRef<int *>(A); |
| } |
| |
| static std::vector<int> ReturnTest12() { return {1, 2}; } |
| static void ArgTest12(ArrayRef<int> A) { |
| EXPECT_EQ(2U, A.size()); |
| EXPECT_EQ(1, A[0]); |
| EXPECT_EQ(2, A[1]); |
| } |
| |
| TEST(ArrayRefTest, InitializerList) { |
| std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 }; |
| ArrayRef<int> A = init_list; |
| for (int i = 0; i < 5; ++i) |
| EXPECT_EQ(i, A[i]); |
| |
| std::vector<int> B = ReturnTest12(); |
| A = B; |
| EXPECT_EQ(1, A[0]); |
| EXPECT_EQ(2, A[1]); |
| |
| ArgTest12({1, 2}); |
| } |
| |
| TEST(ArrayRefTest, EmptyInitializerList) { |
| ArrayRef<int> A = {}; |
| EXPECT_TRUE(A.empty()); |
| |
| A = {}; |
| EXPECT_TRUE(A.empty()); |
| } |
| |
| // Test that makeArrayRef works on ArrayRef (no-op) |
| TEST(ArrayRefTest, makeArrayRef) { |
| static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| |
| // No copy expected for non-const ArrayRef (true no-op) |
| ArrayRef<int> AR1(A1); |
| ArrayRef<int> &AR1Ref = makeArrayRef(AR1); |
| EXPECT_EQ(&AR1, &AR1Ref); |
| |
| // A copy is expected for non-const ArrayRef (thin copy) |
| const ArrayRef<int> AR2(A1); |
| const ArrayRef<int> &AR2Ref = makeArrayRef(AR2); |
| EXPECT_NE(&AR2Ref, &AR2); |
| EXPECT_TRUE(AR2.equals(AR2Ref)); |
| } |
| |
| } // end anonymous namespace |