blob: e040bf56579640e6c405cc27e61003f679776acc [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/work_queue.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/work_queue_sets.h"
namespace base {
namespace sequence_manager {
namespace internal {
WorkQueue::WorkQueue(TaskQueueImpl* task_queue,
const char* name,
QueueType queue_type)
: task_queue_(task_queue), name_(name), queue_type_(queue_type) {}
void WorkQueue::AsValueInto(TimeTicks now,
trace_event::TracedValue* state) const {
for (const Task& task : tasks_) {
TaskQueueImpl::TaskAsValueInto(task, now, state);
}
}
WorkQueue::~WorkQueue() {
DCHECK(!work_queue_sets_) << task_queue_->GetName() << " : "
<< work_queue_sets_->GetName() << " : " << name_;
}
const Task* WorkQueue::GetFrontTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.front();
}
const Task* WorkQueue::GetBackTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.back();
}
bool WorkQueue::BlockedByFence() const {
if (!fence_)
return false;
// If the queue is empty then any future tasks will have a higher enqueue
// order and will be blocked. The queue is also blocked if the head is past
// the fence.
return tasks_.empty() || tasks_.front().enqueue_order() >= fence_;
}
bool WorkQueue::GetFrontTaskEnqueueOrder(EnqueueOrder* enqueue_order) const {
if (tasks_.empty() || BlockedByFence())
return false;
// Quick sanity check.
DCHECK_LE(tasks_.front().enqueue_order(), tasks_.back().enqueue_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName() << " : "
<< name_;
*enqueue_order = tasks_.front().enqueue_order();
return true;
}
void WorkQueue::Push(Task task) {
bool was_empty = tasks_.empty();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the |enqueue_order()| is monotonically increasing.
DCHECK(was_empty || tasks_.back().enqueue_order() < task.enqueue_order());
// Amoritized O(1).
tasks_.push_back(std::move(task));
if (!was_empty)
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
void WorkQueue::PushNonNestableTaskToFront(Task task) {
DCHECK(task.nestable == Nestable::kNonNestable);
bool was_empty = tasks_.empty();
bool was_blocked = BlockedByFence();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
if (!was_empty) {
// Make sure the |enqueue_order| is monotonically increasing.
DCHECK_LE(task.enqueue_order(), tasks_.front().enqueue_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
}
// Amoritized O(1).
tasks_.push_front(std::move(task));
if (!work_queue_sets_)
return;
// Pretend to WorkQueueSets that nothing has changed if we're blocked.
if (BlockedByFence())
return;
// Pushing task to front may unblock the fence.
if (was_empty || was_blocked) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
} else {
work_queue_sets_->OnFrontTaskChanged(this);
}
}
void WorkQueue::ReloadEmptyImmediateQueue() {
DCHECK(tasks_.empty());
task_queue_->ReloadEmptyImmediateQueue(&tasks_);
if (tasks_.empty())
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
Task WorkQueue::TakeTaskFromWorkQueue() {
DCHECK(work_queue_sets_);
DCHECK(!tasks_.empty());
Task pending_task = std::move(tasks_.front());
tasks_.pop_front();
// NB immediate tasks have a different pipeline to delayed ones.
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopQueue does the right
// thing.
task_queue_->ReloadEmptyImmediateQueue(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
// OnPopQueue calls GetFrontTaskEnqueueOrder which checks BlockedByFence() so
// we don't need to here.
work_queue_sets_->OnPopQueue(this);
task_queue_->TraceQueueSize();
return pending_task;
}
bool WorkQueue::RemoveAllCanceledTasksFromFront() {
DCHECK(work_queue_sets_);
bool task_removed = false;
const SequenceManagerImpl* sequence_manager = task_queue_->sequence_manager();
// TODO(alexclarke): Use IsCancelled once we've understood the bug.
// See http://crbug.com/798554
while (
!tasks_.empty() &&
(!tasks_.front().task ||
sequence_manager->SetCrashKeysAndCheckIsTaskCancelled(tasks_.front()))) {
tasks_.pop_front();
task_removed = true;
}
if (task_removed) {
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopQueue does the right
// thing.
task_queue_->ReloadEmptyImmediateQueue(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
work_queue_sets_->OnPopQueue(this);
task_queue_->TraceQueueSize();
}
return task_removed;
}
void WorkQueue::AssignToWorkQueueSets(WorkQueueSets* work_queue_sets) {
work_queue_sets_ = work_queue_sets;
}
void WorkQueue::AssignSetIndex(size_t work_queue_set_index) {
work_queue_set_index_ = work_queue_set_index;
}
bool WorkQueue::InsertFenceImpl(EnqueueOrder fence) {
DCHECK_NE(fence, 0u);
DCHECK(fence >= fence_ || fence == EnqueueOrder::blocking_fence());
bool was_blocked_by_fence = BlockedByFence();
fence_ = fence;
return was_blocked_by_fence;
}
void WorkQueue::InsertFenceSilently(EnqueueOrder fence) {
// Ensure that there is no fence present or a new one blocks queue completely.
DCHECK(!fence_ || fence_ == EnqueueOrder::blocking_fence());
InsertFenceImpl(fence);
}
bool WorkQueue::InsertFence(EnqueueOrder fence) {
bool was_blocked_by_fence = InsertFenceImpl(fence);
// Moving the fence forward may unblock some tasks.
if (work_queue_sets_ && !tasks_.empty() && was_blocked_by_fence &&
!BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
// Fence insertion may have blocked all tasks in this work queue.
if (BlockedByFence())
work_queue_sets_->OnQueueBlocked(this);
return false;
}
bool WorkQueue::RemoveFence() {
bool was_blocked_by_fence = BlockedByFence();
fence_ = EnqueueOrder::none();
if (work_queue_sets_ && !tasks_.empty() && was_blocked_by_fence) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
return false;
}
bool WorkQueue::ShouldRunBefore(const WorkQueue* other_queue) const {
DCHECK(!tasks_.empty());
DCHECK(!other_queue->tasks_.empty());
EnqueueOrder enqueue_order;
EnqueueOrder other_enqueue_order;
bool have_task = GetFrontTaskEnqueueOrder(&enqueue_order);
bool have_other_task =
other_queue->GetFrontTaskEnqueueOrder(&other_enqueue_order);
DCHECK(have_task);
DCHECK(have_other_task);
return enqueue_order < other_enqueue_order;
}
void WorkQueue::PopTaskForTesting() {
if (tasks_.empty())
return;
tasks_.pop_front();
}
void WorkQueue::MaybeShrinkQueue() {
tasks_.MaybeShrinkQueue();
}
} // namespace internal
} // namespace sequence_manager
} // namespace base