| //===-- primary32.h ---------------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SCUDO_PRIMARY32_H_ |
| #define SCUDO_PRIMARY32_H_ |
| |
| #include "bytemap.h" |
| #include "common.h" |
| #include "list.h" |
| #include "local_cache.h" |
| #include "options.h" |
| #include "release.h" |
| #include "report.h" |
| #include "stats.h" |
| #include "string_utils.h" |
| |
| namespace scudo { |
| |
| // SizeClassAllocator32 is an allocator for 32 or 64-bit address space. |
| // |
| // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes |
| // boundary, and keeps a bytemap of the mappable address space to track the size |
| // class they are associated with. |
| // |
| // Mapped regions are split into equally sized Blocks according to the size |
| // class they belong to, and the associated pointers are shuffled to prevent any |
| // predictable address pattern (the predictability increases with the block |
| // size). |
| // |
| // Regions for size class 0 are special and used to hold TransferBatches, which |
| // allow to transfer arrays of pointers from the global size class freelist to |
| // the thread specific freelist for said class, and back. |
| // |
| // Memory used by this allocator is never unmapped but can be partially |
| // reclaimed if the platform allows for it. |
| |
| template <typename Config> class SizeClassAllocator32 { |
| public: |
| typedef typename Config::PrimaryCompactPtrT CompactPtrT; |
| typedef typename Config::SizeClassMap SizeClassMap; |
| static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog; |
| // The bytemap can only track UINT8_MAX - 1 classes. |
| static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), ""); |
| // Regions should be large enough to hold the largest Block. |
| static_assert((1UL << Config::PrimaryRegionSizeLog) >= SizeClassMap::MaxSize, |
| ""); |
| typedef SizeClassAllocator32<Config> ThisT; |
| typedef SizeClassAllocatorLocalCache<ThisT> CacheT; |
| typedef typename CacheT::TransferBatch TransferBatch; |
| typedef typename CacheT::BatchGroup BatchGroup; |
| |
| static uptr getSizeByClassId(uptr ClassId) { |
| return (ClassId == SizeClassMap::BatchClassId) |
| ? sizeof(TransferBatch) |
| : SizeClassMap::getSizeByClassId(ClassId); |
| } |
| |
| static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; } |
| |
| void init(s32 ReleaseToOsInterval) { |
| if (SCUDO_FUCHSIA) |
| reportError("SizeClassAllocator32 is not supported on Fuchsia"); |
| |
| if (SCUDO_TRUSTY) |
| reportError("SizeClassAllocator32 is not supported on Trusty"); |
| |
| DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT))); |
| PossibleRegions.init(); |
| u32 Seed; |
| const u64 Time = getMonotonicTime(); |
| if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))) |
| Seed = static_cast<u32>( |
| Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6)); |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| Sci->RandState = getRandomU32(&Seed); |
| // Sci->MaxRegionIndex is already initialized to 0. |
| Sci->MinRegionIndex = NumRegions; |
| Sci->ReleaseInfo.LastReleaseAtNs = Time; |
| } |
| setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval)); |
| } |
| |
| void unmapTestOnly() { |
| while (NumberOfStashedRegions > 0) |
| unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]), |
| RegionSize); |
| uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| if (Sci->MinRegionIndex < MinRegionIndex) |
| MinRegionIndex = Sci->MinRegionIndex; |
| if (Sci->MaxRegionIndex > MaxRegionIndex) |
| MaxRegionIndex = Sci->MaxRegionIndex; |
| *Sci = {}; |
| } |
| for (uptr I = MinRegionIndex; I < MaxRegionIndex; I++) |
| if (PossibleRegions[I]) |
| unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize); |
| PossibleRegions.unmapTestOnly(); |
| } |
| |
| CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const { |
| return static_cast<CompactPtrT>(Ptr); |
| } |
| |
| void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const { |
| return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr)); |
| } |
| |
| uptr compactPtrGroup(CompactPtrT CompactPtr) { |
| return CompactPtr >> GroupSizeLog; |
| } |
| |
| TransferBatch *popBatch(CacheT *C, uptr ClassId) { |
| DCHECK_LT(ClassId, NumClasses); |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| ScopedLock L(Sci->Mutex); |
| TransferBatch *B = popBatchImpl(C, ClassId); |
| if (UNLIKELY(!B)) { |
| if (UNLIKELY(!populateFreeList(C, ClassId, Sci))) |
| return nullptr; |
| B = popBatchImpl(C, ClassId); |
| // if `populateFreeList` succeeded, we are supposed to get free blocks. |
| DCHECK_NE(B, nullptr); |
| } |
| Sci->Stats.PoppedBlocks += B->getCount(); |
| return B; |
| } |
| |
| // Push the array of free blocks to the designated batch group. |
| void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) { |
| DCHECK_LT(ClassId, NumClasses); |
| DCHECK_GT(Size, 0); |
| |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| if (ClassId == SizeClassMap::BatchClassId) { |
| ScopedLock L(Sci->Mutex); |
| // Constructing a batch group in the free list will use two blocks in |
| // BatchClassId. If we are pushing BatchClassId blocks, we will use the |
| // blocks in the array directly (can't delegate local cache which will |
| // cause a recursive allocation). However, The number of free blocks may |
| // be less than two. Therefore, populate the free list before inserting |
| // the blocks. |
| if (Size == 1 && !populateFreeList(C, ClassId, Sci)) |
| return; |
| pushBlocksImpl(C, ClassId, Array, Size); |
| Sci->Stats.PushedBlocks += Size; |
| return; |
| } |
| |
| // TODO(chiahungduan): Consider not doing grouping if the group size is not |
| // greater than the block size with a certain scale. |
| |
| // Sort the blocks so that blocks belonging to the same group can be pushed |
| // together. |
| bool SameGroup = true; |
| for (u32 I = 1; I < Size; ++I) { |
| if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) |
| SameGroup = false; |
| CompactPtrT Cur = Array[I]; |
| u32 J = I; |
| while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) { |
| Array[J] = Array[J - 1]; |
| --J; |
| } |
| Array[J] = Cur; |
| } |
| |
| ScopedLock L(Sci->Mutex); |
| pushBlocksImpl(C, ClassId, Array, Size, SameGroup); |
| |
| Sci->Stats.PushedBlocks += Size; |
| if (ClassId != SizeClassMap::BatchClassId) |
| releaseToOSMaybe(Sci, ClassId); |
| } |
| |
| void disable() { |
| // The BatchClassId must be locked last since other classes can use it. |
| for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) { |
| if (static_cast<uptr>(I) == SizeClassMap::BatchClassId) |
| continue; |
| getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock(); |
| } |
| getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock(); |
| RegionsStashMutex.lock(); |
| PossibleRegions.disable(); |
| } |
| |
| void enable() { |
| PossibleRegions.enable(); |
| RegionsStashMutex.unlock(); |
| getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock(); |
| for (uptr I = 0; I < NumClasses; I++) { |
| if (I == SizeClassMap::BatchClassId) |
| continue; |
| getSizeClassInfo(I)->Mutex.unlock(); |
| } |
| } |
| |
| template <typename F> void iterateOverBlocks(F Callback) { |
| uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| if (Sci->MinRegionIndex < MinRegionIndex) |
| MinRegionIndex = Sci->MinRegionIndex; |
| if (Sci->MaxRegionIndex > MaxRegionIndex) |
| MaxRegionIndex = Sci->MaxRegionIndex; |
| } |
| for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) |
| if (PossibleRegions[I] && |
| (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) { |
| const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U); |
| const uptr From = I * RegionSize; |
| const uptr To = From + (RegionSize / BlockSize) * BlockSize; |
| for (uptr Block = From; Block < To; Block += BlockSize) |
| Callback(Block); |
| } |
| } |
| |
| void getStats(ScopedString *Str) { |
| // TODO(kostyak): get the RSS per region. |
| uptr TotalMapped = 0; |
| uptr PoppedBlocks = 0; |
| uptr PushedBlocks = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| TotalMapped += Sci->AllocatedUser; |
| PoppedBlocks += Sci->Stats.PoppedBlocks; |
| PushedBlocks += Sci->Stats.PushedBlocks; |
| } |
| Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; " |
| "remains %zu\n", |
| TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks); |
| for (uptr I = 0; I < NumClasses; I++) |
| getStats(Str, I, 0); |
| } |
| |
| bool setOption(Option O, sptr Value) { |
| if (O == Option::ReleaseInterval) { |
| const s32 Interval = Max( |
| Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs), |
| Config::PrimaryMinReleaseToOsIntervalMs); |
| atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval); |
| return true; |
| } |
| // Not supported by the Primary, but not an error either. |
| return true; |
| } |
| |
| uptr releaseToOS() { |
| uptr TotalReleasedBytes = 0; |
| for (uptr I = 0; I < NumClasses; I++) { |
| if (I == SizeClassMap::BatchClassId) |
| continue; |
| SizeClassInfo *Sci = getSizeClassInfo(I); |
| ScopedLock L(Sci->Mutex); |
| TotalReleasedBytes += releaseToOSMaybe(Sci, I, /*Force=*/true); |
| } |
| return TotalReleasedBytes; |
| } |
| |
| const char *getRegionInfoArrayAddress() const { return nullptr; } |
| static uptr getRegionInfoArraySize() { return 0; } |
| |
| static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData, |
| UNUSED uptr Ptr) { |
| return {}; |
| } |
| |
| AtomicOptions Options; |
| |
| private: |
| static const uptr NumClasses = SizeClassMap::NumClasses; |
| static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog; |
| static const uptr NumRegions = |
| SCUDO_MMAP_RANGE_SIZE >> Config::PrimaryRegionSizeLog; |
| static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U; |
| typedef FlatByteMap<NumRegions> ByteMap; |
| |
| struct SizeClassStats { |
| uptr PoppedBlocks; |
| uptr PushedBlocks; |
| }; |
| |
| struct ReleaseToOsInfo { |
| uptr PushedBlocksAtLastRelease; |
| uptr RangesReleased; |
| uptr LastReleasedBytes; |
| u64 LastReleaseAtNs; |
| }; |
| |
| struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo { |
| HybridMutex Mutex; |
| SinglyLinkedList<BatchGroup> FreeList; |
| uptr CurrentRegion; |
| uptr CurrentRegionAllocated; |
| SizeClassStats Stats; |
| u32 RandState; |
| uptr AllocatedUser; |
| // Lowest & highest region index allocated for this size class, to avoid |
| // looping through the whole NumRegions. |
| uptr MinRegionIndex; |
| uptr MaxRegionIndex; |
| ReleaseToOsInfo ReleaseInfo; |
| }; |
| static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, ""); |
| |
| uptr computeRegionId(uptr Mem) { |
| const uptr Id = Mem >> Config::PrimaryRegionSizeLog; |
| CHECK_LT(Id, NumRegions); |
| return Id; |
| } |
| |
| uptr allocateRegionSlow() { |
| uptr MapSize = 2 * RegionSize; |
| const uptr MapBase = reinterpret_cast<uptr>( |
| map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM)); |
| if (!MapBase) |
| return 0; |
| const uptr MapEnd = MapBase + MapSize; |
| uptr Region = MapBase; |
| if (isAligned(Region, RegionSize)) { |
| ScopedLock L(RegionsStashMutex); |
| if (NumberOfStashedRegions < MaxStashedRegions) |
| RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize; |
| else |
| MapSize = RegionSize; |
| } else { |
| Region = roundUpTo(MapBase, RegionSize); |
| unmap(reinterpret_cast<void *>(MapBase), Region - MapBase); |
| MapSize = RegionSize; |
| } |
| const uptr End = Region + MapSize; |
| if (End != MapEnd) |
| unmap(reinterpret_cast<void *>(End), MapEnd - End); |
| return Region; |
| } |
| |
| uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) { |
| DCHECK_LT(ClassId, NumClasses); |
| uptr Region = 0; |
| { |
| ScopedLock L(RegionsStashMutex); |
| if (NumberOfStashedRegions > 0) |
| Region = RegionsStash[--NumberOfStashedRegions]; |
| } |
| if (!Region) |
| Region = allocateRegionSlow(); |
| if (LIKELY(Region)) { |
| // Sci->Mutex is held by the caller, updating the Min/Max is safe. |
| const uptr RegionIndex = computeRegionId(Region); |
| if (RegionIndex < Sci->MinRegionIndex) |
| Sci->MinRegionIndex = RegionIndex; |
| if (RegionIndex > Sci->MaxRegionIndex) |
| Sci->MaxRegionIndex = RegionIndex; |
| PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U)); |
| } |
| return Region; |
| } |
| |
| SizeClassInfo *getSizeClassInfo(uptr ClassId) { |
| DCHECK_LT(ClassId, NumClasses); |
| return &SizeClassInfoArray[ClassId]; |
| } |
| |
| // Push the blocks to their batch group. The layout will be like, |
| // |
| // FreeList - > BG -> BG -> BG |
| // | | | |
| // v v v |
| // TB TB TB |
| // | |
| // v |
| // TB |
| // |
| // Each BlockGroup(BG) will associate with unique group id and the free blocks |
| // are managed by a list of TransferBatch(TB). To reduce the time of inserting |
| // blocks, BGs are sorted and the input `Array` are supposed to be sorted so |
| // that we can get better performance of maintaining sorted property. |
| // Use `SameGroup=true` to indicate that all blocks in the array are from the |
| // same group then we will skip checking the group id of each block. |
| // |
| // Note that this aims to have a better management of dirty pages, i.e., the |
| // RSS usage won't grow indefinitely. There's an exception that we may not put |
| // a block to its associated group. While populating new blocks, we may have |
| // blocks cross different groups. However, most cases will fall into same |
| // group and they are supposed to be popped soon. In that case, it's not worth |
| // sorting the array with the almost-sorted property. Therefore, we use |
| // `SameGroup=true` instead. |
| // |
| // The region mutex needs to be held while calling this method. |
| void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size, |
| bool SameGroup = false) { |
| DCHECK_GT(Size, 0U); |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| |
| auto CreateGroup = [&](uptr GroupId) { |
| BatchGroup *BG = nullptr; |
| TransferBatch *TB = nullptr; |
| if (ClassId == SizeClassMap::BatchClassId) { |
| DCHECK_GE(Size, 2U); |
| BG = reinterpret_cast<BatchGroup *>( |
| decompactPtr(ClassId, Array[Size - 1])); |
| BG->Batches.clear(); |
| |
| TB = reinterpret_cast<TransferBatch *>( |
| decompactPtr(ClassId, Array[Size - 2])); |
| TB->clear(); |
| } else { |
| BG = C->createGroup(); |
| BG->Batches.clear(); |
| |
| TB = C->createBatch(ClassId, nullptr); |
| TB->clear(); |
| } |
| |
| BG->GroupId = GroupId; |
| BG->Batches.push_front(TB); |
| BG->PushedBlocks = 0; |
| BG->PushedBlocksAtLastCheckpoint = 0; |
| BG->MaxCachedPerBatch = |
| TransferBatch::getMaxCached(getSizeByClassId(ClassId)); |
| |
| return BG; |
| }; |
| |
| auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) { |
| SinglyLinkedList<TransferBatch> &Batches = BG->Batches; |
| TransferBatch *CurBatch = Batches.front(); |
| DCHECK_NE(CurBatch, nullptr); |
| |
| for (u32 I = 0; I < Size;) { |
| DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount()); |
| u16 UnusedSlots = |
| static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount()); |
| if (UnusedSlots == 0) { |
| CurBatch = C->createBatch( |
| ClassId, |
| reinterpret_cast<void *>(decompactPtr(ClassId, Array[I]))); |
| CurBatch->clear(); |
| Batches.push_front(CurBatch); |
| UnusedSlots = BG->MaxCachedPerBatch; |
| } |
| // `UnusedSlots` is u16 so the result will be also fit in u16. |
| u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I)); |
| CurBatch->appendFromArray(&Array[I], AppendSize); |
| I += AppendSize; |
| } |
| |
| BG->PushedBlocks += Size; |
| }; |
| |
| BatchGroup *Cur = Sci->FreeList.front(); |
| |
| if (ClassId == SizeClassMap::BatchClassId) { |
| if (Cur == nullptr) { |
| // Don't need to classify BatchClassId. |
| Cur = CreateGroup(/*GroupId=*/0); |
| Sci->FreeList.push_front(Cur); |
| } |
| InsertBlocks(Cur, Array, Size); |
| return; |
| } |
| |
| // In the following, `Cur` always points to the BatchGroup for blocks that |
| // will be pushed next. `Prev` is the element right before `Cur`. |
| BatchGroup *Prev = nullptr; |
| |
| while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) { |
| Prev = Cur; |
| Cur = Cur->Next; |
| } |
| |
| if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) { |
| Cur = CreateGroup(compactPtrGroup(Array[0])); |
| if (Prev == nullptr) |
| Sci->FreeList.push_front(Cur); |
| else |
| Sci->FreeList.insert(Prev, Cur); |
| } |
| |
| // All the blocks are from the same group, just push without checking group |
| // id. |
| if (SameGroup) { |
| InsertBlocks(Cur, Array, Size); |
| return; |
| } |
| |
| // The blocks are sorted by group id. Determine the segment of group and |
| // push them to their group together. |
| u32 Count = 1; |
| for (u32 I = 1; I < Size; ++I) { |
| if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) { |
| DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId); |
| InsertBlocks(Cur, Array + I - Count, Count); |
| |
| while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) { |
| Prev = Cur; |
| Cur = Cur->Next; |
| } |
| |
| if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) { |
| Cur = CreateGroup(compactPtrGroup(Array[I])); |
| DCHECK_NE(Prev, nullptr); |
| Sci->FreeList.insert(Prev, Cur); |
| } |
| |
| Count = 1; |
| } else { |
| ++Count; |
| } |
| } |
| |
| InsertBlocks(Cur, Array + Size - Count, Count); |
| } |
| |
| // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest |
| // group id will be considered first. |
| // |
| // The region mutex needs to be held while calling this method. |
| TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) { |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| if (Sci->FreeList.empty()) |
| return nullptr; |
| |
| SinglyLinkedList<TransferBatch> &Batches = Sci->FreeList.front()->Batches; |
| DCHECK(!Batches.empty()); |
| |
| TransferBatch *B = Batches.front(); |
| Batches.pop_front(); |
| DCHECK_NE(B, nullptr); |
| DCHECK_GT(B->getCount(), 0U); |
| |
| if (Batches.empty()) { |
| BatchGroup *BG = Sci->FreeList.front(); |
| Sci->FreeList.pop_front(); |
| |
| // We don't keep BatchGroup with zero blocks to avoid empty-checking while |
| // allocating. Note that block used by constructing BatchGroup is recorded |
| // as free blocks in the last element of BatchGroup::Batches. Which means, |
| // once we pop the last TransferBatch, the block is implicitly |
| // deallocated. |
| if (ClassId != SizeClassMap::BatchClassId) |
| C->deallocate(SizeClassMap::BatchClassId, BG); |
| } |
| |
| return B; |
| } |
| |
| NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci) { |
| uptr Region; |
| uptr Offset; |
| // If the size-class currently has a region associated to it, use it. The |
| // newly created blocks will be located after the currently allocated memory |
| // for that region (up to RegionSize). Otherwise, create a new region, where |
| // the new blocks will be carved from the beginning. |
| if (Sci->CurrentRegion) { |
| Region = Sci->CurrentRegion; |
| DCHECK_GT(Sci->CurrentRegionAllocated, 0U); |
| Offset = Sci->CurrentRegionAllocated; |
| } else { |
| DCHECK_EQ(Sci->CurrentRegionAllocated, 0U); |
| Region = allocateRegion(Sci, ClassId); |
| if (UNLIKELY(!Region)) |
| return false; |
| C->getStats().add(StatMapped, RegionSize); |
| Sci->CurrentRegion = Region; |
| Offset = 0; |
| } |
| |
| const uptr Size = getSizeByClassId(ClassId); |
| const u16 MaxCount = TransferBatch::getMaxCached(Size); |
| DCHECK_GT(MaxCount, 0U); |
| // The maximum number of blocks we should carve in the region is dictated |
| // by the maximum number of batches we want to fill, and the amount of |
| // memory left in the current region (we use the lowest of the two). This |
| // will not be 0 as we ensure that a region can at least hold one block (via |
| // static_assert and at the end of this function). |
| const u32 NumberOfBlocks = |
| Min(MaxNumBatches * MaxCount, |
| static_cast<u32>((RegionSize - Offset) / Size)); |
| DCHECK_GT(NumberOfBlocks, 0U); |
| |
| constexpr u32 ShuffleArraySize = |
| MaxNumBatches * TransferBatch::MaxNumCached; |
| // Fill the transfer batches and put them in the size-class freelist. We |
| // need to randomize the blocks for security purposes, so we first fill a |
| // local array that we then shuffle before populating the batches. |
| CompactPtrT ShuffleArray[ShuffleArraySize]; |
| DCHECK_LE(NumberOfBlocks, ShuffleArraySize); |
| |
| uptr P = Region + Offset; |
| for (u32 I = 0; I < NumberOfBlocks; I++, P += Size) |
| ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P); |
| // No need to shuffle the batches size class. |
| if (ClassId != SizeClassMap::BatchClassId) |
| shuffle(ShuffleArray, NumberOfBlocks, &Sci->RandState); |
| for (u32 I = 0; I < NumberOfBlocks;) { |
| // `MaxCount` is u16 so the result will also fit in u16. |
| const u16 N = static_cast<u16>(Min<u32>(MaxCount, NumberOfBlocks - I)); |
| // Note that the N blocks here may have different group ids. Given that |
| // it only happens when it crosses the group size boundary. Instead of |
| // sorting them, treat them as same group here to avoid sorting the |
| // almost-sorted blocks. |
| pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true); |
| I += N; |
| } |
| |
| const uptr AllocatedUser = Size * NumberOfBlocks; |
| C->getStats().add(StatFree, AllocatedUser); |
| DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize); |
| // If there is not enough room in the region currently associated to fit |
| // more blocks, we deassociate the region by resetting CurrentRegion and |
| // CurrentRegionAllocated. Otherwise, update the allocated amount. |
| if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) { |
| Sci->CurrentRegion = 0; |
| Sci->CurrentRegionAllocated = 0; |
| } else { |
| Sci->CurrentRegionAllocated += AllocatedUser; |
| } |
| Sci->AllocatedUser += AllocatedUser; |
| |
| return true; |
| } |
| |
| void getStats(ScopedString *Str, uptr ClassId, uptr Rss) { |
| SizeClassInfo *Sci = getSizeClassInfo(ClassId); |
| if (Sci->AllocatedUser == 0) |
| return; |
| const uptr InUse = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks; |
| const uptr AvailableChunks = Sci->AllocatedUser / getSizeByClassId(ClassId); |
| Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu " |
| "inuse: %6zu avail: %6zu rss: %6zuK releases: %6zu\n", |
| ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10, |
| Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks, InUse, |
| AvailableChunks, Rss >> 10, Sci->ReleaseInfo.RangesReleased); |
| } |
| |
| NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId, |
| bool Force = false) { |
| const uptr BlockSize = getSizeByClassId(ClassId); |
| const uptr PageSize = getPageSizeCached(); |
| |
| DCHECK_GE(Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks); |
| const uptr BytesInFreeList = |
| Sci->AllocatedUser - |
| (Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks) * BlockSize; |
| if (BytesInFreeList < PageSize) |
| return 0; // No chance to release anything. |
| const uptr BytesPushed = |
| (Sci->Stats.PushedBlocks - Sci->ReleaseInfo.PushedBlocksAtLastRelease) * |
| BlockSize; |
| if (BytesPushed < PageSize) |
| return 0; // Nothing new to release. |
| |
| const bool CheckDensity = BlockSize < PageSize / 16U; |
| // Releasing smaller blocks is expensive, so we want to make sure that a |
| // significant amount of bytes are free, and that there has been a good |
| // amount of batches pushed to the freelist before attempting to release. |
| if (CheckDensity) { |
| if (!Force && BytesPushed < Sci->AllocatedUser / 16U) |
| return 0; |
| } |
| |
| if (!Force) { |
| const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs); |
| if (IntervalMs < 0) |
| return 0; |
| if (Sci->ReleaseInfo.LastReleaseAtNs + |
| static_cast<u64>(IntervalMs) * 1000000 > |
| getMonotonicTime()) { |
| return 0; // Memory was returned recently. |
| } |
| } |
| |
| const uptr First = Sci->MinRegionIndex; |
| const uptr Last = Sci->MaxRegionIndex; |
| DCHECK_NE(Last, 0U); |
| DCHECK_LE(First, Last); |
| uptr TotalReleasedBytes = 0; |
| const uptr Base = First * RegionSize; |
| const uptr NumberOfRegions = Last - First + 1U; |
| const uptr GroupSize = (1U << GroupSizeLog); |
| const uptr CurRegionGroupId = |
| compactPtrGroup(compactPtr(ClassId, Sci->CurrentRegion)); |
| |
| ReleaseRecorder Recorder(Base); |
| PageReleaseContext Context(BlockSize, RegionSize, NumberOfRegions); |
| |
| auto DecompactPtr = [](CompactPtrT CompactPtr) { |
| return reinterpret_cast<uptr>(CompactPtr); |
| }; |
| for (BatchGroup &BG : Sci->FreeList) { |
| const uptr PushedBytesDelta = |
| BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint; |
| if (PushedBytesDelta * BlockSize < PageSize) |
| continue; |
| |
| uptr AllocatedGroupSize = BG.GroupId == CurRegionGroupId |
| ? Sci->CurrentRegionAllocated |
| : GroupSize; |
| if (AllocatedGroupSize == 0) |
| continue; |
| |
| // TransferBatches are pushed in front of BG.Batches. The first one may |
| // not have all caches used. |
| const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch + |
| BG.Batches.front()->getCount(); |
| const uptr BytesInBG = NumBlocks * BlockSize; |
| // Given the randomness property, we try to release the pages only if the |
| // bytes used by free blocks exceed certain proportion of allocated |
| // spaces. |
| if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize < |
| (100U - 1U - BlockSize / 16U)) { |
| continue; |
| } |
| |
| BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks; |
| // Note that we don't always visit blocks in each BatchGroup so that we |
| // may miss the chance of releasing certain pages that cross BatchGroups. |
| Context.markFreeBlocks(BG.Batches, DecompactPtr, Base); |
| } |
| |
| if (!Context.hasBlockMarked()) |
| return 0; |
| |
| auto SkipRegion = [this, First, ClassId](uptr RegionIndex) { |
| return (PossibleRegions[First + RegionIndex] - 1U) != ClassId; |
| }; |
| releaseFreeMemoryToOS(Context, Recorder, SkipRegion); |
| |
| if (Recorder.getReleasedRangesCount() > 0) { |
| Sci->ReleaseInfo.PushedBlocksAtLastRelease = Sci->Stats.PushedBlocks; |
| Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount(); |
| Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes(); |
| TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes; |
| } |
| Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTime(); |
| |
| return TotalReleasedBytes; |
| } |
| |
| SizeClassInfo SizeClassInfoArray[NumClasses] = {}; |
| |
| // Track the regions in use, 0 is unused, otherwise store ClassId + 1. |
| ByteMap PossibleRegions = {}; |
| atomic_s32 ReleaseToOsIntervalMs = {}; |
| // Unless several threads request regions simultaneously from different size |
| // classes, the stash rarely contains more than 1 entry. |
| static constexpr uptr MaxStashedRegions = 4; |
| HybridMutex RegionsStashMutex; |
| uptr NumberOfStashedRegions = 0; |
| uptr RegionsStash[MaxStashedRegions] = {}; |
| }; |
| |
| } // namespace scudo |
| |
| #endif // SCUDO_PRIMARY32_H_ |