blob: 25c5d6bb47ee434bff94f93f8e634c431b4c1038 [file] [log] [blame]
/******************** GPUJIT.c - GPUJIT Execution Engine **********************/
/* */
/* The LLVM Compiler Infrastructure */
/* */
/* This file is dual licensed under the MIT and the University of Illinois */
/* Open Source License. See LICENSE.TXT for details. */
/* */
/******************************************************************************/
/* */
/* This file implements GPUJIT, a ptx string execution engine for GPU. */
/* */
/******************************************************************************/
#include "GPUJIT.h"
#ifdef HAS_LIBCUDART
#include <cuda.h>
#include <cuda_runtime.h>
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif /* __APPLE__ */
#endif /* HAS_LIBOPENCL */
#include <assert.h>
#include <dlfcn.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
static int DebugMode;
static int CacheMode;
#define max(x, y) ((x) > (y) ? (x) : (y))
static PollyGPURuntime Runtime = RUNTIME_NONE;
static void debug_print(const char *format, ...) {
if (!DebugMode)
return;
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
#define dump_function() debug_print("-> %s\n", __func__)
#define KERNEL_CACHE_SIZE 10
static void err_runtime() __attribute__((noreturn));
static void err_runtime() {
fprintf(stderr, "Runtime not correctly initialized.\n");
exit(-1);
}
struct PollyGPUContextT {
void *Context;
};
struct PollyGPUFunctionT {
void *Kernel;
};
struct PollyGPUDevicePtrT {
void *DevicePtr;
};
/******************************************************************************/
/* OpenCL */
/******************************************************************************/
#ifdef HAS_LIBOPENCL
struct OpenCLContextT {
cl_context Context;
cl_command_queue CommandQueue;
};
struct OpenCLKernelT {
cl_kernel Kernel;
cl_program Program;
const char *BinaryString;
};
struct OpenCLDevicePtrT {
cl_mem MemObj;
};
/* Dynamic library handles for the OpenCL runtime library. */
static void *HandleOpenCL;
static void *HandleOpenCLBeignet;
/* Type-defines of function pointer to OpenCL Runtime API. */
typedef cl_int clGetPlatformIDsFcnTy(cl_uint NumEntries,
cl_platform_id *Platforms,
cl_uint *NumPlatforms);
static clGetPlatformIDsFcnTy *clGetPlatformIDsFcnPtr;
typedef cl_int clGetDeviceIDsFcnTy(cl_platform_id Platform,
cl_device_type DeviceType,
cl_uint NumEntries, cl_device_id *Devices,
cl_uint *NumDevices);
static clGetDeviceIDsFcnTy *clGetDeviceIDsFcnPtr;
typedef cl_int clGetDeviceInfoFcnTy(cl_device_id Device,
cl_device_info ParamName,
size_t ParamValueSize, void *ParamValue,
size_t *ParamValueSizeRet);
static clGetDeviceInfoFcnTy *clGetDeviceInfoFcnPtr;
typedef cl_int clGetKernelInfoFcnTy(cl_kernel Kernel, cl_kernel_info ParamName,
size_t ParamValueSize, void *ParamValue,
size_t *ParamValueSizeRet);
static clGetKernelInfoFcnTy *clGetKernelInfoFcnPtr;
typedef cl_context clCreateContextFcnTy(
const cl_context_properties *Properties, cl_uint NumDevices,
const cl_device_id *Devices,
void CL_CALLBACK *pfn_notify(const char *Errinfo, const void *PrivateInfo,
size_t CB, void *UserData),
void *UserData, cl_int *ErrcodeRet);
static clCreateContextFcnTy *clCreateContextFcnPtr;
typedef cl_command_queue
clCreateCommandQueueFcnTy(cl_context Context, cl_device_id Device,
cl_command_queue_properties Properties,
cl_int *ErrcodeRet);
static clCreateCommandQueueFcnTy *clCreateCommandQueueFcnPtr;
typedef cl_mem clCreateBufferFcnTy(cl_context Context, cl_mem_flags Flags,
size_t Size, void *HostPtr,
cl_int *ErrcodeRet);
static clCreateBufferFcnTy *clCreateBufferFcnPtr;
typedef cl_int
clEnqueueWriteBufferFcnTy(cl_command_queue CommandQueue, cl_mem Buffer,
cl_bool BlockingWrite, size_t Offset, size_t Size,
const void *Ptr, cl_uint NumEventsInWaitList,
const cl_event *EventWaitList, cl_event *Event);
static clEnqueueWriteBufferFcnTy *clEnqueueWriteBufferFcnPtr;
typedef cl_program
clCreateProgramWithLLVMIntelFcnTy(cl_context Context, cl_uint NumDevices,
const cl_device_id *DeviceList,
const char *Filename, cl_int *ErrcodeRet);
static clCreateProgramWithLLVMIntelFcnTy *clCreateProgramWithLLVMIntelFcnPtr;
typedef cl_program clCreateProgramWithBinaryFcnTy(
cl_context Context, cl_uint NumDevices, const cl_device_id *DeviceList,
const size_t *Lengths, const unsigned char **Binaries, cl_int *BinaryStatus,
cl_int *ErrcodeRet);
static clCreateProgramWithBinaryFcnTy *clCreateProgramWithBinaryFcnPtr;
typedef cl_int clBuildProgramFcnTy(
cl_program Program, cl_uint NumDevices, const cl_device_id *DeviceList,
const char *Options,
void(CL_CALLBACK *pfn_notify)(cl_program Program, void *UserData),
void *UserData);
static clBuildProgramFcnTy *clBuildProgramFcnPtr;
typedef cl_kernel clCreateKernelFcnTy(cl_program Program,
const char *KernelName,
cl_int *ErrcodeRet);
static clCreateKernelFcnTy *clCreateKernelFcnPtr;
typedef cl_int clSetKernelArgFcnTy(cl_kernel Kernel, cl_uint ArgIndex,
size_t ArgSize, const void *ArgValue);
static clSetKernelArgFcnTy *clSetKernelArgFcnPtr;
typedef cl_int clEnqueueNDRangeKernelFcnTy(
cl_command_queue CommandQueue, cl_kernel Kernel, cl_uint WorkDim,
const size_t *GlobalWorkOffset, const size_t *GlobalWorkSize,
const size_t *LocalWorkSize, cl_uint NumEventsInWaitList,
const cl_event *EventWaitList, cl_event *Event);
static clEnqueueNDRangeKernelFcnTy *clEnqueueNDRangeKernelFcnPtr;
typedef cl_int clEnqueueReadBufferFcnTy(cl_command_queue CommandQueue,
cl_mem Buffer, cl_bool BlockingRead,
size_t Offset, size_t Size, void *Ptr,
cl_uint NumEventsInWaitList,
const cl_event *EventWaitList,
cl_event *Event);
static clEnqueueReadBufferFcnTy *clEnqueueReadBufferFcnPtr;
typedef cl_int clFlushFcnTy(cl_command_queue CommandQueue);
static clFlushFcnTy *clFlushFcnPtr;
typedef cl_int clFinishFcnTy(cl_command_queue CommandQueue);
static clFinishFcnTy *clFinishFcnPtr;
typedef cl_int clReleaseKernelFcnTy(cl_kernel Kernel);
static clReleaseKernelFcnTy *clReleaseKernelFcnPtr;
typedef cl_int clReleaseProgramFcnTy(cl_program Program);
static clReleaseProgramFcnTy *clReleaseProgramFcnPtr;
typedef cl_int clReleaseMemObjectFcnTy(cl_mem Memobject);
static clReleaseMemObjectFcnTy *clReleaseMemObjectFcnPtr;
typedef cl_int clReleaseCommandQueueFcnTy(cl_command_queue CommandQueue);
static clReleaseCommandQueueFcnTy *clReleaseCommandQueueFcnPtr;
typedef cl_int clReleaseContextFcnTy(cl_context Context);
static clReleaseContextFcnTy *clReleaseContextFcnPtr;
static void *getAPIHandleCL(void *Handle, const char *FuncName) {
char *Err;
void *FuncPtr;
dlerror();
FuncPtr = dlsym(Handle, FuncName);
if ((Err = dlerror()) != 0) {
fprintf(stderr, "Load OpenCL Runtime API failed: %s. \n", Err);
return 0;
}
return FuncPtr;
}
static int initialDeviceAPILibrariesCL() {
HandleOpenCLBeignet = dlopen("/usr/local/lib/beignet/libcl.so", RTLD_LAZY);
HandleOpenCL = dlopen("libOpenCL.so", RTLD_LAZY);
if (!HandleOpenCL) {
fprintf(stderr, "Cannot open library: %s. \n", dlerror());
return 0;
}
return 1;
}
/* Get function pointer to OpenCL Runtime API.
*
* Note that compilers conforming to the ISO C standard are required to
* generate a warning if a conversion from a void * pointer to a function
* pointer is attempted as in the following statements. The warning
* of this kind of cast may not be emitted by clang and new versions of gcc
* as it is valid on POSIX 2008. For compilers required to generate a warning,
* we temporarily disable -Wpedantic, to avoid bloating the output with
* unnecessary warnings.
*
* Reference:
* http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlsym.html
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
static int initialDeviceAPIsCL() {
if (initialDeviceAPILibrariesCL() == 0)
return 0;
// FIXME: We are now always selecting the Intel Beignet driver if it is
// available on the system, instead of a possible NVIDIA or AMD OpenCL
// API. This selection should occurr based on the target architecture
// chosen when compiling.
void *Handle =
(HandleOpenCLBeignet != NULL ? HandleOpenCLBeignet : HandleOpenCL);
clGetPlatformIDsFcnPtr =
(clGetPlatformIDsFcnTy *)getAPIHandleCL(Handle, "clGetPlatformIDs");
clGetDeviceIDsFcnPtr =
(clGetDeviceIDsFcnTy *)getAPIHandleCL(Handle, "clGetDeviceIDs");
clGetDeviceInfoFcnPtr =
(clGetDeviceInfoFcnTy *)getAPIHandleCL(Handle, "clGetDeviceInfo");
clGetKernelInfoFcnPtr =
(clGetKernelInfoFcnTy *)getAPIHandleCL(Handle, "clGetKernelInfo");
clCreateContextFcnPtr =
(clCreateContextFcnTy *)getAPIHandleCL(Handle, "clCreateContext");
clCreateCommandQueueFcnPtr = (clCreateCommandQueueFcnTy *)getAPIHandleCL(
Handle, "clCreateCommandQueue");
clCreateBufferFcnPtr =
(clCreateBufferFcnTy *)getAPIHandleCL(Handle, "clCreateBuffer");
clEnqueueWriteBufferFcnPtr = (clEnqueueWriteBufferFcnTy *)getAPIHandleCL(
Handle, "clEnqueueWriteBuffer");
if (HandleOpenCLBeignet)
clCreateProgramWithLLVMIntelFcnPtr =
(clCreateProgramWithLLVMIntelFcnTy *)getAPIHandleCL(
Handle, "clCreateProgramWithLLVMIntel");
clCreateProgramWithBinaryFcnPtr =
(clCreateProgramWithBinaryFcnTy *)getAPIHandleCL(
Handle, "clCreateProgramWithBinary");
clBuildProgramFcnPtr =
(clBuildProgramFcnTy *)getAPIHandleCL(Handle, "clBuildProgram");
clCreateKernelFcnPtr =
(clCreateKernelFcnTy *)getAPIHandleCL(Handle, "clCreateKernel");
clSetKernelArgFcnPtr =
(clSetKernelArgFcnTy *)getAPIHandleCL(Handle, "clSetKernelArg");
clEnqueueNDRangeKernelFcnPtr = (clEnqueueNDRangeKernelFcnTy *)getAPIHandleCL(
Handle, "clEnqueueNDRangeKernel");
clEnqueueReadBufferFcnPtr =
(clEnqueueReadBufferFcnTy *)getAPIHandleCL(Handle, "clEnqueueReadBuffer");
clFlushFcnPtr = (clFlushFcnTy *)getAPIHandleCL(Handle, "clFlush");
clFinishFcnPtr = (clFinishFcnTy *)getAPIHandleCL(Handle, "clFinish");
clReleaseKernelFcnPtr =
(clReleaseKernelFcnTy *)getAPIHandleCL(Handle, "clReleaseKernel");
clReleaseProgramFcnPtr =
(clReleaseProgramFcnTy *)getAPIHandleCL(Handle, "clReleaseProgram");
clReleaseMemObjectFcnPtr =
(clReleaseMemObjectFcnTy *)getAPIHandleCL(Handle, "clReleaseMemObject");
clReleaseCommandQueueFcnPtr = (clReleaseCommandQueueFcnTy *)getAPIHandleCL(
Handle, "clReleaseCommandQueue");
clReleaseContextFcnPtr =
(clReleaseContextFcnTy *)getAPIHandleCL(Handle, "clReleaseContext");
return 1;
}
#pragma GCC diagnostic pop
/* Context and Device. */
static PollyGPUContext *GlobalContext = NULL;
static cl_device_id GlobalDeviceID = NULL;
/* Fd-Decl: Print out OpenCL Error codes to human readable strings. */
static void printOpenCLError(int Error);
static void checkOpenCLError(int Ret, const char *format, ...) {
if (Ret == CL_SUCCESS)
return;
printOpenCLError(Ret);
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
exit(-1);
}
static PollyGPUContext *initContextCL() {
dump_function();
PollyGPUContext *Context;
cl_platform_id PlatformID = NULL;
cl_device_id DeviceID = NULL;
cl_uint NumDevicesRet;
cl_int Ret;
char DeviceRevision[256];
char DeviceName[256];
size_t DeviceRevisionRetSize, DeviceNameRetSize;
static __thread PollyGPUContext *CurrentContext = NULL;
if (CurrentContext)
return CurrentContext;
/* Get API handles. */
if (initialDeviceAPIsCL() == 0) {
fprintf(stderr, "Getting the \"handle\" for the OpenCL Runtime failed.\n");
exit(-1);
}
/* Get number of devices that support OpenCL. */
static const int NumberOfPlatforms = 1;
Ret = clGetPlatformIDsFcnPtr(NumberOfPlatforms, &PlatformID, NULL);
checkOpenCLError(Ret, "Failed to get platform IDs.\n");
// TODO: Extend to CL_DEVICE_TYPE_ALL?
static const int NumberOfDevices = 1;
Ret = clGetDeviceIDsFcnPtr(PlatformID, CL_DEVICE_TYPE_GPU, NumberOfDevices,
&DeviceID, &NumDevicesRet);
checkOpenCLError(Ret, "Failed to get device IDs.\n");
GlobalDeviceID = DeviceID;
if (NumDevicesRet == 0) {
fprintf(stderr, "There is no device supporting OpenCL.\n");
exit(-1);
}
/* Get device revision. */
Ret =
clGetDeviceInfoFcnPtr(DeviceID, CL_DEVICE_VERSION, sizeof(DeviceRevision),
DeviceRevision, &DeviceRevisionRetSize);
checkOpenCLError(Ret, "Failed to fetch device revision.\n");
/* Get device name. */
Ret = clGetDeviceInfoFcnPtr(DeviceID, CL_DEVICE_NAME, sizeof(DeviceName),
DeviceName, &DeviceNameRetSize);
checkOpenCLError(Ret, "Failed to fetch device name.\n");
debug_print("> Running on GPU device %d : %s.\n", DeviceID, DeviceName);
/* Create context on the device. */
Context = (PollyGPUContext *)malloc(sizeof(PollyGPUContext));
if (Context == 0) {
fprintf(stderr, "Allocate memory for Polly GPU context failed.\n");
exit(-1);
}
Context->Context = (OpenCLContext *)malloc(sizeof(OpenCLContext));
if (Context->Context == 0) {
fprintf(stderr, "Allocate memory for Polly OpenCL context failed.\n");
exit(-1);
}
((OpenCLContext *)Context->Context)->Context =
clCreateContextFcnPtr(NULL, NumDevicesRet, &DeviceID, NULL, NULL, &Ret);
checkOpenCLError(Ret, "Failed to create context.\n");
static const int ExtraProperties = 0;
((OpenCLContext *)Context->Context)->CommandQueue =
clCreateCommandQueueFcnPtr(((OpenCLContext *)Context->Context)->Context,
DeviceID, ExtraProperties, &Ret);
checkOpenCLError(Ret, "Failed to create command queue.\n");
if (CacheMode)
CurrentContext = Context;
GlobalContext = Context;
return Context;
}
static void freeKernelCL(PollyGPUFunction *Kernel) {
dump_function();
if (CacheMode)
return;
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
cl_int Ret;
Ret = clFlushFcnPtr(((OpenCLContext *)GlobalContext->Context)->CommandQueue);
checkOpenCLError(Ret, "Failed to flush command queue.\n");
Ret = clFinishFcnPtr(((OpenCLContext *)GlobalContext->Context)->CommandQueue);
checkOpenCLError(Ret, "Failed to finish command queue.\n");
if (((OpenCLKernel *)Kernel->Kernel)->Kernel) {
cl_int Ret =
clReleaseKernelFcnPtr(((OpenCLKernel *)Kernel->Kernel)->Kernel);
checkOpenCLError(Ret, "Failed to release kernel.\n");
}
if (((OpenCLKernel *)Kernel->Kernel)->Program) {
cl_int Ret =
clReleaseProgramFcnPtr(((OpenCLKernel *)Kernel->Kernel)->Program);
checkOpenCLError(Ret, "Failed to release program.\n");
}
if (Kernel->Kernel)
free((OpenCLKernel *)Kernel->Kernel);
if (Kernel)
free(Kernel);
}
static PollyGPUFunction *getKernelCL(const char *BinaryBuffer,
const char *KernelName) {
dump_function();
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
static __thread PollyGPUFunction *KernelCache[KERNEL_CACHE_SIZE];
static __thread int NextCacheItem = 0;
for (long i = 0; i < KERNEL_CACHE_SIZE; i++) {
// We exploit here the property that all Polly-ACC kernels are allocated
// as global constants, hence a pointer comparision is sufficient to
// determin equality.
if (KernelCache[i] &&
((OpenCLKernel *)KernelCache[i]->Kernel)->BinaryString ==
BinaryBuffer) {
debug_print(" -> using cached kernel\n");
return KernelCache[i];
}
}
PollyGPUFunction *Function = malloc(sizeof(PollyGPUFunction));
if (Function == 0) {
fprintf(stderr, "Allocate memory for Polly GPU function failed.\n");
exit(-1);
}
Function->Kernel = (OpenCLKernel *)malloc(sizeof(OpenCLKernel));
if (Function->Kernel == 0) {
fprintf(stderr, "Allocate memory for Polly OpenCL kernel failed.\n");
exit(-1);
}
if (!GlobalDeviceID) {
fprintf(stderr, "GPGPU-code generation not initialized correctly.\n");
exit(-1);
}
cl_int Ret;
if (HandleOpenCLBeignet) {
// This is a workaround, since clCreateProgramWithLLVMIntel only
// accepts a filename to a valid llvm-ir file as an argument, instead
// of accepting the BinaryBuffer directly.
char FileName[] = "/tmp/polly_kernelXXXXXX";
int File = mkstemp(FileName);
write(File, BinaryBuffer, strlen(BinaryBuffer));
((OpenCLKernel *)Function->Kernel)->Program =
clCreateProgramWithLLVMIntelFcnPtr(
((OpenCLContext *)GlobalContext->Context)->Context, 1,
&GlobalDeviceID, FileName, &Ret);
checkOpenCLError(Ret, "Failed to create program from llvm.\n");
close(File);
unlink(FileName);
} else {
size_t BinarySize = strlen(BinaryBuffer);
((OpenCLKernel *)Function->Kernel)->Program =
clCreateProgramWithBinaryFcnPtr(
((OpenCLContext *)GlobalContext->Context)->Context, 1,
&GlobalDeviceID, (const size_t *)&BinarySize,
(const unsigned char **)&BinaryBuffer, NULL, &Ret);
checkOpenCLError(Ret, "Failed to create program from binary.\n");
}
Ret = clBuildProgramFcnPtr(((OpenCLKernel *)Function->Kernel)->Program, 1,
&GlobalDeviceID, NULL, NULL, NULL);
checkOpenCLError(Ret, "Failed to build program.\n");
((OpenCLKernel *)Function->Kernel)->Kernel = clCreateKernelFcnPtr(
((OpenCLKernel *)Function->Kernel)->Program, KernelName, &Ret);
checkOpenCLError(Ret, "Failed to create kernel.\n");
((OpenCLKernel *)Function->Kernel)->BinaryString = BinaryBuffer;
if (CacheMode) {
if (KernelCache[NextCacheItem])
freeKernelCL(KernelCache[NextCacheItem]);
KernelCache[NextCacheItem] = Function;
NextCacheItem = (NextCacheItem + 1) % KERNEL_CACHE_SIZE;
}
return Function;
}
static void copyFromHostToDeviceCL(void *HostData, PollyGPUDevicePtr *DevData,
long MemSize) {
dump_function();
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
cl_int Ret;
Ret = clEnqueueWriteBufferFcnPtr(
((OpenCLContext *)GlobalContext->Context)->CommandQueue,
((OpenCLDevicePtr *)DevData->DevicePtr)->MemObj, CL_TRUE, 0, MemSize,
HostData, 0, NULL, NULL);
checkOpenCLError(Ret, "Copying data from host memory to device failed.\n");
}
static void copyFromDeviceToHostCL(PollyGPUDevicePtr *DevData, void *HostData,
long MemSize) {
dump_function();
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
cl_int Ret;
Ret = clEnqueueReadBufferFcnPtr(
((OpenCLContext *)GlobalContext->Context)->CommandQueue,
((OpenCLDevicePtr *)DevData->DevicePtr)->MemObj, CL_TRUE, 0, MemSize,
HostData, 0, NULL, NULL);
checkOpenCLError(Ret, "Copying results from device to host memory failed.\n");
}
static void launchKernelCL(PollyGPUFunction *Kernel, unsigned int GridDimX,
unsigned int GridDimY, unsigned int BlockDimX,
unsigned int BlockDimY, unsigned int BlockDimZ,
void **Parameters) {
dump_function();
cl_int Ret;
cl_uint NumArgs;
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
OpenCLKernel *CLKernel = (OpenCLKernel *)Kernel->Kernel;
Ret = clGetKernelInfoFcnPtr(CLKernel->Kernel, CL_KERNEL_NUM_ARGS,
sizeof(cl_uint), &NumArgs, NULL);
checkOpenCLError(Ret, "Failed to get number of kernel arguments.\n");
/* Argument sizes are stored at the end of the Parameters array. */
for (cl_uint i = 0; i < NumArgs; i++) {
Ret = clSetKernelArgFcnPtr(CLKernel->Kernel, i,
*((int *)Parameters[NumArgs + i]),
(void *)Parameters[i]);
checkOpenCLError(Ret, "Failed to set Kernel argument %d.\n", i);
}
unsigned int GridDimZ = 1;
size_t GlobalWorkSize[3] = {BlockDimX * GridDimX, BlockDimY * GridDimY,
BlockDimZ * GridDimZ};
size_t LocalWorkSize[3] = {BlockDimX, BlockDimY, BlockDimZ};
static const int WorkDim = 3;
OpenCLContext *CLContext = (OpenCLContext *)GlobalContext->Context;
Ret = clEnqueueNDRangeKernelFcnPtr(CLContext->CommandQueue, CLKernel->Kernel,
WorkDim, NULL, GlobalWorkSize,
LocalWorkSize, 0, NULL, NULL);
checkOpenCLError(Ret, "Launching OpenCL kernel failed.\n");
}
static void freeDeviceMemoryCL(PollyGPUDevicePtr *Allocation) {
dump_function();
OpenCLDevicePtr *DevPtr = (OpenCLDevicePtr *)Allocation->DevicePtr;
cl_int Ret = clReleaseMemObjectFcnPtr((cl_mem)DevPtr->MemObj);
checkOpenCLError(Ret, "Failed to free device memory.\n");
free(DevPtr);
free(Allocation);
}
static PollyGPUDevicePtr *allocateMemoryForDeviceCL(long MemSize) {
dump_function();
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
PollyGPUDevicePtr *DevData = malloc(sizeof(PollyGPUDevicePtr));
if (DevData == 0) {
fprintf(stderr, "Allocate memory for GPU device memory pointer failed.\n");
exit(-1);
}
DevData->DevicePtr = (OpenCLDevicePtr *)malloc(sizeof(OpenCLDevicePtr));
if (DevData->DevicePtr == 0) {
fprintf(stderr, "Allocate memory for GPU device memory pointer failed.\n");
exit(-1);
}
cl_int Ret;
((OpenCLDevicePtr *)DevData->DevicePtr)->MemObj =
clCreateBufferFcnPtr(((OpenCLContext *)GlobalContext->Context)->Context,
CL_MEM_READ_WRITE, MemSize, NULL, &Ret);
checkOpenCLError(Ret,
"Allocate memory for GPU device memory pointer failed.\n");
return DevData;
}
static void *getDevicePtrCL(PollyGPUDevicePtr *Allocation) {
dump_function();
OpenCLDevicePtr *DevPtr = (OpenCLDevicePtr *)Allocation->DevicePtr;
return (void *)DevPtr->MemObj;
}
static void synchronizeDeviceCL() {
dump_function();
if (!GlobalContext) {
fprintf(stderr, "GPGPU-code generation not correctly initialized.\n");
exit(-1);
}
if (clFinishFcnPtr(((OpenCLContext *)GlobalContext->Context)->CommandQueue) !=
CL_SUCCESS) {
fprintf(stderr, "Synchronizing device and host memory failed.\n");
exit(-1);
}
}
static void freeContextCL(PollyGPUContext *Context) {
dump_function();
cl_int Ret;
GlobalContext = NULL;
OpenCLContext *Ctx = (OpenCLContext *)Context->Context;
if (Ctx->CommandQueue) {
Ret = clReleaseCommandQueueFcnPtr(Ctx->CommandQueue);
checkOpenCLError(Ret, "Could not release command queue.\n");
}
if (Ctx->Context) {
Ret = clReleaseContextFcnPtr(Ctx->Context);
checkOpenCLError(Ret, "Could not release context.\n");
}
free(Ctx);
free(Context);
}
static void printOpenCLError(int Error) {
switch (Error) {
case CL_SUCCESS:
// Success, don't print an error.
break;
// JIT/Runtime errors.
case CL_DEVICE_NOT_FOUND:
fprintf(stderr, "Device not found.\n");
break;
case CL_DEVICE_NOT_AVAILABLE:
fprintf(stderr, "Device not available.\n");
break;
case CL_COMPILER_NOT_AVAILABLE:
fprintf(stderr, "Compiler not available.\n");
break;
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
fprintf(stderr, "Mem object allocation failure.\n");
break;
case CL_OUT_OF_RESOURCES:
fprintf(stderr, "Out of resources.\n");
break;
case CL_OUT_OF_HOST_MEMORY:
fprintf(stderr, "Out of host memory.\n");
break;
case CL_PROFILING_INFO_NOT_AVAILABLE:
fprintf(stderr, "Profiling info not available.\n");
break;
case CL_MEM_COPY_OVERLAP:
fprintf(stderr, "Mem copy overlap.\n");
break;
case CL_IMAGE_FORMAT_MISMATCH:
fprintf(stderr, "Image format mismatch.\n");
break;
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
fprintf(stderr, "Image format not supported.\n");
break;
case CL_BUILD_PROGRAM_FAILURE:
fprintf(stderr, "Build program failure.\n");
break;
case CL_MAP_FAILURE:
fprintf(stderr, "Map failure.\n");
break;
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
fprintf(stderr, "Misaligned sub buffer offset.\n");
break;
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
fprintf(stderr, "Exec status error for events in wait list.\n");
break;
case CL_COMPILE_PROGRAM_FAILURE:
fprintf(stderr, "Compile program failure.\n");
break;
case CL_LINKER_NOT_AVAILABLE:
fprintf(stderr, "Linker not available.\n");
break;
case CL_LINK_PROGRAM_FAILURE:
fprintf(stderr, "Link program failure.\n");
break;
case CL_DEVICE_PARTITION_FAILED:
fprintf(stderr, "Device partition failed.\n");
break;
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
fprintf(stderr, "Kernel arg info not available.\n");
break;
// Compiler errors.
case CL_INVALID_VALUE:
fprintf(stderr, "Invalid value.\n");
break;
case CL_INVALID_DEVICE_TYPE:
fprintf(stderr, "Invalid device type.\n");
break;
case CL_INVALID_PLATFORM:
fprintf(stderr, "Invalid platform.\n");
break;
case CL_INVALID_DEVICE:
fprintf(stderr, "Invalid device.\n");
break;
case CL_INVALID_CONTEXT:
fprintf(stderr, "Invalid context.\n");
break;
case CL_INVALID_QUEUE_PROPERTIES:
fprintf(stderr, "Invalid queue properties.\n");
break;
case CL_INVALID_COMMAND_QUEUE:
fprintf(stderr, "Invalid command queue.\n");
break;
case CL_INVALID_HOST_PTR:
fprintf(stderr, "Invalid host pointer.\n");
break;
case CL_INVALID_MEM_OBJECT:
fprintf(stderr, "Invalid memory object.\n");
break;
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
fprintf(stderr, "Invalid image format descriptor.\n");
break;
case CL_INVALID_IMAGE_SIZE:
fprintf(stderr, "Invalid image size.\n");
break;
case CL_INVALID_SAMPLER:
fprintf(stderr, "Invalid sampler.\n");
break;
case CL_INVALID_BINARY:
fprintf(stderr, "Invalid binary.\n");
break;
case CL_INVALID_BUILD_OPTIONS:
fprintf(stderr, "Invalid build options.\n");
break;
case CL_INVALID_PROGRAM:
fprintf(stderr, "Invalid program.\n");
break;
case CL_INVALID_PROGRAM_EXECUTABLE:
fprintf(stderr, "Invalid program executable.\n");
break;
case CL_INVALID_KERNEL_NAME:
fprintf(stderr, "Invalid kernel name.\n");
break;
case CL_INVALID_KERNEL_DEFINITION:
fprintf(stderr, "Invalid kernel definition.\n");
break;
case CL_INVALID_KERNEL:
fprintf(stderr, "Invalid kernel.\n");
break;
case CL_INVALID_ARG_INDEX:
fprintf(stderr, "Invalid arg index.\n");
break;
case CL_INVALID_ARG_VALUE:
fprintf(stderr, "Invalid arg value.\n");
break;
case CL_INVALID_ARG_SIZE:
fprintf(stderr, "Invalid arg size.\n");
break;
case CL_INVALID_KERNEL_ARGS:
fprintf(stderr, "Invalid kernel args.\n");
break;
case CL_INVALID_WORK_DIMENSION:
fprintf(stderr, "Invalid work dimension.\n");
break;
case CL_INVALID_WORK_GROUP_SIZE:
fprintf(stderr, "Invalid work group size.\n");
break;
case CL_INVALID_WORK_ITEM_SIZE:
fprintf(stderr, "Invalid work item size.\n");
break;
case CL_INVALID_GLOBAL_OFFSET:
fprintf(stderr, "Invalid global offset.\n");
break;
case CL_INVALID_EVENT_WAIT_LIST:
fprintf(stderr, "Invalid event wait list.\n");
break;
case CL_INVALID_EVENT:
fprintf(stderr, "Invalid event.\n");
break;
case CL_INVALID_OPERATION:
fprintf(stderr, "Invalid operation.\n");
break;
case CL_INVALID_GL_OBJECT:
fprintf(stderr, "Invalid GL object.\n");
break;
case CL_INVALID_BUFFER_SIZE:
fprintf(stderr, "Invalid buffer size.\n");
break;
case CL_INVALID_MIP_LEVEL:
fprintf(stderr, "Invalid mip level.\n");
break;
case CL_INVALID_GLOBAL_WORK_SIZE:
fprintf(stderr, "Invalid global work size.\n");
break;
case CL_INVALID_PROPERTY:
fprintf(stderr, "Invalid property.\n");
break;
case CL_INVALID_IMAGE_DESCRIPTOR:
fprintf(stderr, "Invalid image descriptor.\n");
break;
case CL_INVALID_COMPILER_OPTIONS:
fprintf(stderr, "Invalid compiler options.\n");
break;
case CL_INVALID_LINKER_OPTIONS:
fprintf(stderr, "Invalid linker options.\n");
break;
case CL_INVALID_DEVICE_PARTITION_COUNT:
fprintf(stderr, "Invalid device partition count.\n");
break;
case -69: // OpenCL 2.0 Code for CL_INVALID_PIPE_SIZE
fprintf(stderr, "Invalid pipe size.\n");
break;
case -70: // OpenCL 2.0 Code for CL_INVALID_DEVICE_QUEUE
fprintf(stderr, "Invalid device queue.\n");
break;
// NVIDIA specific error.
case -9999:
fprintf(stderr, "NVIDIA invalid read or write buffer.\n");
break;
default:
fprintf(stderr, "Unknown error code!\n");
break;
}
}
#endif /* HAS_LIBOPENCL */
/******************************************************************************/
/* CUDA */
/******************************************************************************/
#ifdef HAS_LIBCUDART
struct CUDAContextT {
CUcontext Cuda;
};
struct CUDAKernelT {
CUfunction Cuda;
CUmodule CudaModule;
const char *BinaryString;
};
struct CUDADevicePtrT {
CUdeviceptr Cuda;
};
/* Dynamic library handles for the CUDA and CUDA runtime library. */
static void *HandleCuda;
static void *HandleCudaRT;
/* Type-defines of function pointer to CUDA driver APIs. */
typedef CUresult CUDAAPI CuMemAllocFcnTy(CUdeviceptr *, size_t);
static CuMemAllocFcnTy *CuMemAllocFcnPtr;
typedef CUresult CUDAAPI CuMemAllocManagedFcnTy(CUdeviceptr *, size_t,
unsigned int);
static CuMemAllocManagedFcnTy *CuMemAllocManagedFcnPtr;
typedef CUresult CUDAAPI CuLaunchKernelFcnTy(
CUfunction F, unsigned int GridDimX, unsigned int GridDimY,
unsigned int gridDimZ, unsigned int blockDimX, unsigned int BlockDimY,
unsigned int BlockDimZ, unsigned int SharedMemBytes, CUstream HStream,
void **KernelParams, void **Extra);
static CuLaunchKernelFcnTy *CuLaunchKernelFcnPtr;
typedef CUresult CUDAAPI CuMemcpyDtoHFcnTy(void *, CUdeviceptr, size_t);
static CuMemcpyDtoHFcnTy *CuMemcpyDtoHFcnPtr;
typedef CUresult CUDAAPI CuMemcpyHtoDFcnTy(CUdeviceptr, const void *, size_t);
static CuMemcpyHtoDFcnTy *CuMemcpyHtoDFcnPtr;
typedef CUresult CUDAAPI CuMemFreeFcnTy(CUdeviceptr);
static CuMemFreeFcnTy *CuMemFreeFcnPtr;
typedef CUresult CUDAAPI CuModuleUnloadFcnTy(CUmodule);
static CuModuleUnloadFcnTy *CuModuleUnloadFcnPtr;
typedef CUresult CUDAAPI CuProfilerStopFcnTy();
static CuProfilerStopFcnTy *CuProfilerStopFcnPtr;
typedef CUresult CUDAAPI CuCtxDestroyFcnTy(CUcontext);
static CuCtxDestroyFcnTy *CuCtxDestroyFcnPtr;
typedef CUresult CUDAAPI CuInitFcnTy(unsigned int);
static CuInitFcnTy *CuInitFcnPtr;
typedef CUresult CUDAAPI CuDeviceGetCountFcnTy(int *);
static CuDeviceGetCountFcnTy *CuDeviceGetCountFcnPtr;
typedef CUresult CUDAAPI CuCtxCreateFcnTy(CUcontext *, unsigned int, CUdevice);
static CuCtxCreateFcnTy *CuCtxCreateFcnPtr;
typedef CUresult CUDAAPI CuCtxGetCurrentFcnTy(CUcontext *);
static CuCtxGetCurrentFcnTy *CuCtxGetCurrentFcnPtr;
typedef CUresult CUDAAPI CuDeviceGetFcnTy(CUdevice *, int);
static CuDeviceGetFcnTy *CuDeviceGetFcnPtr;
typedef CUresult CUDAAPI CuModuleLoadDataExFcnTy(CUmodule *, const void *,
unsigned int, CUjit_option *,
void **);
static CuModuleLoadDataExFcnTy *CuModuleLoadDataExFcnPtr;
typedef CUresult CUDAAPI CuModuleLoadDataFcnTy(CUmodule *Module,
const void *Image);
static CuModuleLoadDataFcnTy *CuModuleLoadDataFcnPtr;
typedef CUresult CUDAAPI CuModuleGetFunctionFcnTy(CUfunction *, CUmodule,
const char *);
static CuModuleGetFunctionFcnTy *CuModuleGetFunctionFcnPtr;
typedef CUresult CUDAAPI CuDeviceComputeCapabilityFcnTy(int *, int *, CUdevice);
static CuDeviceComputeCapabilityFcnTy *CuDeviceComputeCapabilityFcnPtr;
typedef CUresult CUDAAPI CuDeviceGetNameFcnTy(char *, int, CUdevice);
static CuDeviceGetNameFcnTy *CuDeviceGetNameFcnPtr;
typedef CUresult CUDAAPI CuLinkAddDataFcnTy(CUlinkState State,
CUjitInputType Type, void *Data,
size_t Size, const char *Name,
unsigned int NumOptions,
CUjit_option *Options,
void **OptionValues);
static CuLinkAddDataFcnTy *CuLinkAddDataFcnPtr;
typedef CUresult CUDAAPI CuLinkCreateFcnTy(unsigned int NumOptions,
CUjit_option *Options,
void **OptionValues,
CUlinkState *StateOut);
static CuLinkCreateFcnTy *CuLinkCreateFcnPtr;
typedef CUresult CUDAAPI CuLinkCompleteFcnTy(CUlinkState State, void **CubinOut,
size_t *SizeOut);
static CuLinkCompleteFcnTy *CuLinkCompleteFcnPtr;
typedef CUresult CUDAAPI CuLinkDestroyFcnTy(CUlinkState State);
static CuLinkDestroyFcnTy *CuLinkDestroyFcnPtr;
typedef CUresult CUDAAPI CuCtxSynchronizeFcnTy();
static CuCtxSynchronizeFcnTy *CuCtxSynchronizeFcnPtr;
/* Type-defines of function pointer ot CUDA runtime APIs. */
typedef cudaError_t CUDARTAPI CudaThreadSynchronizeFcnTy(void);
static CudaThreadSynchronizeFcnTy *CudaThreadSynchronizeFcnPtr;
static void *getAPIHandleCUDA(void *Handle, const char *FuncName) {
char *Err;
void *FuncPtr;
dlerror();
FuncPtr = dlsym(Handle, FuncName);
if ((Err = dlerror()) != 0) {
fprintf(stderr, "Load CUDA driver API failed: %s. \n", Err);
return 0;
}
return FuncPtr;
}
static int initialDeviceAPILibrariesCUDA() {
HandleCuda = dlopen("libcuda.so", RTLD_LAZY);
if (!HandleCuda) {
fprintf(stderr, "Cannot open library: %s. \n", dlerror());
return 0;
}
HandleCudaRT = dlopen("libcudart.so", RTLD_LAZY);
if (!HandleCudaRT) {
fprintf(stderr, "Cannot open library: %s. \n", dlerror());
return 0;
}
return 1;
}
/* Get function pointer to CUDA Driver APIs.
*
* Note that compilers conforming to the ISO C standard are required to
* generate a warning if a conversion from a void * pointer to a function
* pointer is attempted as in the following statements. The warning
* of this kind of cast may not be emitted by clang and new versions of gcc
* as it is valid on POSIX 2008. For compilers required to generate a warning,
* we temporarily disable -Wpedantic, to avoid bloating the output with
* unnecessary warnings.
*
* Reference:
* http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlsym.html
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
static int initialDeviceAPIsCUDA() {
if (initialDeviceAPILibrariesCUDA() == 0)
return 0;
CuLaunchKernelFcnPtr =
(CuLaunchKernelFcnTy *)getAPIHandleCUDA(HandleCuda, "cuLaunchKernel");
CuMemAllocFcnPtr =
(CuMemAllocFcnTy *)getAPIHandleCUDA(HandleCuda, "cuMemAlloc_v2");
CuMemAllocManagedFcnPtr = (CuMemAllocManagedFcnTy *)getAPIHandleCUDA(
HandleCuda, "cuMemAllocManaged");
CuMemFreeFcnPtr =
(CuMemFreeFcnTy *)getAPIHandleCUDA(HandleCuda, "cuMemFree_v2");
CuMemcpyDtoHFcnPtr =
(CuMemcpyDtoHFcnTy *)getAPIHandleCUDA(HandleCuda, "cuMemcpyDtoH_v2");
CuMemcpyHtoDFcnPtr =
(CuMemcpyHtoDFcnTy *)getAPIHandleCUDA(HandleCuda, "cuMemcpyHtoD_v2");
CuModuleUnloadFcnPtr =
(CuModuleUnloadFcnTy *)getAPIHandleCUDA(HandleCuda, "cuModuleUnload");
CuProfilerStopFcnPtr =
(CuProfilerStopFcnTy *)getAPIHandleCUDA(HandleCuda, "cuProfilerStop");
CuCtxDestroyFcnPtr =
(CuCtxDestroyFcnTy *)getAPIHandleCUDA(HandleCuda, "cuCtxDestroy");
CuInitFcnPtr = (CuInitFcnTy *)getAPIHandleCUDA(HandleCuda, "cuInit");
CuDeviceGetCountFcnPtr =
(CuDeviceGetCountFcnTy *)getAPIHandleCUDA(HandleCuda, "cuDeviceGetCount");
CuDeviceGetFcnPtr =
(CuDeviceGetFcnTy *)getAPIHandleCUDA(HandleCuda, "cuDeviceGet");
CuCtxCreateFcnPtr =
(CuCtxCreateFcnTy *)getAPIHandleCUDA(HandleCuda, "cuCtxCreate_v2");
CuCtxGetCurrentFcnPtr =
(CuCtxGetCurrentFcnTy *)getAPIHandleCUDA(HandleCuda, "cuCtxGetCurrent");
CuModuleLoadDataExFcnPtr = (CuModuleLoadDataExFcnTy *)getAPIHandleCUDA(
HandleCuda, "cuModuleLoadDataEx");
CuModuleLoadDataFcnPtr =
(CuModuleLoadDataFcnTy *)getAPIHandleCUDA(HandleCuda, "cuModuleLoadData");
CuModuleGetFunctionFcnPtr = (CuModuleGetFunctionFcnTy *)getAPIHandleCUDA(
HandleCuda, "cuModuleGetFunction");
CuDeviceComputeCapabilityFcnPtr =
(CuDeviceComputeCapabilityFcnTy *)getAPIHandleCUDA(
HandleCuda, "cuDeviceComputeCapability");
CuDeviceGetNameFcnPtr =
(CuDeviceGetNameFcnTy *)getAPIHandleCUDA(HandleCuda, "cuDeviceGetName");
CuLinkAddDataFcnPtr =
(CuLinkAddDataFcnTy *)getAPIHandleCUDA(HandleCuda, "cuLinkAddData");
CuLinkCreateFcnPtr =
(CuLinkCreateFcnTy *)getAPIHandleCUDA(HandleCuda, "cuLinkCreate");
CuLinkCompleteFcnPtr =
(CuLinkCompleteFcnTy *)getAPIHandleCUDA(HandleCuda, "cuLinkComplete");
CuLinkDestroyFcnPtr =
(CuLinkDestroyFcnTy *)getAPIHandleCUDA(HandleCuda, "cuLinkDestroy");
CuCtxSynchronizeFcnPtr =
(CuCtxSynchronizeFcnTy *)getAPIHandleCUDA(HandleCuda, "cuCtxSynchronize");
/* Get function pointer to CUDA Runtime APIs. */
CudaThreadSynchronizeFcnPtr = (CudaThreadSynchronizeFcnTy *)getAPIHandleCUDA(
HandleCudaRT, "cudaThreadSynchronize");
return 1;
}
#pragma GCC diagnostic pop
static PollyGPUContext *initContextCUDA() {
dump_function();
PollyGPUContext *Context;
CUdevice Device;
int Major = 0, Minor = 0, DeviceID = 0;
char DeviceName[256];
int DeviceCount = 0;
static __thread PollyGPUContext *CurrentContext = NULL;
if (CurrentContext)
return CurrentContext;
/* Get API handles. */
if (initialDeviceAPIsCUDA() == 0) {
fprintf(stderr, "Getting the \"handle\" for the CUDA driver API failed.\n");
exit(-1);
}
if (CuInitFcnPtr(0) != CUDA_SUCCESS) {
fprintf(stderr, "Initializing the CUDA driver API failed.\n");
exit(-1);
}
/* Get number of devices that supports CUDA. */
CuDeviceGetCountFcnPtr(&DeviceCount);
if (DeviceCount == 0) {
fprintf(stderr, "There is no device supporting CUDA.\n");
exit(-1);
}
CuDeviceGetFcnPtr(&Device, 0);
/* Get compute capabilities and the device name. */
CuDeviceComputeCapabilityFcnPtr(&Major, &Minor, Device);
CuDeviceGetNameFcnPtr(DeviceName, 256, Device);
debug_print("> Running on GPU device %d : %s.\n", DeviceID, DeviceName);
/* Create context on the device. */
Context = (PollyGPUContext *)malloc(sizeof(PollyGPUContext));
if (Context == 0) {
fprintf(stderr, "Allocate memory for Polly GPU context failed.\n");
exit(-1);
}
Context->Context = malloc(sizeof(CUDAContext));
if (Context->Context == 0) {
fprintf(stderr, "Allocate memory for Polly CUDA context failed.\n");
exit(-1);
}
// In cases where managed memory is used, it is quite likely that
// `cudaMallocManaged` / `polly_mallocManaged` was called before
// `polly_initContext` was called.
//
// If `polly_initContext` calls `CuCtxCreate` when there already was a
// pre-existing context created by the runtime API, this causes code running
// on P100 to hang. So, we query for a pre-existing context to try and use.
// If there is no pre-existing context, we create a new context
// The possible pre-existing context from previous runtime API calls.
CUcontext MaybeRuntimeAPIContext;
if (CuCtxGetCurrentFcnPtr(&MaybeRuntimeAPIContext) != CUDA_SUCCESS) {
fprintf(stderr, "cuCtxGetCurrent failed.\n");
exit(-1);
}
// There was no previous context, initialise it.
if (MaybeRuntimeAPIContext == NULL) {
if (CuCtxCreateFcnPtr(&(((CUDAContext *)Context->Context)->Cuda), 0,
Device) != CUDA_SUCCESS) {
fprintf(stderr, "cuCtxCreateFcnPtr failed.\n");
exit(-1);
}
} else {
((CUDAContext *)Context->Context)->Cuda = MaybeRuntimeAPIContext;
}
if (CacheMode)
CurrentContext = Context;
return Context;
}
static void freeKernelCUDA(PollyGPUFunction *Kernel) {
dump_function();
if (CacheMode)
return;
if (((CUDAKernel *)Kernel->Kernel)->CudaModule)
CuModuleUnloadFcnPtr(((CUDAKernel *)Kernel->Kernel)->CudaModule);
if (Kernel->Kernel)
free((CUDAKernel *)Kernel->Kernel);
if (Kernel)
free(Kernel);
}
static PollyGPUFunction *getKernelCUDA(const char *BinaryBuffer,
const char *KernelName) {
dump_function();
static __thread PollyGPUFunction *KernelCache[KERNEL_CACHE_SIZE];
static __thread int NextCacheItem = 0;
for (long i = 0; i < KERNEL_CACHE_SIZE; i++) {
// We exploit here the property that all Polly-ACC kernels are allocated
// as global constants, hence a pointer comparision is sufficient to
// determin equality.
if (KernelCache[i] &&
((CUDAKernel *)KernelCache[i]->Kernel)->BinaryString == BinaryBuffer) {
debug_print(" -> using cached kernel\n");
return KernelCache[i];
}
}
PollyGPUFunction *Function = malloc(sizeof(PollyGPUFunction));
if (Function == 0) {
fprintf(stderr, "Allocate memory for Polly GPU function failed.\n");
exit(-1);
}
Function->Kernel = (CUDAKernel *)malloc(sizeof(CUDAKernel));
if (Function->Kernel == 0) {
fprintf(stderr, "Allocate memory for Polly CUDA function failed.\n");
exit(-1);
}
CUresult Res;
CUlinkState LState;
CUjit_option Options[6];
void *OptionVals[6];
float Walltime = 0;
unsigned long LogSize = 8192;
char ErrorLog[8192], InfoLog[8192];
void *CuOut;
size_t OutSize;
// Setup linker options
// Return walltime from JIT compilation
Options[0] = CU_JIT_WALL_TIME;
OptionVals[0] = (void *)&Walltime;
// Pass a buffer for info messages
Options[1] = CU_JIT_INFO_LOG_BUFFER;
OptionVals[1] = (void *)InfoLog;
// Pass the size of the info buffer
Options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
OptionVals[2] = (void *)LogSize;
// Pass a buffer for error message
Options[3] = CU_JIT_ERROR_LOG_BUFFER;
OptionVals[3] = (void *)ErrorLog;
// Pass the size of the error buffer
Options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
OptionVals[4] = (void *)LogSize;
// Make the linker verbose
Options[5] = CU_JIT_LOG_VERBOSE;
OptionVals[5] = (void *)1;
memset(ErrorLog, 0, sizeof(ErrorLog));
CuLinkCreateFcnPtr(6, Options, OptionVals, &LState);
Res = CuLinkAddDataFcnPtr(LState, CU_JIT_INPUT_PTX, (void *)BinaryBuffer,
strlen(BinaryBuffer) + 1, 0, 0, 0, 0);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "PTX Linker Error:\n%s\n%s", ErrorLog, InfoLog);
exit(-1);
}
Res = CuLinkCompleteFcnPtr(LState, &CuOut, &OutSize);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "Complete ptx linker step failed.\n");
fprintf(stderr, "\n%s\n", ErrorLog);
exit(-1);
}
debug_print("CUDA Link Completed in %fms. Linker Output:\n%s\n", Walltime,
InfoLog);
Res = CuModuleLoadDataFcnPtr(&(((CUDAKernel *)Function->Kernel)->CudaModule),
CuOut);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "Loading ptx assembly text failed.\n");
exit(-1);
}
Res = CuModuleGetFunctionFcnPtr(&(((CUDAKernel *)Function->Kernel)->Cuda),
((CUDAKernel *)Function->Kernel)->CudaModule,
KernelName);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "Loading kernel function failed.\n");
exit(-1);
}
CuLinkDestroyFcnPtr(LState);
((CUDAKernel *)Function->Kernel)->BinaryString = BinaryBuffer;
if (CacheMode) {
if (KernelCache[NextCacheItem])
freeKernelCUDA(KernelCache[NextCacheItem]);
KernelCache[NextCacheItem] = Function;
NextCacheItem = (NextCacheItem + 1) % KERNEL_CACHE_SIZE;
}
return Function;
}
static void synchronizeDeviceCUDA() {
dump_function();
if (CuCtxSynchronizeFcnPtr() != CUDA_SUCCESS) {
fprintf(stderr, "Synchronizing device and host memory failed.\n");
exit(-1);
}
}
static void copyFromHostToDeviceCUDA(void *HostData, PollyGPUDevicePtr *DevData,
long MemSize) {
dump_function();
CUdeviceptr CuDevData = ((CUDADevicePtr *)DevData->DevicePtr)->Cuda;
CuMemcpyHtoDFcnPtr(CuDevData, HostData, MemSize);
}
static void copyFromDeviceToHostCUDA(PollyGPUDevicePtr *DevData, void *HostData,
long MemSize) {
dump_function();
if (CuMemcpyDtoHFcnPtr(HostData, ((CUDADevicePtr *)DevData->DevicePtr)->Cuda,
MemSize) != CUDA_SUCCESS) {
fprintf(stderr, "Copying results from device to host memory failed.\n");
exit(-1);
}
}
static void launchKernelCUDA(PollyGPUFunction *Kernel, unsigned int GridDimX,
unsigned int GridDimY, unsigned int BlockDimX,
unsigned int BlockDimY, unsigned int BlockDimZ,
void **Parameters) {
dump_function();
unsigned GridDimZ = 1;
unsigned int SharedMemBytes = CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE;
CUstream Stream = 0;
void **Extra = 0;
CUresult Res;
Res =
CuLaunchKernelFcnPtr(((CUDAKernel *)Kernel->Kernel)->Cuda, GridDimX,
GridDimY, GridDimZ, BlockDimX, BlockDimY, BlockDimZ,
SharedMemBytes, Stream, Parameters, Extra);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "Launching CUDA kernel failed.\n");
exit(-1);
}
}
// Maximum number of managed memory pointers.
#define DEFAULT_MAX_POINTERS 4000
// For the rationale behing a list of free pointers, see `polly_freeManaged`.
void **g_managedptrs;
unsigned long long g_nmanagedptrs = 0;
unsigned long long g_maxmanagedptrs = 0;
__attribute__((constructor)) static void initManagedPtrsBuffer() {
g_maxmanagedptrs = DEFAULT_MAX_POINTERS;
const char *maxManagedPointersString = getenv("POLLY_MAX_MANAGED_POINTERS");
if (maxManagedPointersString)
g_maxmanagedptrs = atoll(maxManagedPointersString);
g_managedptrs = (void **)malloc(sizeof(void *) * g_maxmanagedptrs);
}
// Add a pointer as being allocated by cuMallocManaged
void addManagedPtr(void *mem) {
assert(g_maxmanagedptrs > 0 && "g_maxmanagedptrs was set to 0!");
assert(g_nmanagedptrs < g_maxmanagedptrs &&
"We have hit the maximum number of "
"managed pointers allowed. Set the "
"POLLY_MAX_MANAGED_POINTERS environment variable. ");
g_managedptrs[g_nmanagedptrs++] = mem;
}
int isManagedPtr(void *mem) {
for (unsigned long long i = 0; i < g_nmanagedptrs; i++) {
if (g_managedptrs[i] == mem)
return 1;
}
return 0;
}
void freeManagedCUDA(void *mem) {
dump_function();
// In a real-world program this was used (COSMO), there were more `free`
// calls in the original source than `malloc` calls. Hence, replacing all
// `free`s with `cudaFree` does not work, since we would try to free
// 'illegal' memory.
// As a quick fix, we keep a free list and check if `mem` is a managed memory
// pointer. If it is, we call `cudaFree`.
// If not, we pass it along to the underlying allocator.
// This is a hack, and can be removed if the underlying issue is fixed.
if (isManagedPtr(mem)) {
if (CuMemFreeFcnPtr((size_t)mem) != CUDA_SUCCESS) {
fprintf(stderr, "cudaFree failed.\n");
exit(-1);
}
return;
} else {
free(mem);
}
}
void *mallocManagedCUDA(size_t size) {
// Note: [Size 0 allocations]
// Sometimes, some runtime computation of size could create a size of 0
// for an allocation. In these cases, we do not wish to fail.
// The CUDA API fails on size 0 allocations.
// So, we allocate size a minimum of size 1.
if (!size && DebugMode)
fprintf(stderr, "cudaMallocManaged called with size 0. "
"Promoting to size 1");
size = max(size, 1);
PollyGPUContext *_ = polly_initContextCUDA();
assert(_ && "polly_initContextCUDA failed");
void *newMemPtr;
const CUresult Res = CuMemAllocManagedFcnPtr((CUdeviceptr *)&newMemPtr, size,
CU_MEM_ATTACH_GLOBAL);
if (Res != CUDA_SUCCESS) {
fprintf(stderr, "cudaMallocManaged failed for size: %zu\n", size);
exit(-1);
}
addManagedPtr(newMemPtr);
return newMemPtr;
}
static void freeDeviceMemoryCUDA(PollyGPUDevicePtr *Allocation) {
dump_function();
CUDADevicePtr *DevPtr = (CUDADevicePtr *)Allocation->DevicePtr;
CuMemFreeFcnPtr((CUdeviceptr)DevPtr->Cuda);
free(DevPtr);
free(Allocation);
}
static PollyGPUDevicePtr *allocateMemoryForDeviceCUDA(long MemSize) {
if (!MemSize && DebugMode)
fprintf(stderr, "allocateMemoryForDeviceCUDA called with size 0. "
"Promoting to size 1");
// see: [Size 0 allocations]
MemSize = max(MemSize, 1);
dump_function();
PollyGPUDevicePtr *DevData = malloc(sizeof(PollyGPUDevicePtr));
if (DevData == 0) {
fprintf(stderr,
"Allocate memory for GPU device memory pointer failed."
" Line: %d | Size: %ld\n",
__LINE__, MemSize);
exit(-1);
}
DevData->DevicePtr = (CUDADevicePtr *)malloc(sizeof(CUDADevicePtr));
if (DevData->DevicePtr == 0) {
fprintf(stderr,
"Allocate memory for GPU device memory pointer failed."
" Line: %d | Size: %ld\n",
__LINE__, MemSize);
exit(-1);
}
CUresult Res =
CuMemAllocFcnPtr(&(((CUDADevicePtr *)DevData->DevicePtr)->Cuda), MemSize);
if (Res != CUDA_SUCCESS) {
fprintf(stderr,
"Allocate memory for GPU device memory pointer failed."
" Line: %d | Size: %ld\n",
__LINE__, MemSize);
exit(-1);
}
return DevData;
}
static void *getDevicePtrCUDA(PollyGPUDevicePtr *Allocation) {
dump_function();
CUDADevicePtr *DevPtr = (CUDADevicePtr *)Allocation->DevicePtr;
return (void *)DevPtr->Cuda;
}
static void freeContextCUDA(PollyGPUContext *Context) {
dump_function();
CUDAContext *Ctx = (CUDAContext *)Context->Context;
if (Ctx->Cuda) {
CuProfilerStopFcnPtr();
CuCtxDestroyFcnPtr(Ctx->Cuda);
free(Ctx);
free(Context);
}
dlclose(HandleCuda);
dlclose(HandleCudaRT);
}
#endif /* HAS_LIBCUDART */
/******************************************************************************/
/* API */
/******************************************************************************/
PollyGPUContext *polly_initContext() {
DebugMode = getenv("POLLY_DEBUG") != 0;
CacheMode = getenv("POLLY_NOCACHE") == 0;
dump_function();
PollyGPUContext *Context;
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
Context = initContextCUDA();
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
Context = initContextCL();
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
return Context;
}
void polly_freeKernel(PollyGPUFunction *Kernel) {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
freeKernelCUDA(Kernel);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
freeKernelCL(Kernel);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
PollyGPUFunction *polly_getKernel(const char *BinaryBuffer,
const char *KernelName) {
dump_function();
PollyGPUFunction *Function;
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
Function = getKernelCUDA(BinaryBuffer, KernelName);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
Function = getKernelCL(BinaryBuffer, KernelName);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
return Function;
}
void polly_copyFromHostToDevice(void *HostData, PollyGPUDevicePtr *DevData,
long MemSize) {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
copyFromHostToDeviceCUDA(HostData, DevData, MemSize);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
copyFromHostToDeviceCL(HostData, DevData, MemSize);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
void polly_copyFromDeviceToHost(PollyGPUDevicePtr *DevData, void *HostData,
long MemSize) {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
copyFromDeviceToHostCUDA(DevData, HostData, MemSize);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
copyFromDeviceToHostCL(DevData, HostData, MemSize);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
void polly_launchKernel(PollyGPUFunction *Kernel, unsigned int GridDimX,
unsigned int GridDimY, unsigned int BlockDimX,
unsigned int BlockDimY, unsigned int BlockDimZ,
void **Parameters) {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
launchKernelCUDA(Kernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
BlockDimZ, Parameters);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
launchKernelCL(Kernel, GridDimX, GridDimY, BlockDimX, BlockDimY, BlockDimZ,
Parameters);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
void polly_freeDeviceMemory(PollyGPUDevicePtr *Allocation) {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
freeDeviceMemoryCUDA(Allocation);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
freeDeviceMemoryCL(Allocation);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
PollyGPUDevicePtr *polly_allocateMemoryForDevice(long MemSize) {
dump_function();
PollyGPUDevicePtr *DevData;
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
DevData = allocateMemoryForDeviceCUDA(MemSize);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
DevData = allocateMemoryForDeviceCL(MemSize);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
return DevData;
}
void *polly_getDevicePtr(PollyGPUDevicePtr *Allocation) {
dump_function();
void *DevPtr;
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
DevPtr = getDevicePtrCUDA(Allocation);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
DevPtr = getDevicePtrCL(Allocation);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
return DevPtr;
}
void polly_synchronizeDevice() {
dump_function();
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
synchronizeDeviceCUDA();
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
synchronizeDeviceCL();
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
void polly_freeContext(PollyGPUContext *Context) {
dump_function();
if (CacheMode)
return;
switch (Runtime) {
#ifdef HAS_LIBCUDART
case RUNTIME_CUDA:
freeContextCUDA(Context);
break;
#endif /* HAS_LIBCUDART */
#ifdef HAS_LIBOPENCL
case RUNTIME_CL:
freeContextCL(Context);
break;
#endif /* HAS_LIBOPENCL */
default:
err_runtime();
}
}
void polly_freeManaged(void *mem) {
dump_function();
#ifdef HAS_LIBCUDART
freeManagedCUDA(mem);
#else
fprintf(stderr, "No CUDA Runtime. Managed memory only supported by CUDA\n");
exit(-1);
#endif
}
void *polly_mallocManaged(size_t size) {
dump_function();
#ifdef HAS_LIBCUDART
return mallocManagedCUDA(size);
#else
fprintf(stderr, "No CUDA Runtime. Managed memory only supported by CUDA\n");
exit(-1);
#endif
}
/* Initialize GPUJIT with CUDA as runtime library. */
PollyGPUContext *polly_initContextCUDA() {
#ifdef HAS_LIBCUDART
Runtime = RUNTIME_CUDA;
return polly_initContext();
#else
fprintf(stderr, "GPU Runtime was built without CUDA support.\n");
exit(-1);
#endif /* HAS_LIBCUDART */
}
/* Initialize GPUJIT with OpenCL as runtime library. */
PollyGPUContext *polly_initContextCL() {
#ifdef HAS_LIBOPENCL
Runtime = RUNTIME_CL;
return polly_initContext();
#else
fprintf(stderr, "GPU Runtime was built without OpenCL support.\n");
exit(-1);
#endif /* HAS_LIBOPENCL */
}