blob: fcefcf22755d4e2a647d5414502173e73bfa3295 [file] [log] [blame]
/*
**********************************************************************
* Copyright (C) 1999-2014, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#include "utypeinfo.h" // for 'typeid' to work
#include "unicode/utypes.h"
#if !UCONFIG_NO_TRANSLITERATION
#include "starboard/client_porting/poem/assert_poem.h"
#include "starboard/client_porting/poem/string_poem.h"
#include "unicode/putil.h"
#include "unicode/translit.h"
#include "unicode/locid.h"
#include "unicode/msgfmt.h"
#include "unicode/rep.h"
#include "unicode/resbund.h"
#include "unicode/unifilt.h"
#include "unicode/uniset.h"
#include "unicode/uscript.h"
#include "unicode/strenum.h"
#include "unicode/utf16.h"
#include "cpdtrans.h"
#include "nultrans.h"
#include "rbt_data.h"
#include "rbt_pars.h"
#include "rbt.h"
#include "transreg.h"
#include "name2uni.h"
#include "nortrans.h"
#include "remtrans.h"
#include "titletrn.h"
#include "tolowtrn.h"
#include "toupptrn.h"
#include "uni2name.h"
#include "brktrans.h"
#include "esctrn.h"
#include "unesctrn.h"
#include "tridpars.h"
#include "anytrans.h"
#include "util.h"
#include "hash.h"
#include "mutex.h"
#include "ucln_in.h"
#include "uassert.h"
#include "cmemory.h"
#include "cstring.h"
#include "uinvchar.h"
static const UChar TARGET_SEP = 0x002D; /*-*/
static const UChar ID_DELIM = 0x003B; /*;*/
static const UChar VARIANT_SEP = 0x002F; // '/'
/**
* Prefix for resource bundle key for the display name for a
* transliterator. The ID is appended to this to form the key.
* The resource bundle value should be a String.
*/
static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%";
/**
* Prefix for resource bundle key for the display name for a
* transliterator SCRIPT. The ID is appended to this to form the key.
* The resource bundle value should be a String.
*/
static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%";
/**
* Resource bundle key for display name pattern.
* The resource bundle value should be a String forming a
* MessageFormat pattern, e.g.:
* "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}".
*/
static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern";
/**
* Resource bundle key for the list of RuleBasedTransliterator IDs.
* The resource bundle value should be a String[] with each element
* being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX
* to obtain the class name in which the RB_RULE key will be sought.
*/
static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs";
/**
* The mutex controlling access to registry object.
*/
static UMutex registryMutex = U_MUTEX_INITIALIZER;
/**
* System transliterator registry; non-null when initialized.
*/
static icu::TransliteratorRegistry* registry = 0;
// Macro to check/initialize the registry. ONLY USE WITHIN
// MUTEX. Avoids function call when registry is initialized.
#define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status))
U_NAMESPACE_BEGIN
UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator)
/**
* Return TRUE if the given UTransPosition is valid for text of
* the given length.
*/
static inline UBool positionIsValid(UTransPosition& index, int32_t len) {
return !(index.contextStart < 0 ||
index.start < index.contextStart ||
index.limit < index.start ||
index.contextLimit < index.limit ||
len < index.contextLimit);
}
/**
* Default constructor.
* @param theID the string identifier for this transliterator
* @param theFilter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
*/
Transliterator::Transliterator(const UnicodeString& theID,
UnicodeFilter* adoptedFilter) :
UObject(), ID(theID), filter(adoptedFilter),
maximumContextLength(0)
{
// NUL-terminate the ID string, which is a non-aliased copy.
ID.append((UChar)0);
ID.truncate(ID.length()-1);
}
/**
* Destructor.
*/
Transliterator::~Transliterator() {
if (filter) {
delete filter;
}
}
/**
* Copy constructor.
*/
Transliterator::Transliterator(const Transliterator& other) :
UObject(other), ID(other.ID), filter(0),
maximumContextLength(other.maximumContextLength)
{
// NUL-terminate the ID string, which is a non-aliased copy.
ID.append((UChar)0);
ID.truncate(ID.length()-1);
if (other.filter != 0) {
// We own the filter, so we must have our own copy
filter = (UnicodeFilter*) other.filter->clone();
}
}
Transliterator* Transliterator::clone() const {
return NULL;
}
/**
* Assignment operator.
*/
Transliterator& Transliterator::operator=(const Transliterator& other) {
ID = other.ID;
// NUL-terminate the ID string
ID.getTerminatedBuffer();
maximumContextLength = other.maximumContextLength;
adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone());
return *this;
}
/**
* Transliterates a segment of a string. <code>Transliterator</code> API.
* @param text the string to be transliterated
* @param start the beginning index, inclusive; <code>0 <= start
* <= limit</code>.
* @param limit the ending index, exclusive; <code>start <= limit
* <= text.length()</code>.
* @return the new limit index, or -1
*/
int32_t Transliterator::transliterate(Replaceable& text,
int32_t start, int32_t limit) const {
if (start < 0 ||
limit < start ||
text.length() < limit) {
return -1;
}
UTransPosition offsets;
offsets.contextStart= start;
offsets.contextLimit = limit;
offsets.start = start;
offsets.limit = limit;
filteredTransliterate(text, offsets, FALSE, TRUE);
return offsets.limit;
}
/**
* Transliterates an entire string in place. Convenience method.
* @param text the string to be transliterated
*/
void Transliterator::transliterate(Replaceable& text) const {
transliterate(text, 0, text.length());
}
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly after new text has been inserted,
* typically as a result of a keyboard event. The new text in
* <code>insertion</code> will be inserted into <code>text</code>
* at <code>index.contextLimit</code>, advancing
* <code>index.contextLimit</code> by <code>insertion.length()</code>.
* Then the transliterator will try to transliterate characters of
* <code>text</code> between <code>index.start</code> and
* <code>index.contextLimit</code>. Characters before
* <code>index.start</code> will not be changed.
*
* <p>Upon return, values in <code>index</code> will be updated.
* <code>index.contextStart</code> will be advanced to the first
* character that future calls to this method will read.
* <code>index.start</code> and <code>index.contextLimit</code> will
* be adjusted to delimit the range of text that future calls to
* this method may change.
*
* <p>Typical usage of this method begins with an initial call
* with <code>index.contextStart</code> and <code>index.contextLimit</code>
* set to indicate the portion of <code>text</code> to be
* transliterated, and <code>index.start == index.contextStart</code>.
* Thereafter, <code>index</code> can be used without
* modification in future calls, provided that all changes to
* <code>text</code> are made via this method.
*
* <p>This method assumes that future calls may be made that will
* insert new text into the buffer. As a result, it only performs
* unambiguous transliterations. After the last call to this
* method, there may be untransliterated text that is waiting for
* more input to resolve an ambiguity. In order to perform these
* pending transliterations, clients should call {@link
* #finishKeyboardTransliteration} after the last call to this
* method has been made.
*
* @param text the buffer holding transliterated and untransliterated text
* @param index an array of three integers.
*
* <ul><li><code>index.contextStart</code>: the beginning index,
* inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>.
*
* <li><code>index.contextLimit</code>: the ending index, exclusive;
* <code>index.contextStart <= index.contextLimit <= text.length()</code>.
* <code>insertion</code> is inserted at
* <code>index.contextLimit</code>.
*
* <li><code>index.start</code>: the next character to be
* considered for transliteration; <code>index.contextStart <=
* index.start <= index.contextLimit</code>. Characters before
* <code>index.start</code> will not be changed by future calls
* to this method.</ul>
*
* @param insertion text to be inserted and possibly
* transliterated into the translation buffer at
* <code>index.contextLimit</code>. If <code>null</code> then no text
* is inserted.
* @see #START
* @see #LIMIT
* @see #CURSOR
* @see #handleTransliterate
* @exception IllegalArgumentException if <code>index</code>
* is invalid
*/
void Transliterator::transliterate(Replaceable& text,
UTransPosition& index,
const UnicodeString& insertion,
UErrorCode &status) const {
_transliterate(text, index, &insertion, status);
}
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly after a new character has been
* inserted, typically as a result of a keyboard event. This is a
* convenience method; see {@link
* #transliterate(Replaceable, int[], String)} for details.
* @param text the buffer holding transliterated and
* untransliterated text
* @param index an array of three integers. See {@link
* #transliterate(Replaceable, int[], String)}.
* @param insertion text to be inserted and possibly
* transliterated into the translation buffer at
* <code>index.contextLimit</code>.
* @see #transliterate(Replaceable, int[], String)
*/
void Transliterator::transliterate(Replaceable& text,
UTransPosition& index,
UChar32 insertion,
UErrorCode& status) const {
UnicodeString str(insertion);
_transliterate(text, index, &str, status);
}
/**
* Transliterates the portion of the text buffer that can be
* transliterated unambiguosly. This is a convenience method; see
* {@link #transliterate(Replaceable, int[], String)} for
* details.
* @param text the buffer holding transliterated and
* untransliterated text
* @param index an array of three integers. See {@link
* #transliterate(Replaceable, int[], String)}.
* @see #transliterate(Replaceable, int[], String)
*/
void Transliterator::transliterate(Replaceable& text,
UTransPosition& index,
UErrorCode& status) const {
_transliterate(text, index, 0, status);
}
/**
* Finishes any pending transliterations that were waiting for
* more characters. Clients should call this method as the last
* call after a sequence of one or more calls to
* <code>transliterate()</code>.
* @param text the buffer holding transliterated and
* untransliterated text.
* @param index the array of indices previously passed to {@link
* #transliterate}
*/
void Transliterator::finishTransliteration(Replaceable& text,
UTransPosition& index) const {
if (!positionIsValid(index, text.length())) {
return;
}
filteredTransliterate(text, index, FALSE, TRUE);
}
/**
* This internal method does keyboard transliteration. If the
* 'insertion' is non-null then we append it to 'text' before
* proceeding. This method calls through to the pure virtual
* framework method handleTransliterate() to do the actual
* work.
*/
void Transliterator::_transliterate(Replaceable& text,
UTransPosition& index,
const UnicodeString* insertion,
UErrorCode &status) const {
if (U_FAILURE(status)) {
return;
}
if (!positionIsValid(index, text.length())) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// int32_t originalStart = index.contextStart;
if (insertion != 0) {
text.handleReplaceBetween(index.limit, index.limit, *insertion);
index.limit += insertion->length();
index.contextLimit += insertion->length();
}
if (index.limit > 0 &&
U16_IS_LEAD(text.charAt(index.limit - 1))) {
// Oops, there is a dangling lead surrogate in the buffer.
// This will break most transliterators, since they will
// assume it is part of a pair. Don't transliterate until
// more text comes in.
return;
}
filteredTransliterate(text, index, TRUE, TRUE);
#if 0
// TODO
// I CAN'T DO what I'm attempting below now that the Kleene star
// operator is supported. For example, in the rule
// ([:Lu:]+) { x } > $1;
// what is the maximum context length? getMaximumContextLength()
// will return 1, but this is just the length of the ante context
// part of the pattern string -- 1 character, which is a standin
// for a Quantifier, which contains a StringMatcher, which
// contains a UnicodeSet.
// There is a complicated way to make this work again, and that's
// to add a "maximum left context" protocol into the
// UnicodeMatcher hierarchy. At present I'm not convinced this is
// worth it.
// ---
// The purpose of the code below is to keep the context small
// while doing incremental transliteration. When part of the left
// context (between contextStart and start) is no longer needed,
// we try to advance contextStart past that portion. We use the
// maximum context length to do so.
int32_t newCS = index.start;
int32_t n = getMaximumContextLength();
while (newCS > originalStart && n-- > 0) {
--newCS;
newCS -= U16_LENGTH(text.char32At(newCS)) - 1;
}
index.contextStart = uprv_max(newCS, originalStart);
#endif
}
/**
* This method breaks up the input text into runs of unfiltered
* characters. It passes each such run to
* <subclass>.handleTransliterate(). Subclasses that can handle the
* filter logic more efficiently themselves may override this method.
*
* All transliteration calls in this class go through this method.
*/
void Transliterator::filteredTransliterate(Replaceable& text,
UTransPosition& index,
UBool incremental,
UBool rollback) const {
// Short circuit path for transliterators with no filter in
// non-incremental mode.
if (filter == 0 && !rollback) {
handleTransliterate(text, index, incremental);
return;
}
//----------------------------------------------------------------------
// This method processes text in two groupings:
//
// RUNS -- A run is a contiguous group of characters which are contained
// in the filter for this transliterator (filter.contains(ch) == TRUE).
// Text outside of runs may appear as context but it is not modified.
// The start and limit Position values are narrowed to each run.
//
// PASSES (incremental only) -- To make incremental mode work correctly,
// each run is broken up into n passes, where n is the length (in code
// points) of the run. Each pass contains the first n characters. If a
// pass is completely transliterated, it is committed, and further passes
// include characters after the committed text. If a pass is blocked,
// and does not transliterate completely, then this method rolls back
// the changes made during the pass, extends the pass by one code point,
// and tries again.
//----------------------------------------------------------------------
// globalLimit is the limit value for the entire operation. We
// set index.limit to the end of each unfiltered run before
// calling handleTransliterate(), so we need to maintain the real
// value of index.limit here. After each transliteration, we
// update globalLimit for insertions or deletions that have
// happened.
int32_t globalLimit = index.limit;
// If there is a non-null filter, then break the input text up. Say the
// input text has the form:
// xxxabcxxdefxx
// where 'x' represents a filtered character (filter.contains('x') ==
// false). Then we break this up into:
// xxxabc xxdef xx
// Each pass through the loop consumes a run of filtered
// characters (which are ignored) and a subsequent run of
// unfiltered characters (which are transliterated).
for (;;) {
if (filter != NULL) {
// Narrow the range to be transliterated to the first segment
// of unfiltered characters at or after index.start.
// Advance past filtered chars
UChar32 c;
while (index.start < globalLimit &&
!filter->contains(c=text.char32At(index.start))) {
index.start += U16_LENGTH(c);
}
// Find the end of this run of unfiltered chars
index.limit = index.start;
while (index.limit < globalLimit &&
filter->contains(c=text.char32At(index.limit))) {
index.limit += U16_LENGTH(c);
}
}
// Check to see if the unfiltered run is empty. This only
// happens at the end of the string when all the remaining
// characters are filtered.
if (index.limit == index.start) {
// assert(index.start == globalLimit);
break;
}
// Is this run incremental? If there is additional
// filtered text (if limit < globalLimit) then we pass in
// an incremental value of FALSE to force the subclass to
// complete the transliteration for this run.
UBool isIncrementalRun =
(index.limit < globalLimit ? FALSE : incremental);
int32_t delta;
// Implement rollback. To understand the need for rollback,
// consider the following transliterator:
//
// "t" is "a > A;"
// "u" is "A > b;"
// "v" is a compound of "t; NFD; u" with a filter [:Ll:]
//
// Now apply "c" to the input text "a". The result is "b". But if
// the transliteration is done incrementally, then the NFD holds
// things up after "t" has already transformed "a" to "A". When
// finishTransliterate() is called, "A" is _not_ processed because
// it gets excluded by the [:Ll:] filter, and the end result is "A"
// -- incorrect. The problem is that the filter is applied to a
// partially-transliterated result, when we only want it to apply to
// input text. Although this example hinges on a compound
// transliterator containing NFD and a specific filter, it can
// actually happen with any transliterator which may do a partial
// transformation in incremental mode into characters outside its
// filter.
//
// To handle this, when in incremental mode we supply characters to
// handleTransliterate() in several passes. Each pass adds one more
// input character to the input text. That is, for input "ABCD", we
// first try "A", then "AB", then "ABC", and finally "ABCD". If at
// any point we block (upon return, start < limit) then we roll
// back. If at any point we complete the run (upon return start ==
// limit) then we commit that run.
if (rollback && isIncrementalRun) {
int32_t runStart = index.start;
int32_t runLimit = index.limit;
int32_t runLength = runLimit - runStart;
// Make a rollback copy at the end of the string
int32_t rollbackOrigin = text.length();
text.copy(runStart, runLimit, rollbackOrigin);
// Variables reflecting the commitment of completely
// transliterated text. passStart is the runStart, advanced
// past committed text. rollbackStart is the rollbackOrigin,
// advanced past rollback text that corresponds to committed
// text.
int32_t passStart = runStart;
int32_t rollbackStart = rollbackOrigin;
// The limit for each pass; we advance by one code point with
// each iteration.
int32_t passLimit = index.start;
// Total length, in 16-bit code units, of uncommitted text.
// This is the length to be rolled back.
int32_t uncommittedLength = 0;
// Total delta (change in length) for all passes
int32_t totalDelta = 0;
// PASS MAIN LOOP -- Start with a single character, and extend
// the text by one character at a time. Roll back partial
// transliterations and commit complete transliterations.
for (;;) {
// Length of additional code point, either one or two
int32_t charLength = U16_LENGTH(text.char32At(passLimit));
passLimit += charLength;
if (passLimit > runLimit) {
break;
}
uncommittedLength += charLength;
index.limit = passLimit;
// Delegate to subclass for actual transliteration. Upon
// return, start will be updated to point after the
// transliterated text, and limit and contextLimit will be
// adjusted for length changes.
handleTransliterate(text, index, TRUE);
delta = index.limit - passLimit; // change in length
// We failed to completely transliterate this pass.
// Roll back the text. Indices remain unchanged; reset
// them where necessary.
if (index.start != index.limit) {
// Find the rollbackStart, adjusted for length changes
// and the deletion of partially transliterated text.
int32_t rs = rollbackStart + delta - (index.limit - passStart);
// Delete the partially transliterated text
text.handleReplaceBetween(passStart, index.limit, UnicodeString());
// Copy the rollback text back
text.copy(rs, rs + uncommittedLength, passStart);
// Restore indices to their original values
index.start = passStart;
index.limit = passLimit;
index.contextLimit -= delta;
}
// We did completely transliterate this pass. Update the
// commit indices to record how far we got. Adjust indices
// for length change.
else {
// Move the pass indices past the committed text.
passStart = passLimit = index.start;
// Adjust the rollbackStart for length changes and move
// it past the committed text. All characters we've
// processed to this point are committed now, so zero
// out the uncommittedLength.
rollbackStart += delta + uncommittedLength;
uncommittedLength = 0;
// Adjust indices for length changes.
runLimit += delta;
totalDelta += delta;
}
}
// Adjust overall limit and rollbackOrigin for insertions and
// deletions. Don't need to worry about contextLimit because
// handleTransliterate() maintains that.
rollbackOrigin += totalDelta;
globalLimit += totalDelta;
// Delete the rollback copy
text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, UnicodeString());
// Move start past committed text
index.start = passStart;
}
else {
// Delegate to subclass for actual transliteration.
int32_t limit = index.limit;
handleTransliterate(text, index, isIncrementalRun);
delta = index.limit - limit; // change in length
// In a properly written transliterator, start == limit after
// handleTransliterate() returns when incremental is false.
// Catch cases where the subclass doesn't do this, and throw
// an exception. (Just pinning start to limit is a bad idea,
// because what's probably happening is that the subclass
// isn't transliterating all the way to the end, and it should
// in non-incremental mode.)
if (!incremental && index.start != index.limit) {
// We can't throw an exception, so just fudge things
index.start = index.limit;
}
// Adjust overall limit for insertions/deletions. Don't need
// to worry about contextLimit because handleTransliterate()
// maintains that.
globalLimit += delta;
}
if (filter == NULL || isIncrementalRun) {
break;
}
// If we did completely transliterate this
// run, then repeat with the next unfiltered run.
}
// Start is valid where it is. Limit needs to be put back where
// it was, modulo adjustments for deletions/insertions.
index.limit = globalLimit;
}
void Transliterator::filteredTransliterate(Replaceable& text,
UTransPosition& index,
UBool incremental) const {
filteredTransliterate(text, index, incremental, FALSE);
}
/**
* Method for subclasses to use to set the maximum context length.
* @see #getMaximumContextLength
*/
void Transliterator::setMaximumContextLength(int32_t maxContextLength) {
maximumContextLength = maxContextLength;
}
/**
* Returns a programmatic identifier for this transliterator.
* If this identifier is passed to <code>getInstance()</code>, it
* will return this object, if it has been registered.
* @see #registerInstance
* @see #getAvailableIDs
*/
const UnicodeString& Transliterator::getID(void) const {
return ID;
}
/**
* Returns a name for this transliterator that is appropriate for
* display to the user in the default locale. See {@link
* #getDisplayName(Locale)} for details.
*/
UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID,
UnicodeString& result) {
return getDisplayName(ID, Locale::getDefault(), result);
}
/**
* Returns a name for this transliterator that is appropriate for
* display to the user in the given locale. This name is taken
* from the locale resource data in the standard manner of the
* <code>java.text</code> package.
*
* <p>If no localized names exist in the system resource bundles,
* a name is synthesized using a localized
* <code>MessageFormat</code> pattern from the resource data. The
* arguments to this pattern are an integer followed by one or two
* strings. The integer is the number of strings, either 1 or 2.
* The strings are formed by splitting the ID for this
* transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the
* entire ID forms the only string.
* @param inLocale the Locale in which the display name should be
* localized.
* @see java.text.MessageFormat
*/
UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id,
const Locale& inLocale,
UnicodeString& result) {
UErrorCode status = U_ZERO_ERROR;
ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status);
// Suspend checking status until later...
result.truncate(0);
// Normalize the ID
UnicodeString source, target, variant;
UBool sawSource;
TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource);
if (target.length() < 1) {
// No target; malformed id
return result;
}
if (variant.length() > 0) { // Change "Foo" to "/Foo"
variant.insert(0, VARIANT_SEP);
}
UnicodeString ID(source);
ID.append(TARGET_SEP).append(target).append(variant);
// build the char* key
if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) {
char key[200];
uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX);
int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX);
ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV);
// Try to retrieve a UnicodeString from the bundle.
UnicodeString resString = bundle.getStringEx(key, status);
if (U_SUCCESS(status) && resString.length() != 0) {
return result = resString; // [sic] assign & return
}
#if !UCONFIG_NO_FORMATTING
// We have failed to get a name from the locale data. This is
// typical, since most transliterators will not have localized
// name data. The next step is to retrieve the MessageFormat
// pattern from the locale data and to use it to synthesize the
// name from the ID.
status = U_ZERO_ERROR;
resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status);
if (U_SUCCESS(status) && resString.length() != 0) {
MessageFormat msg(resString, inLocale, status);
// Suspend checking status until later...
// We pass either 2 or 3 Formattable objects to msg.
Formattable args[3];
int32_t nargs;
args[0].setLong(2); // # of args to follow
args[1].setString(source);
args[2].setString(target);
nargs = 3;
// Use display names for the scripts, if they exist
UnicodeString s;
length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX);
for (int j=1; j<=2; ++j) {
status = U_ZERO_ERROR;
uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX);
args[j].getString(s);
if (uprv_isInvariantUString(s.getBuffer(), s.length())) {
s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV);
resString = bundle.getStringEx(key, status);
if (U_SUCCESS(status)) {
args[j] = resString;
}
}
}
status = U_ZERO_ERROR;
FieldPosition pos; // ignored by msg
msg.format(args, nargs, result, pos, status);
if (U_SUCCESS(status)) {
result.append(variant);
return result;
}
}
#endif
}
// We should not reach this point unless there is something
// wrong with the build or the RB_DISPLAY_NAME_PATTERN has
// been deleted from the root RB_LOCALE_ELEMENTS resource.
result = ID;
return result;
}
/**
* Returns the filter used by this transliterator, or <tt>null</tt>
* if this transliterator uses no filter. Caller musn't delete
* the result!
*/
const UnicodeFilter* Transliterator::getFilter(void) const {
return filter;
}
/**
* Returns the filter used by this transliterator, or
* <tt>NULL</tt> if this transliterator uses no filter. The
* caller must eventually delete the result. After this call,
* this transliterator's filter is set to <tt>NULL</tt>.
*/
UnicodeFilter* Transliterator::orphanFilter(void) {
UnicodeFilter *result = filter;
filter = NULL;
return result;
}
/**
* Changes the filter used by this transliterator. If the filter
* is set to <tt>null</tt> then no filtering will occur.
*
* <p>Callers must take care if a transliterator is in use by
* multiple threads. The filter should not be changed by one
* thread while another thread may be transliterating.
*/
void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) {
delete filter;
filter = filterToAdopt;
}
/**
* Returns this transliterator's inverse. See the class
* documentation for details. This implementation simply inverts
* the two entities in the ID and attempts to retrieve the
* resulting transliterator. That is, if <code>getID()</code>
* returns "A-B", then this method will return the result of
* <code>getInstance("B-A")</code>, or <code>null</code> if that
* call fails.
*
* <p>This method does not take filtering into account. The
* returned transliterator will have no filter.
*
* <p>Subclasses with knowledge of their inverse may wish to
* override this method.
*
* @return a transliterator that is an inverse, not necessarily
* exact, of this transliterator, or <code>null</code> if no such
* transliterator is registered.
* @see #registerInstance
*/
Transliterator* Transliterator::createInverse(UErrorCode& status) const {
UParseError parseError;
return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status);
}
Transliterator* U_EXPORT2
Transliterator::createInstance(const UnicodeString& ID,
UTransDirection dir,
UErrorCode& status)
{
UParseError parseError;
return createInstance(ID, dir, parseError, status);
}
/**
* Returns a <code>Transliterator</code> object given its ID.
* The ID must be either a system transliterator ID or a ID registered
* using <code>registerInstance()</code>.
*
* @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
* @return A <code>Transliterator</code> object with the given ID
* @see #registerInstance
* @see #getAvailableIDs
* @see #getID
*/
Transliterator* U_EXPORT2
Transliterator::createInstance(const UnicodeString& ID,
UTransDirection dir,
UParseError& parseError,
UErrorCode& status)
{
if (U_FAILURE(status)) {
return 0;
}
UnicodeString canonID;
UVector list(status);
if (U_FAILURE(status)) {
return NULL;
}
UnicodeSet* globalFilter;
// TODO add code for parseError...currently unused, but
// later may be used by parsing code...
if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) {
status = U_INVALID_ID;
return NULL;
}
TransliteratorIDParser::instantiateList(list, status);
if (U_FAILURE(status)) {
return NULL;
}
U_ASSERT(list.size() > 0);
Transliterator* t = NULL;
if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) {
// [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only
// has one child transliterator. This is so that toRules() will return the right thing
// (without any inactive ID), but our main ID still comes out correct. That is, if we
// instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;"
// even though the ID is "(Lower);Latin-Greek;".
t = new CompoundTransliterator(list, parseError, status);
}
else {
t = (Transliterator*)list.elementAt(0);
}
// Check null pointer
if (t != NULL) {
t->setID(canonID);
if (globalFilter != NULL) {
t->adoptFilter(globalFilter);
}
}
else if (U_SUCCESS(status)) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return t;
}
/**
* Create a transliterator from a basic ID. This is an ID
* containing only the forward direction source, target, and
* variant.
* @param id a basic ID of the form S-T or S-T/V.
* @return a newly created Transliterator or null if the ID is
* invalid.
*/
Transliterator* Transliterator::createBasicInstance(const UnicodeString& id,
const UnicodeString* canon) {
UParseError pe;
UErrorCode ec = U_ZERO_ERROR;
TransliteratorAlias* alias = 0;
Transliterator* t = 0;
umtx_lock(&registryMutex);
if (HAVE_REGISTRY(ec)) {
t = registry->get(id, alias, ec);
}
umtx_unlock(&registryMutex);
if (U_FAILURE(ec)) {
delete t;
delete alias;
return 0;
}
// We may have not gotten a transliterator: Because we can't
// instantiate a transliterator from inside TransliteratorRegistry::
// get() (that would deadlock), we sometimes pass back an alias. This
// contains the data we need to finish the instantiation outside the
// registry mutex. The alias may, in turn, generate another alias, so
// we handle aliases in a loop. The max times through the loop is two.
// [alan]
while (alias != 0) {
U_ASSERT(t==0);
// Rule-based aliases are handled with TransliteratorAlias::
// parse(), followed by TransliteratorRegistry::reget().
// Other aliases are handled with TransliteratorAlias::create().
if (alias->isRuleBased()) {
// Step 1. parse
TransliteratorParser parser(ec);
alias->parse(parser, pe, ec);
delete alias;
alias = 0;
// Step 2. reget
umtx_lock(&registryMutex);
if (HAVE_REGISTRY(ec)) {
t = registry->reget(id, parser, alias, ec);
}
umtx_unlock(&registryMutex);
// Step 3. Loop back around!
} else {
t = alias->create(pe, ec);
delete alias;
alias = 0;
break;
}
if (U_FAILURE(ec)) {
delete t;
delete alias;
t = NULL;
break;
}
}
if (t != NULL && canon != NULL) {
t->setID(*canon);
}
return t;
}
/**
* Returns a <code>Transliterator</code> object constructed from
* the given rule string. This will be a RuleBasedTransliterator,
* if the rule string contains only rules, or a
* CompoundTransliterator, if it contains ID blocks, or a
* NullTransliterator, if it contains ID blocks which parse as
* empty for the given direction.
*/
Transliterator* U_EXPORT2
Transliterator::createFromRules(const UnicodeString& ID,
const UnicodeString& rules,
UTransDirection dir,
UParseError& parseError,
UErrorCode& status)
{
Transliterator* t = NULL;
TransliteratorParser parser(status);
parser.parse(rules, dir, parseError, status);
if (U_FAILURE(status)) {
return 0;
}
// NOTE: The logic here matches that in TransliteratorRegistry.
if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 0) {
t = new NullTransliterator();
}
else if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 1) {
t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector.orphanElementAt(0), TRUE);
}
else if (parser.idBlockVector.size() == 1 && parser.dataVector.size() == 0) {
// idBlock, no data -- this is an alias. The ID has
// been munged from reverse into forward mode, if
// necessary, so instantiate the ID in the forward
// direction.
if (parser.compoundFilter != NULL) {
UnicodeString filterPattern;
parser.compoundFilter->toPattern(filterPattern, FALSE);
t = createInstance(filterPattern + UnicodeString(ID_DELIM)
+ *((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
}
else
t = createInstance(*((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
if (t != NULL) {
t->setID(ID);
}
}
else {
UVector transliterators(status);
int32_t passNumber = 1;
int32_t limit = parser.idBlockVector.size();
if (parser.dataVector.size() > limit)
limit = parser.dataVector.size();
for (int32_t i = 0; i < limit; i++) {
if (i < parser.idBlockVector.size()) {
UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector.elementAt(i);
if (!idBlock->isEmpty()) {
Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status);
if (temp != NULL && typeid(*temp) != typeid(NullTransliterator))
transliterators.addElement(temp, status);
else
delete temp;
}
}
if (!parser.dataVector.isEmpty()) {
TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector.orphanElementAt(0);
// TODO: Should passNumber be turned into a decimal-string representation (1 -> "1")?
RuleBasedTransliterator* temprbt = new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + UnicodeString(passNumber++),
data, TRUE);
// Check if NULL before adding it to transliterators to avoid future usage of NULL pointer.
if (temprbt == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return t;
}
transliterators.addElement(temprbt, status);
}
}
t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status);
// Null pointer check
if (t != NULL) {
t->setID(ID);
t->adoptFilter(parser.orphanCompoundFilter());
}
}
if (U_SUCCESS(status) && t == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return t;
}
UnicodeString& Transliterator::toRules(UnicodeString& rulesSource,
UBool escapeUnprintable) const {
// The base class implementation of toRules munges the ID into
// the correct format. That is: foo => ::foo
if (escapeUnprintable) {
rulesSource.truncate(0);
UnicodeString id = getID();
for (int32_t i=0; i<id.length();) {
UChar32 c = id.char32At(i);
if (!ICU_Utility::escapeUnprintable(rulesSource, c)) {
rulesSource.append(c);
}
i += U16_LENGTH(c);
}
} else {
rulesSource = getID();
}
// KEEP in sync with rbt_pars
rulesSource.insert(0, UNICODE_STRING_SIMPLE("::"));
rulesSource.append(ID_DELIM);
return rulesSource;
}
int32_t Transliterator::countElements() const {
const CompoundTransliterator* ct = dynamic_cast<const CompoundTransliterator*>(this);
return ct != NULL ? ct->getCount() : 0;
}
const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return *this;
}
const CompoundTransliterator* cpd = dynamic_cast<const CompoundTransliterator*>(this);
int32_t n = (cpd == NULL) ? 1 : cpd->getCount();
if (index < 0 || index >= n) {
ec = U_INDEX_OUTOFBOUNDS_ERROR;
return *this;
} else {
return (n == 1) ? *this : cpd->getTransliterator(index);
}
}
UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const {
handleGetSourceSet(result);
if (filter != NULL) {
UnicodeSet* filterSet = dynamic_cast<UnicodeSet*>(filter);
UBool deleteFilterSet = FALSE;
// Most, but not all filters will be UnicodeSets. Optimize for
// the high-runner case.
if (filterSet == NULL) {
filterSet = new UnicodeSet();
// Check null pointer
if (filterSet == NULL) {
return result;
}
deleteFilterSet = TRUE;
filter->addMatchSetTo(*filterSet);
}
result.retainAll(*filterSet);
if (deleteFilterSet) {
delete filterSet;
}
}
return result;
}
void Transliterator::handleGetSourceSet(UnicodeSet& result) const {
result.clear();
}
UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const {
return result.clear();
}
// For public consumption
void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id,
Transliterator::Factory factory,
Transliterator::Token context) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_registerFactory(id, factory, context);
}
}
// To be called only by Transliterator subclasses that are called
// to register themselves by initializeRegistry().
void Transliterator::_registerFactory(const UnicodeString& id,
Transliterator::Factory factory,
Transliterator::Token context) {
UErrorCode ec = U_ZERO_ERROR;
registry->put(id, factory, context, TRUE, ec);
}
// To be called only by Transliterator subclasses that are called
// to register themselves by initializeRegistry().
void Transliterator::_registerSpecialInverse(const UnicodeString& target,
const UnicodeString& inverseTarget,
UBool bidirectional) {
UErrorCode status = U_ZERO_ERROR;
TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status);
}
/**
* Registers a instance <tt>obj</tt> of a subclass of
* <code>Transliterator</code> with the system. This object must
* implement the <tt>clone()</tt> method. When
* <tt>getInstance()</tt> is called with an ID string that is
* equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is
* returned.
*
* @param obj an instance of subclass of
* <code>Transliterator</code> that defines <tt>clone()</tt>
* @see #getInstance
* @see #unregister
*/
void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_registerInstance(adoptedPrototype);
}
}
void Transliterator::_registerInstance(Transliterator* adoptedPrototype) {
UErrorCode ec = U_ZERO_ERROR;
registry->put(adoptedPrototype, TRUE, ec);
}
void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID,
const UnicodeString& realID) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_registerAlias(aliasID, realID);
}
}
void Transliterator::_registerAlias(const UnicodeString& aliasID,
const UnicodeString& realID) {
UErrorCode ec = U_ZERO_ERROR;
registry->put(aliasID, realID, FALSE, TRUE, ec);
}
/**
* Unregisters a transliterator or class. This may be either
* a system transliterator or a user transliterator or class.
*
* @param ID the ID of the transliterator or class
* @see #registerInstance
*/
void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
registry->remove(ID);
}
}
/**
* == OBSOLETE - remove in ICU 3.4 ==
* Return the number of IDs currently registered with the system.
* To retrieve the actual IDs, call getAvailableID(i) with
* i from 0 to countAvailableIDs() - 1.
*/
int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) {
int32_t retVal = 0;
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
retVal = registry->countAvailableIDs();
}
return retVal;
}
/**
* == OBSOLETE - remove in ICU 3.4 ==
* Return the index-th available ID. index must be between 0
* and countAvailableIDs() - 1, inclusive. If index is out of
* range, the result of getAvailableID(0) is returned.
*/
const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) {
const UnicodeString* result = NULL;
umtx_lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
result = &registry->getAvailableID(index);
}
umtx_unlock(&registryMutex);
U_ASSERT(result != NULL); // fail if no registry
return *result;
}
StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) {
if (U_FAILURE(ec)) return NULL;
StringEnumeration* result = NULL;
umtx_lock(&registryMutex);
if (HAVE_REGISTRY(ec)) {
result = registry->getAvailableIDs();
}
umtx_unlock(&registryMutex);
if (result == NULL) {
ec = U_INTERNAL_TRANSLITERATOR_ERROR;
}
return result;
}
int32_t U_EXPORT2 Transliterator::countAvailableSources(void) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
return HAVE_REGISTRY(ec) ? _countAvailableSources() : 0;
}
UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index,
UnicodeString& result) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_getAvailableSource(index, result);
}
return result;
}
int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
return HAVE_REGISTRY(ec) ? _countAvailableTargets(source) : 0;
}
UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index,
const UnicodeString& source,
UnicodeString& result) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_getAvailableTarget(index, source, result);
}
return result;
}
int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source,
const UnicodeString& target) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
return HAVE_REGISTRY(ec) ? _countAvailableVariants(source, target) : 0;
}
UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index,
const UnicodeString& source,
const UnicodeString& target,
UnicodeString& result) {
Mutex lock(&registryMutex);
UErrorCode ec = U_ZERO_ERROR;
if (HAVE_REGISTRY(ec)) {
_getAvailableVariant(index, source, target, result);
}
return result;
}
int32_t Transliterator::_countAvailableSources(void) {
return registry->countAvailableSources();
}
UnicodeString& Transliterator::_getAvailableSource(int32_t index,
UnicodeString& result) {
return registry->getAvailableSource(index, result);
}
int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) {
return registry->countAvailableTargets(source);
}
UnicodeString& Transliterator::_getAvailableTarget(int32_t index,
const UnicodeString& source,
UnicodeString& result) {
return registry->getAvailableTarget(index, source, result);
}
int32_t Transliterator::_countAvailableVariants(const UnicodeString& source,
const UnicodeString& target) {
return registry->countAvailableVariants(source, target);
}
UnicodeString& Transliterator::_getAvailableVariant(int32_t index,
const UnicodeString& source,
const UnicodeString& target,
UnicodeString& result) {
return registry->getAvailableVariant(index, source, target, result);
}
#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
/**
* Method for subclasses to use to obtain a character in the given
* string, with filtering.
* @deprecated the new architecture provides filtering at the top
* level. This method will be removed Dec 31 2001.
*/
UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const {
UChar c;
const UnicodeFilter* localFilter = getFilter();
return (localFilter == 0) ? text.charAt(i) :
(localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE);
}
#endif
/**
* If the registry is initialized, return TRUE. If not, initialize it
* and return TRUE. If the registry cannot be initialized, return
* FALSE (rare).
*
* IMPORTANT: Upon entry, registryMutex must be LOCKED. The entire
* initialization is done with the lock held. There is NO REASON to
* unlock, since no other thread that is waiting on the registryMutex
* cannot itself proceed until the registry is initialized.
*/
UBool Transliterator::initializeRegistry(UErrorCode &status) {
if (registry != 0) {
return TRUE;
}
registry = new TransliteratorRegistry(status);
if (registry == 0 || U_FAILURE(status)) {
delete registry;
registry = 0;
return FALSE; // can't create registry, no recovery
}
/* The following code parses the index table located in
* icu/data/translit/root.txt. The index is an n x 4 table
* that follows this format:
* <id>{
* file{
* resource{"<resource>"}
* direction{"<direction>"}
* }
* }
* <id>{
* internal{
* resource{"<resource>"}
* direction{"<direction"}
* }
* }
* <id>{
* alias{"<getInstanceArg"}
* }
* <id> is the ID of the system transliterator being defined. These
* are public IDs enumerated by Transliterator.getAvailableIDs(),
* unless the second field is "internal".
*
* <resource> is a ResourceReader resource name. Currently these refer
* to file names under com/ibm/text/resources. This string is passed
* directly to ResourceReader, together with <encoding>.
*
* <direction> is either "FORWARD" or "REVERSE".
*
* <getInstanceArg> is a string to be passed directly to
* Transliterator.getInstance(). The returned Transliterator object
* then has its ID changed to <id> and is returned.
*
* The extra blank field on "alias" lines is to make the array square.
*/
//static const char translit_index[] = "translit_index";
UResourceBundle *bundle, *transIDs, *colBund;
bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open default locale*/, &status);
transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &status);
int32_t row, maxRows;
if (U_SUCCESS(status)) {
maxRows = ures_getSize(transIDs);
for (row = 0; row < maxRows; row++) {
colBund = ures_getByIndex(transIDs, row, 0, &status);
if (U_SUCCESS(status)) {
UnicodeString id(ures_getKey(colBund), -1, US_INV);
UResourceBundle* res = ures_getNextResource(colBund, NULL, &status);
const char* typeStr = ures_getKey(res);
UChar type;
u_charsToUChars(typeStr, &type, 1);
if (U_SUCCESS(status)) {
int32_t len = 0;
const UChar *resString;
switch (type) {
case 0x66: // 'f'
case 0x69: // 'i'
// 'file' or 'internal';
// row[2]=resource, row[3]=direction
{
resString = ures_getStringByKey(res, "resource", &len, &status);
UBool visible = (type == 0x0066 /*f*/);
UTransDirection dir =
(ures_getUnicodeStringByKey(res, "direction", &status).charAt(0) ==
0x0046 /*F*/) ?
UTRANS_FORWARD : UTRANS_REVERSE;
registry->put(id, UnicodeString(TRUE, resString, len), dir, TRUE, visible, status);
}
break;
case 0x61: // 'a'
// 'alias'; row[2]=createInstance argument
resString = ures_getString(res, &len, &status);
registry->put(id, UnicodeString(TRUE, resString, len), TRUE, TRUE, status);
break;
}
}
ures_close(res);
}
ures_close(colBund);
}
}
ures_close(transIDs);
ures_close(bundle);
// Manually add prototypes that the system knows about to the
// cache. This is how new non-rule-based transliterators are
// added to the system.
// This is to allow for null pointer check
NullTransliterator* tempNullTranslit = new NullTransliterator();
LowercaseTransliterator* tempLowercaseTranslit = new LowercaseTransliterator();
UppercaseTransliterator* tempUppercaseTranslit = new UppercaseTransliterator();
TitlecaseTransliterator* tempTitlecaseTranslit = new TitlecaseTransliterator();
UnicodeNameTransliterator* tempUnicodeTranslit = new UnicodeNameTransliterator();
NameUnicodeTransliterator* tempNameUnicodeTranslit = new NameUnicodeTransliterator();
#if !UCONFIG_NO_BREAK_ITERATION
// TODO: could or should these transliterators be referenced polymorphically once constructed?
BreakTransliterator* tempBreakTranslit = new BreakTransliterator();
#endif
// Check for null pointers
if (tempNullTranslit == NULL || tempLowercaseTranslit == NULL || tempUppercaseTranslit == NULL ||
tempTitlecaseTranslit == NULL || tempUnicodeTranslit == NULL ||
#if !UCONFIG_NO_BREAK_ITERATION
tempBreakTranslit == NULL ||
#endif
tempNameUnicodeTranslit == NULL )
{
delete tempNullTranslit;
delete tempLowercaseTranslit;
delete tempUppercaseTranslit;
delete tempTitlecaseTranslit;
delete tempUnicodeTranslit;
delete tempNameUnicodeTranslit;
#if !UCONFIG_NO_BREAK_ITERATION
delete tempBreakTranslit;
#endif
// Since there was an error, remove registry
delete registry;
registry = NULL;
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
registry->put(tempNullTranslit, TRUE, status);
registry->put(tempLowercaseTranslit, TRUE, status);
registry->put(tempUppercaseTranslit, TRUE, status);
registry->put(tempTitlecaseTranslit, TRUE, status);
registry->put(tempUnicodeTranslit, TRUE, status);
registry->put(tempNameUnicodeTranslit, TRUE, status);
#if !UCONFIG_NO_BREAK_ITERATION
registry->put(tempBreakTranslit, FALSE, status); // FALSE means invisible.
#endif
RemoveTransliterator::registerIDs(); // Must be within mutex
EscapeTransliterator::registerIDs();
UnescapeTransliterator::registerIDs();
NormalizationTransliterator::registerIDs();
AnyTransliterator::registerIDs();
_registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"),
UNICODE_STRING_SIMPLE("Null"), FALSE);
_registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"),
UNICODE_STRING_SIMPLE("Lower"), TRUE);
_registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"),
UNICODE_STRING_SIMPLE("Lower"), FALSE);
ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, utrans_transliterator_cleanup);
return TRUE;
}
U_NAMESPACE_END
// Defined in transreg.h:
/**
* Release all static memory held by transliterator. This will
* necessarily invalidate any rule-based transliterators held by the
* user, because RBTs hold pointers to common data objects.
*/
U_CFUNC UBool utrans_transliterator_cleanup(void) {
U_NAMESPACE_USE
TransliteratorIDParser::cleanup();
if (registry) {
delete registry;
registry = NULL;
}
return TRUE;
}
#endif /* #if !UCONFIG_NO_TRANSLITERATION */
//eof