| /* |
| * QR Code generator library (Java) |
| * |
| * Copyright (c) Project Nayuki. (MIT License) |
| * https://www.nayuki.io/page/qr-code-generator-library |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * - The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * - The Software is provided "as is", without warranty of any kind, express or |
| * implied, including but not limited to the warranties of merchantability, |
| * fitness for a particular purpose and noninfringement. In no event shall the |
| * authors or copyright holders be liable for any claim, damages or other |
| * liability, whether in an action of contract, tort or otherwise, arising from, |
| * out of or in connection with the Software or the use or other dealings in the |
| * Software. |
| */ |
| |
| package io.nayuki.qrcodegen; |
| |
| import java.awt.image.BufferedImage; |
| import java.util.Arrays; |
| import java.util.List; |
| import java.util.Objects; |
| |
| |
| /** |
| * Represents an immutable square grid of black and white cells for a QR Code symbol, and |
| * provides static functions to create a QR Code from user-supplied textual or binary data. |
| * <p>This class covers the QR Code model 2 specification, supporting all versions (sizes) |
| * from 1 to 40, all 4 error correction levels, and only 3 character encoding modes.</p> |
| */ |
| public final class QrCode { |
| |
| /*---- Public static factory functions ----*/ |
| |
| /** |
| * Returns a QR Code symbol representing the specified Unicode text string at the specified error correction level. |
| * As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer |
| * Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible |
| * QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the |
| * ecl argument if it can be done without increasing the version. |
| * @param text the text to be encoded, which can be any Unicode string |
| * @param ecl the error correction level to use (will be boosted) |
| * @return a QR Code representing the text |
| * @throws NullPointerException if the text or error correction level is {@code null} |
| * @throws IllegalArgumentException if the text fails to fit in the largest version QR Code, which means it is too long |
| */ |
| public static QrCode encodeText(String text, Ecc ecl) { |
| Objects.requireNonNull(text); |
| Objects.requireNonNull(ecl); |
| List<QrSegment> segs = QrSegment.makeSegments(text); |
| return encodeSegments(segs, ecl); |
| } |
| |
| |
| /** |
| * Returns a QR Code symbol representing the specified binary data string at the specified error correction level. |
| * This function always encodes using the binary segment mode, not any text mode. The maximum number of |
| * bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. |
| * The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. |
| * @param data the binary data to encode |
| * @param ecl the error correction level to use (will be boosted) |
| * @return a QR Code representing the binary data |
| * @throws NullPointerException if the data or error correction level is {@code null} |
| * @throws IllegalArgumentException if the data fails to fit in the largest version QR Code, which means it is too long |
| */ |
| public static QrCode encodeBinary(byte[] data, Ecc ecl) { |
| Objects.requireNonNull(data); |
| Objects.requireNonNull(ecl); |
| QrSegment seg = QrSegment.makeBytes(data); |
| return encodeSegments(Arrays.asList(seg), ecl); |
| } |
| |
| |
| /** |
| * Returns a QR Code symbol representing the specified data segments at the specified error correction |
| * level or higher. The smallest possible QR Code version is automatically chosen for the output. |
| * <p>This function allows the user to create a custom sequence of segments that switches |
| * between modes (such as alphanumeric and binary) to encode text more efficiently. |
| * This function is considered to be lower level than simply encoding text or binary data.</p> |
| * @param segs the segments to encode |
| * @param ecl the error correction level to use (will be boosted) |
| * @return a QR Code representing the segments |
| * @throws NullPointerException if the list of segments, a segment, or the error correction level is {@code null} |
| * @throws IllegalArgumentException if the data is too long to fit in the largest version QR Code at the ECL |
| */ |
| public static QrCode encodeSegments(List<QrSegment> segs, Ecc ecl) { |
| return encodeSegments(segs, ecl, MIN_VERSION, MAX_VERSION, -1, true); |
| } |
| |
| |
| /** |
| * Returns a QR Code symbol representing the specified data segments with the specified encoding parameters. |
| * The smallest possible QR Code version within the specified range is automatically chosen for the output. |
| * <p>This function allows the user to create a custom sequence of segments that switches |
| * between modes (such as alphanumeric and binary) to encode text more efficiently. |
| * This function is considered to be lower level than simply encoding text or binary data.</p> |
| * @param segs the segments to encode |
| * @param ecl the error correction level to use (may be boosted) |
| * @param minVersion the minimum allowed version of the QR symbol (at least 1) |
| * @param maxVersion the maximum allowed version of the QR symbol (at most 40) |
| * @param mask the mask pattern to use, which is either -1 for automatic choice or from 0 to 7 for fixed choice |
| * @param boostEcl increases the error correction level if it can be done without increasing the version number |
| * @return a QR Code representing the segments |
| * @throws NullPointerException if the list of segments, a segment, or the error correction level is {@code null} |
| * @throws IllegalArgumentException if 1 ≤ minVersion ≤ maxVersion ≤ 40 is violated, or if mask |
| * < −1 or mask > 7, or if the data is too long to fit in a QR Code at maxVersion at the ECL |
| */ |
| public static QrCode encodeSegments(List<QrSegment> segs, Ecc ecl, int minVersion, int maxVersion, int mask, boolean boostEcl) { |
| Objects.requireNonNull(segs); |
| Objects.requireNonNull(ecl); |
| if (!(MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= MAX_VERSION) || mask < -1 || mask > 7) |
| throw new IllegalArgumentException("Invalid value"); |
| |
| // Find the minimal version number to use |
| int version, dataUsedBits; |
| for (version = minVersion; ; version++) { |
| int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; // Number of data bits available |
| dataUsedBits = QrSegment.getTotalBits(segs, version); |
| if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits) |
| break; // This version number is found to be suitable |
| if (version >= maxVersion) // All versions in the range could not fit the given data |
| throw new IllegalArgumentException("Data too long"); |
| } |
| if (dataUsedBits == -1) |
| throw new AssertionError(); |
| |
| // Increase the error correction level while the data still fits in the current version number |
| for (Ecc newEcl : Ecc.values()) { |
| if (boostEcl && dataUsedBits <= getNumDataCodewords(version, newEcl) * 8) |
| ecl = newEcl; |
| } |
| |
| // Create the data bit string by concatenating all segments |
| int dataCapacityBits = getNumDataCodewords(version, ecl) * 8; |
| BitBuffer bb = new BitBuffer(); |
| for (QrSegment seg : segs) { |
| bb.appendBits(seg.mode.modeBits, 4); |
| bb.appendBits(seg.numChars, seg.mode.numCharCountBits(version)); |
| bb.appendData(seg); |
| } |
| |
| // Add terminator and pad up to a byte if applicable |
| bb.appendBits(0, Math.min(4, dataCapacityBits - bb.bitLength())); |
| bb.appendBits(0, (8 - bb.bitLength() % 8) % 8); |
| |
| // Pad with alternate bytes until data capacity is reached |
| for (int padByte = 0xEC; bb.bitLength() < dataCapacityBits; padByte ^= 0xEC ^ 0x11) |
| bb.appendBits(padByte, 8); |
| if (bb.bitLength() % 8 != 0) |
| throw new AssertionError(); |
| |
| // Create the QR Code symbol |
| return new QrCode(version, ecl, bb.getBytes(), mask); |
| } |
| |
| |
| |
| /*---- Public constants ----*/ |
| |
| public static final int MIN_VERSION = 1; |
| public static final int MAX_VERSION = 40; |
| |
| |
| |
| /*---- Instance fields ----*/ |
| |
| // Public immutable scalar parameters |
| |
| /** This QR Code symbol's version number, which is always between 1 and 40 (inclusive). */ |
| public final int version; |
| |
| /** The width and height of this QR Code symbol, measured in modules. |
| * Always equal to version × 4 + 17, in the range 21 to 177. */ |
| public final int size; |
| |
| /** The error correction level used in this QR Code symbol. Never {@code null}. */ |
| public final Ecc errorCorrectionLevel; |
| |
| /** The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer). |
| * Note that even if a constructor was called with automatic masking requested |
| * (mask = -1), the resulting object will still have a mask value between 0 and 7. */ |
| public final int mask; |
| |
| // Private grids of modules/pixels (conceptually immutable) |
| private boolean[][] modules; // The modules of this QR Code symbol (false = white, true = black) |
| private boolean[][] isFunction; // Indicates function modules that are not subjected to masking |
| |
| |
| |
| /*---- Constructors ----*/ |
| |
| /** |
| * Creates a new QR Code symbol with the specified version number, error correction level, binary data array, and mask number. |
| * <p>This is a cumbersome low-level constructor that should not be invoked directly by the user. |
| * To go one level up, see the {@link #encodeSegments(List,Ecc)} function.</p> |
| * @param ver the version number to use, which must be in the range 1 to 40, inclusive |
| * @param ecl the error correction level to use |
| * @param dataCodewords the raw binary user data to encode |
| * @param mask the mask pattern to use, which is either -1 for automatic choice or from 0 to 7 for fixed choice |
| * @throws NullPointerException if the byte array or error correction level is {@code null} |
| * @throws IllegalArgumentException if the version or mask value is out of range |
| */ |
| public QrCode(int ver, Ecc ecl, byte[] dataCodewords, int mask) { |
| // Check arguments |
| Objects.requireNonNull(ecl); |
| if (ver < MIN_VERSION || ver > MAX_VERSION || mask < -1 || mask > 7) |
| throw new IllegalArgumentException("Value out of range"); |
| Objects.requireNonNull(dataCodewords); |
| |
| // Initialize fields |
| version = ver; |
| size = ver * 4 + 17; |
| errorCorrectionLevel = ecl; |
| modules = new boolean[size][size]; // Entirely white grid |
| isFunction = new boolean[size][size]; |
| |
| // Draw function patterns, draw all codewords, do masking |
| drawFunctionPatterns(); |
| byte[] allCodewords = appendErrorCorrection(dataCodewords); |
| drawCodewords(allCodewords); |
| this.mask = handleConstructorMasking(mask); |
| } |
| |
| |
| |
| /*---- Public instance methods ----*/ |
| |
| /** |
| * Returns the color of the module (pixel) at the specified coordinates, which is either |
| * false for white or true for black. The top left corner has the coordinates (x=0, y=0). |
| * If the specified coordinates are out of bounds, then false (white) is returned. |
| * @param x the x coordinate, where 0 is the left edge and size−1 is the right edge |
| * @param y the y coordinate, where 0 is the top edge and size−1 is the bottom edge |
| * @return the module's color, which is either false (white) or true (black) |
| */ |
| public boolean getModule(int x, int y) { |
| return 0 <= x && x < size && 0 <= y && y < size && modules[y][x]; |
| } |
| |
| |
| /** |
| * Returns a new image object representing this QR Code, with the specified module scale and number |
| * of border modules. For example, the arguments scale=10, border=4 means to pad the QR Code symbol |
| * with 4 white border modules on all four edges, then use 10*10 pixels to represent each module. |
| * The resulting image only contains the hex colors 000000 and FFFFFF. |
| * @param scale the module scale factor, which must be positive |
| * @param border the number of border modules to add, which must be non-negative |
| * @return an image representing this QR Code, with padding and scaling |
| * @throws IllegalArgumentException if the scale or border is out of range |
| */ |
| public BufferedImage toImage(int scale, int border) { |
| if (scale <= 0 || border < 0) |
| throw new IllegalArgumentException("Value out of range"); |
| if (border > Integer.MAX_VALUE / 2 || size + border * 2L > Integer.MAX_VALUE / scale) |
| throw new IllegalArgumentException("Scale or border too large"); |
| |
| BufferedImage result = new BufferedImage((size + border * 2) * scale, (size + border * 2) * scale, BufferedImage.TYPE_INT_RGB); |
| for (int y = 0; y < result.getHeight(); y++) { |
| for (int x = 0; x < result.getWidth(); x++) { |
| boolean val = getModule(x / scale - border, y / scale - border); |
| result.setRGB(x, y, val ? 0x000000 : 0xFFFFFF); |
| } |
| } |
| return result; |
| } |
| |
| |
| /** |
| * Based on the specified number of border modules to add as padding, this returns a |
| * string whose contents represents an SVG XML file that depicts this QR Code symbol. |
| * Note that Unix newlines (\n) are always used, regardless of the platform. |
| * @param border the number of border modules to add, which must be non-negative |
| * @return a string representing this QR Code as an SVG document |
| */ |
| public String toSvgString(int border) { |
| if (border < 0) |
| throw new IllegalArgumentException("Border must be non-negative"); |
| if (size + border * 2L > Integer.MAX_VALUE) |
| throw new IllegalArgumentException("Border too large"); |
| |
| StringBuilder sb = new StringBuilder(); |
| sb.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"); |
| sb.append("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n"); |
| sb.append(String.format( |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 %1$d %1$d\" stroke=\"none\">\n", |
| size + border * 2)); |
| sb.append("\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n"); |
| sb.append("\t<path d=\""); |
| boolean head = true; |
| for (int y = -border; y < size + border; y++) { |
| for (int x = -border; x < size + border; x++) { |
| if (getModule(x, y)) { |
| if (head) |
| head = false; |
| else |
| sb.append(" "); |
| sb.append(String.format("M%d,%dh1v1h-1z", x + border, y + border)); |
| } |
| } |
| } |
| sb.append("\" fill=\"#000000\"/>\n"); |
| sb.append("</svg>\n"); |
| return sb.toString(); |
| } |
| |
| |
| |
| /*---- Private helper methods for constructor: Drawing function modules ----*/ |
| |
| private void drawFunctionPatterns() { |
| // Draw horizontal and vertical timing patterns |
| for (int i = 0; i < size; i++) { |
| setFunctionModule(6, i, i % 2 == 0); |
| setFunctionModule(i, 6, i % 2 == 0); |
| } |
| |
| // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) |
| drawFinderPattern(3, 3); |
| drawFinderPattern(size - 4, 3); |
| drawFinderPattern(3, size - 4); |
| |
| // Draw numerous alignment patterns |
| int[] alignPatPos = getAlignmentPatternPositions(version); |
| int numAlign = alignPatPos.length; |
| for (int i = 0; i < numAlign; i++) { |
| for (int j = 0; j < numAlign; j++) { |
| if (i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0) |
| continue; // Skip the three finder corners |
| else |
| drawAlignmentPattern(alignPatPos[i], alignPatPos[j]); |
| } |
| } |
| |
| // Draw configuration data |
| drawFormatBits(0); // Dummy mask value; overwritten later in the constructor |
| drawVersion(); |
| } |
| |
| |
| // Draws two copies of the format bits (with its own error correction code) |
| // based on the given mask and this object's error correction level field. |
| private void drawFormatBits(int mask) { |
| // Calculate error correction code and pack bits |
| int data = errorCorrectionLevel.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3 |
| int rem = data; |
| for (int i = 0; i < 10; i++) |
| rem = (rem << 1) ^ ((rem >>> 9) * 0x537); |
| data = data << 10 | rem; |
| data ^= 0x5412; // uint15 |
| if (data >>> 15 != 0) |
| throw new AssertionError(); |
| |
| // Draw first copy |
| for (int i = 0; i <= 5; i++) |
| setFunctionModule(8, i, ((data >>> i) & 1) != 0); |
| setFunctionModule(8, 7, ((data >>> 6) & 1) != 0); |
| setFunctionModule(8, 8, ((data >>> 7) & 1) != 0); |
| setFunctionModule(7, 8, ((data >>> 8) & 1) != 0); |
| for (int i = 9; i < 15; i++) |
| setFunctionModule(14 - i, 8, ((data >>> i) & 1) != 0); |
| |
| // Draw second copy |
| for (int i = 0; i <= 7; i++) |
| setFunctionModule(size - 1 - i, 8, ((data >>> i) & 1) != 0); |
| for (int i = 8; i < 15; i++) |
| setFunctionModule(8, size - 15 + i, ((data >>> i) & 1) != 0); |
| setFunctionModule(8, size - 8, true); |
| } |
| |
| |
| // Draws two copies of the version bits (with its own error correction code), |
| // based on this object's version field (which only has an effect for 7 <= version <= 40). |
| private void drawVersion() { |
| if (version < 7) |
| return; |
| |
| // Calculate error correction code and pack bits |
| int rem = version; // version is uint6, in the range [7, 40] |
| for (int i = 0; i < 12; i++) |
| rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25); |
| int data = version << 12 | rem; // uint18 |
| if (data >>> 18 != 0) |
| throw new AssertionError(); |
| |
| // Draw two copies |
| for (int i = 0; i < 18; i++) { |
| boolean bit = ((data >>> i) & 1) != 0; |
| int a = size - 11 + i % 3, b = i / 3; |
| setFunctionModule(a, b, bit); |
| setFunctionModule(b, a, bit); |
| } |
| } |
| |
| |
| // Draws a 9*9 finder pattern including the border separator, with the center module at (x, y). |
| private void drawFinderPattern(int x, int y) { |
| for (int i = -4; i <= 4; i++) { |
| for (int j = -4; j <= 4; j++) { |
| int dist = Math.max(Math.abs(i), Math.abs(j)); // Chebyshev/infinity norm |
| int xx = x + j, yy = y + i; |
| if (0 <= xx && xx < size && 0 <= yy && yy < size) |
| setFunctionModule(xx, yy, dist != 2 && dist != 4); |
| } |
| } |
| } |
| |
| |
| // Draws a 5*5 alignment pattern, with the center module at (x, y). |
| private void drawAlignmentPattern(int x, int y) { |
| for (int i = -2; i <= 2; i++) { |
| for (int j = -2; j <= 2; j++) |
| setFunctionModule(x + j, y + i, Math.max(Math.abs(i), Math.abs(j)) != 1); |
| } |
| } |
| |
| |
| // Sets the color of a module and marks it as a function module. |
| // Only used by the constructor. Coordinates must be in range. |
| private void setFunctionModule(int x, int y, boolean isBlack) { |
| modules[y][x] = isBlack; |
| isFunction[y][x] = true; |
| } |
| |
| |
| /*---- Private helper methods for constructor: Codewords and masking ----*/ |
| |
| // Returns a new byte string representing the given data with the appropriate error correction |
| // codewords appended to it, based on this object's version and error correction level. |
| private byte[] appendErrorCorrection(byte[] data) { |
| if (data.length != getNumDataCodewords(version, errorCorrectionLevel)) |
| throw new IllegalArgumentException(); |
| |
| // Calculate parameter numbers |
| int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[errorCorrectionLevel.ordinal()][version]; |
| int blockEccLen = ECC_CODEWORDS_PER_BLOCK[errorCorrectionLevel.ordinal()][version]; |
| int rawCodewords = getNumRawDataModules(version) / 8; |
| int numShortBlocks = numBlocks - rawCodewords % numBlocks; |
| int shortBlockLen = rawCodewords / numBlocks; |
| |
| // Split data into blocks and append ECC to each block |
| byte[][] blocks = new byte[numBlocks][]; |
| ReedSolomonGenerator rs = new ReedSolomonGenerator(blockEccLen); |
| for (int i = 0, k = 0; i < numBlocks; i++) { |
| byte[] dat = Arrays.copyOfRange(data, k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)); |
| byte[] block = Arrays.copyOf(dat, shortBlockLen + 1); |
| k += dat.length; |
| byte[] ecc = rs.getRemainder(dat); |
| System.arraycopy(ecc, 0, block, block.length - blockEccLen, ecc.length); |
| blocks[i] = block; |
| } |
| |
| // Interleave (not concatenate) the bytes from every block into a single sequence |
| byte[] result = new byte[rawCodewords]; |
| for (int i = 0, k = 0; i < blocks[0].length; i++) { |
| for (int j = 0; j < blocks.length; j++) { |
| // Skip the padding byte in short blocks |
| if (i != shortBlockLen - blockEccLen || j >= numShortBlocks) { |
| result[k] = blocks[j][i]; |
| k++; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire |
| // data area of this QR Code symbol. Function modules need to be marked off before this is called. |
| private void drawCodewords(byte[] data) { |
| Objects.requireNonNull(data); |
| if (data.length != getNumRawDataModules(version) / 8) |
| throw new IllegalArgumentException(); |
| |
| int i = 0; // Bit index into the data |
| // Do the funny zigzag scan |
| for (int right = size - 1; right >= 1; right -= 2) { // Index of right column in each column pair |
| if (right == 6) |
| right = 5; |
| for (int vert = 0; vert < size; vert++) { // Vertical counter |
| for (int j = 0; j < 2; j++) { |
| int x = right - j; // Actual x coordinate |
| boolean upward = ((right + 1) & 2) == 0; |
| int y = upward ? size - 1 - vert : vert; // Actual y coordinate |
| if (!isFunction[y][x] && i < data.length * 8) { |
| modules[y][x] = ((data[i >>> 3] >>> (7 - (i & 7))) & 1) != 0; |
| i++; |
| } |
| // If there are any remainder bits (0 to 7), they are already |
| // set to 0/false/white when the grid of modules was initialized |
| } |
| } |
| } |
| if (i != data.length * 8) |
| throw new AssertionError(); |
| } |
| |
| |
| // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical |
| // properties, calling applyMask(m) twice with the same value is equivalent to no change at all. |
| // This means it is possible to apply a mask, undo it, and try another mask. Note that a final |
| // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). |
| private void applyMask(int mask) { |
| if (mask < 0 || mask > 7) |
| throw new IllegalArgumentException("Mask value out of range"); |
| for (int y = 0; y < size; y++) { |
| for (int x = 0; x < size; x++) { |
| boolean invert; |
| switch (mask) { |
| case 0: invert = (x + y) % 2 == 0; break; |
| case 1: invert = y % 2 == 0; break; |
| case 2: invert = x % 3 == 0; break; |
| case 3: invert = (x + y) % 3 == 0; break; |
| case 4: invert = (x / 3 + y / 2) % 2 == 0; break; |
| case 5: invert = x * y % 2 + x * y % 3 == 0; break; |
| case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; |
| case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; |
| default: throw new AssertionError(); |
| } |
| modules[y][x] ^= invert & !isFunction[y][x]; |
| } |
| } |
| } |
| |
| |
| // A messy helper function for the constructors. This QR Code must be in an unmasked state when this |
| // method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed. |
| // This method applies and returns the actual mask chosen, from 0 to 7. |
| private int handleConstructorMasking(int mask) { |
| if (mask == -1) { // Automatically choose best mask |
| int minPenalty = Integer.MAX_VALUE; |
| for (int i = 0; i < 8; i++) { |
| drawFormatBits(i); |
| applyMask(i); |
| int penalty = getPenaltyScore(); |
| if (penalty < minPenalty) { |
| mask = i; |
| minPenalty = penalty; |
| } |
| applyMask(i); // Undoes the mask due to XOR |
| } |
| } |
| if (mask < 0 || mask > 7) |
| throw new AssertionError(); |
| drawFormatBits(mask); // Overwrite old format bits |
| applyMask(mask); // Apply the final choice of mask |
| return mask; // The caller shall assign this value to the final-declared field |
| } |
| |
| |
| // Calculates and returns the penalty score based on state of this QR Code's current modules. |
| // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. |
| private int getPenaltyScore() { |
| int result = 0; |
| |
| // Adjacent modules in row having same color |
| for (int y = 0; y < size; y++) { |
| boolean colorX = false; |
| for (int x = 0, runX = 0; x < size; x++) { |
| if (x == 0 || modules[y][x] != colorX) { |
| colorX = modules[y][x]; |
| runX = 1; |
| } else { |
| runX++; |
| if (runX == 5) |
| result += PENALTY_N1; |
| else if (runX > 5) |
| result++; |
| } |
| } |
| } |
| // Adjacent modules in column having same color |
| for (int x = 0; x < size; x++) { |
| boolean colorY = false; |
| for (int y = 0, runY = 0; y < size; y++) { |
| if (y == 0 || modules[y][x] != colorY) { |
| colorY = modules[y][x]; |
| runY = 1; |
| } else { |
| runY++; |
| if (runY == 5) |
| result += PENALTY_N1; |
| else if (runY > 5) |
| result++; |
| } |
| } |
| } |
| |
| // 2*2 blocks of modules having same color |
| for (int y = 0; y < size - 1; y++) { |
| for (int x = 0; x < size - 1; x++) { |
| boolean color = modules[y][x]; |
| if ( color == modules[y][x + 1] && |
| color == modules[y + 1][x] && |
| color == modules[y + 1][x + 1]) |
| result += PENALTY_N2; |
| } |
| } |
| |
| // Finder-like pattern in rows |
| for (int y = 0; y < size; y++) { |
| for (int x = 0, bits = 0; x < size; x++) { |
| bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); |
| if (x >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| // Finder-like pattern in columns |
| for (int x = 0; x < size; x++) { |
| for (int y = 0, bits = 0; y < size; y++) { |
| bits = ((bits << 1) & 0x7FF) | (modules[y][x] ? 1 : 0); |
| if (y >= 10 && (bits == 0x05D || bits == 0x5D0)) // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| |
| // Balance of black and white modules |
| int black = 0; |
| for (boolean[] row : modules) { |
| for (boolean color : row) { |
| if (color) |
| black++; |
| } |
| } |
| int total = size * size; |
| // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% |
| for (int k = 0; black*20 < (9-k)*total || black*20 > (11+k)*total; k++) |
| result += PENALTY_N4; |
| return result; |
| } |
| |
| |
| |
| /*---- Private static helper functions ----*/ |
| |
| // Returns a set of positions of the alignment patterns in ascending order. These positions are |
| // used on both the x and y axes. Each value in the resulting array is in the range [0, 177). |
| // This stateless pure function could be implemented as table of 40 variable-length lists of unsigned bytes. |
| private static int[] getAlignmentPatternPositions(int ver) { |
| if (ver < MIN_VERSION || ver > MAX_VERSION) |
| throw new IllegalArgumentException("Version number out of range"); |
| else if (ver == 1) |
| return new int[]{}; |
| else { |
| int numAlign = ver / 7 + 2; |
| int step; |
| if (ver != 32) { |
| // ceil((size - 13) / (2*numAlign - 2)) * 2 |
| step = (ver * 4 + numAlign * 2 + 1) / (2 * numAlign - 2) * 2; |
| } else // C-C-C-Combo breaker! |
| step = 26; |
| |
| int[] result = new int[numAlign]; |
| result[0] = 6; |
| for (int i = result.length - 1, pos = ver * 4 + 10; i >= 1; i--, pos -= step) |
| result[i] = pos; |
| return result; |
| } |
| } |
| |
| |
| // Returns the number of data bits that can be stored in a QR Code of the given version number, after |
| // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. |
| // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. |
| private static int getNumRawDataModules(int ver) { |
| if (ver < MIN_VERSION || ver > MAX_VERSION) |
| throw new IllegalArgumentException("Version number out of range"); |
| |
| int size = ver * 4 + 17; |
| int result = size * size; // Number of modules in the whole QR symbol square |
| result -= 64 * 3; // Subtract the three finders with separators |
| result -= 15 * 2 + 1; // Subtract the format information and black module |
| result -= (size - 16) * 2; // Subtract the timing patterns |
| // The five lines above are equivalent to: int result = (16 * ver + 128) * ver + 64; |
| if (ver >= 2) { |
| int numAlign = ver / 7 + 2; |
| result -= (numAlign - 1) * (numAlign - 1) * 25; // Subtract alignment patterns not overlapping with timing patterns |
| result -= (numAlign - 2) * 2 * 20; // Subtract alignment patterns that overlap with timing patterns |
| // The two lines above are equivalent to: result -= (25 * numAlign - 10) * numAlign - 55; |
| if (ver >= 7) |
| result -= 18 * 2; // Subtract version information |
| } |
| return result; |
| } |
| |
| |
| // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any |
| // QR Code of the given version number and error correction level, with remainder bits discarded. |
| // This stateless pure function could be implemented as a (40*4)-cell lookup table. |
| static int getNumDataCodewords(int ver, Ecc ecl) { |
| if (ver < MIN_VERSION || ver > MAX_VERSION) |
| throw new IllegalArgumentException("Version number out of range"); |
| return getNumRawDataModules(ver) / 8 |
| - ECC_CODEWORDS_PER_BLOCK[ecl.ordinal()][ver] |
| * NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal()][ver]; |
| } |
| |
| |
| /*---- Private tables of constants ----*/ |
| |
| // For use in getPenaltyScore(), when evaluating which mask is best. |
| private static final int PENALTY_N1 = 3; |
| private static final int PENALTY_N2 = 3; |
| private static final int PENALTY_N3 = 40; |
| private static final int PENALTY_N4 = 10; |
| |
| |
| private static final byte[][] ECC_CODEWORDS_PER_BLOCK = { |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| {-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Low |
| {-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, // Medium |
| {-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // Quartile |
| {-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30}, // High |
| }; |
| |
| private static final byte[][] NUM_ERROR_CORRECTION_BLOCKS = { |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| {-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25}, // Low |
| {-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49}, // Medium |
| {-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68}, // Quartile |
| {-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81}, // High |
| }; |
| |
| |
| |
| /*---- Public helper enumeration ----*/ |
| |
| /** |
| * Represents the error correction level used in a QR Code symbol. |
| */ |
| public enum Ecc { |
| // These enum constants must be declared in ascending order of error protection, |
| // for the sake of the implicit ordinal() method and values() function. |
| LOW(1), MEDIUM(0), QUARTILE(3), HIGH(2); |
| |
| // In the range 0 to 3 (unsigned 2-bit integer). |
| final int formatBits; |
| |
| // Constructor. |
| private Ecc(int fb) { |
| formatBits = fb; |
| } |
| } |
| |
| |
| |
| /*---- Private helper class ----*/ |
| |
| /** |
| * Computes the Reed-Solomon error correction codewords for a sequence of data codewords |
| * at a given degree. Objects are immutable, and the state only depends on the degree. |
| * This class exists because each data block in a QR Code shares the same the divisor polynomial. |
| */ |
| private static final class ReedSolomonGenerator { |
| |
| /*-- Immutable field --*/ |
| |
| // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which |
| // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. |
| private final byte[] coefficients; |
| |
| |
| /*-- Constructor --*/ |
| |
| /** |
| * Creates a Reed-Solomon ECC generator for the specified degree. This could be implemented |
| * as a lookup table over all possible parameter values, instead of as an algorithm. |
| * @param degree the divisor polynomial degree, which must be between 1 and 255 |
| * @throws IllegalArgumentException if degree < 1 or degree > 255 |
| */ |
| public ReedSolomonGenerator(int degree) { |
| if (degree < 1 || degree > 255) |
| throw new IllegalArgumentException("Degree out of range"); |
| |
| // Start with the monomial x^0 |
| coefficients = new byte[degree]; |
| coefficients[degree - 1] = 1; |
| |
| // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), |
| // drop the highest term, and store the rest of the coefficients in order of descending powers. |
| // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). |
| int root = 1; |
| for (int i = 0; i < degree; i++) { |
| // Multiply the current product by (x - r^i) |
| for (int j = 0; j < coefficients.length; j++) { |
| coefficients[j] = (byte)multiply(coefficients[j] & 0xFF, root); |
| if (j + 1 < coefficients.length) |
| coefficients[j] ^= coefficients[j + 1]; |
| } |
| root = multiply(root, 0x02); |
| } |
| } |
| |
| |
| /*-- Method --*/ |
| |
| /** |
| * Computes and returns the Reed-Solomon error correction codewords for the specified |
| * sequence of data codewords. The returned object is always a new byte array. |
| * This method does not alter this object's state (because it is immutable). |
| * @param data the sequence of data codewords |
| * @return the Reed-Solomon error correction codewords |
| * @throws NullPointerException if the data is {@code null} |
| */ |
| public byte[] getRemainder(byte[] data) { |
| Objects.requireNonNull(data); |
| |
| // Compute the remainder by performing polynomial division |
| byte[] result = new byte[coefficients.length]; |
| for (byte b : data) { |
| int factor = (b ^ result[0]) & 0xFF; |
| System.arraycopy(result, 1, result, 0, result.length - 1); |
| result[result.length - 1] = 0; |
| for (int i = 0; i < result.length; i++) |
| result[i] ^= multiply(coefficients[i] & 0xFF, factor); |
| } |
| return result; |
| } |
| |
| |
| /*-- Static function --*/ |
| |
| // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result |
| // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. |
| private static int multiply(int x, int y) { |
| if (x >>> 8 != 0 || y >>> 8 != 0) |
| throw new IllegalArgumentException("Byte out of range"); |
| // Russian peasant multiplication |
| int z = 0; |
| for (int i = 7; i >= 0; i--) { |
| z = (z << 1) ^ ((z >>> 7) * 0x11D); |
| z ^= ((y >>> i) & 1) * x; |
| } |
| if (z >>> 8 != 0) |
| throw new AssertionError(); |
| return z; |
| } |
| |
| } |
| |
| } |