blob: 2d560b165758cf52fcd36dbc5681d5b3baf5718a [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// <algorithm>
// template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
// sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
// indirect_equivalence_relation<projected<I1, Proj1>,
// projected<I2, Proj2>> Pred = ranges::equal_to>
// constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
// Pred pred = {},
// Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20
//
// template<forward_range R1, forward_range R2,
// class Proj1 = identity, class Proj2 = identity,
// indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,
// projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
// constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {},
// Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20
#include <algorithm>
#include <array>
#include <concepts>
#include <list>
#include <ranges>
#include "almost_satisfies_types.h"
#include "counting_predicates.h"
#include "counting_projection.h"
#include "test_iterators.h"
template <class Iter1, class Sent1 = int*, class Iter2 = int*, class Sent2 = int*>
concept HasIsPermutationIt = requires(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2) {
std::ranges::is_permutation(first1, last1, first2, last2);
};
template <class Range1, class Range2 = UncheckedRange<int*>>
concept HasIsPermutationR = requires(Range1 range1, Range2 range2) {
std::ranges::is_permutation(range1, range2);
};
static_assert(HasIsPermutationIt<int*>);
static_assert(!HasIsPermutationIt<ForwardIteratorNotDerivedFrom>);
static_assert(!HasIsPermutationIt<ForwardIteratorNotIncrementable>);
static_assert(!HasIsPermutationIt<int*, SentinelForNotSemiregular>);
static_assert(!HasIsPermutationIt<int*, SentinelForNotWeaklyEqualityComparableWith>);
static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotDerivedFrom>);
static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotIncrementable>);
static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotSemiregular>);
static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotWeaklyEqualityComparableWith>);
// !indirect_equivalence_relation<Pred, projected<I1, Proj1>, projected<I2, Proj2>>;
static_assert(!HasIsPermutationIt<int*, int*, int**, int**>);
static_assert(HasIsPermutationR<UncheckedRange<int*>>);
static_assert(!HasIsPermutationR<ForwardRangeNotDerivedFrom>);
static_assert(!HasIsPermutationR<ForwardRangeNotIncrementable>);
static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelSemiregular>);
static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelEqualityComparableWith>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotDerivedFrom>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotIncrementable>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelSemiregular>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelEqualityComparableWith>);
// !indirect_equivalence_relation<Pred, projected<iterator_t<I1>, Proj1>, projected<iterator_t<I2>, Proj2>>;
static_assert(!HasIsPermutationIt<UncheckedRange<int*>, UncheckedRange<int**>>);
template <int N, int M>
struct Data {
std::array<int, N> input1;
std::array<int, M> input2;
bool expected;
};
template <class Iter1, class Sent1, class Iter2, class Sent2, int N, int M>
constexpr void test(Data<N, M> d) {
{
std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(Iter1(d.input1.data()),
Sent1(Iter1(d.input1.data() + N)),
Iter1(d.input2.data()),
Sent1(Iter1(d.input2.data() + M)));
assert(ret == d.expected);
}
{
auto range1 = std::ranges::subrange(Iter1(d.input1.data()), Sent1(Iter1(d.input1.data() + N)));
auto range2 = std::ranges::subrange(Iter1(d.input2.data()), Sent1(Iter1(d.input2.data() + M)));
std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(range1, range2);
assert(ret == d.expected);
}
}
template <class Iter1, class Sent1, class Iter2, class Sent2 = Iter2>
constexpr void test_iterators() {
// Ranges are identical.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {1, 2, 3, 4}, .expected = true});
// Ranges are reversed.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {4, 3, 2, 1}, .expected = true});
// Two elements are swapped.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {4, 2, 3, 1}, .input2 = {1, 2, 3, 4}, .expected = true});
// The first range is shorter.
test<Iter1, Sent1, Iter2, Sent2, 4, 5>({.input1 = {4, 2, 3, 1}, .input2 = {4, 3, 2, 1, 5}, .expected = false});
// The first range is longer.
test<Iter1, Sent1, Iter2, Sent2, 5, 4>({.input1 = {4, 2, 3, 1, 5}, .input2 = {4, 3, 2, 1}, .expected = false});
// The first range is empty.
test<Iter1, Sent1, Iter2, Sent2, 0, 4>({.input1 = {}, .input2 = {4, 3, 2, 1}, .expected = false});
// The second range is empty.
test<Iter1, Sent1, Iter2, Sent2, 5, 0>({.input1 = {4, 2, 3, 1, 5}, .input2 = {}, .expected = false});
// Both ranges are empty.
test<Iter1, Sent1, Iter2, Sent2, 0, 0>({.input1 = {}, .input2 = {}, .expected = true});
// 1-element range, same value.
test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {1}, .expected = true});
// 1-element range, different values.
test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {2}, .expected = false});
}
template <class Iter1, class Sent1 = Iter1>
constexpr void test_iterators1() {
test_iterators<Iter1, Sent1, forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>();
test_iterators<Iter1, Sent1, forward_iterator<int*>>();
test_iterators<Iter1, Sent1, bidirectional_iterator<int*>>();
test_iterators<Iter1, Sent1, random_access_iterator<int*>>();
test_iterators<Iter1, Sent1, contiguous_iterator<int*>>();
test_iterators<Iter1, Sent1, int*>();
test_iterators<Iter1, Sent1, const int*>();
}
constexpr bool test() {
test_iterators1<forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>();
test_iterators1<forward_iterator<int*>>();
test_iterators1<bidirectional_iterator<int*>>();
test_iterators1<random_access_iterator<int*>>();
test_iterators1<contiguous_iterator<int*>>();
test_iterators1<int*>();
test_iterators1<const int*>();
{ // A custom comparator works.
struct A {
int a;
constexpr bool pred(const A& rhs) const { return a == rhs.a; }
};
std::array in1 = {A{2}, A{3}, A{1}};
std::array in2 = {A{1}, A{2}, A{3}};
{
auto ret = std::ranges::is_permutation(in1.begin(), in1.end(), in2.begin(), in2.end(), &A::pred);
assert(ret);
}
{
auto ret = std::ranges::is_permutation(in1, in2, &A::pred);
assert(ret);
}
}
{ // A custom projection works.
struct A {
int a;
constexpr bool operator==(const A&) const = default;
constexpr A x2() const { return A{a * 2}; }
constexpr A div2() const { return A{a / 2}; }
};
std::array in1 = {A{1}, A{2}, A{3}}; // [2, 4, 6] after applying `x2`.
std::array in2 = {A{4}, A{8}, A{12}}; // [2, 4, 6] after applying `div2`.
{
auto ret = std::ranges::is_permutation(
in1.begin(), in1.end(), in2.begin(), in2.end(), {}, &A::x2, &A::div2);
assert(ret);
}
{
auto ret = std::ranges::is_permutation(in1, in2, {}, &A::x2, &A::div2);
assert(ret);
}
}
{ // Check that complexity requirements are met.
int predCount = 0;
int proj1Count = 0;
int proj2Count = 0;
auto reset_counters = [&] {
predCount = proj1Count = proj2Count = 0;
};
counting_predicate pred(std::ranges::equal_to{}, predCount);
counting_projection<> proj1(proj1Count);
counting_projection<> proj2(proj2Count);
{
// 1. No applications of the corresponding predicate if `ForwardIterator1` and `ForwardIterator2` meet the
// requirements of random access iterators and `last1 - first1 != last2 - first2`.
int a[] = {1, 2, 3, 4, 5};
int b[] = {1, 2, 3, 4};
// Make sure that the iterators have different types.
auto b_begin = random_access_iterator<int*>(std::begin(b));
auto b_end = random_access_iterator<int*>(std::end(b));
{
auto ret = std::ranges::is_permutation(a, a + 5, b_begin, b_end, pred, proj1, proj2);
assert(!ret);
assert(predCount == 0);
assert(proj1Count == 0);
assert(proj2Count == 0);
reset_counters();
}
{
auto ret = std::ranges::is_permutation(a, std::ranges::subrange(b_begin, b_end), pred, proj1, proj2);
assert(!ret);
assert(predCount == 0);
assert(proj1Count == 0);
assert(proj2Count == 0);
reset_counters();
}
}
// 2. Otherwise, exactly last1 - first1 applications of the corresponding predicate if
// `equal(first1, last1, first2, last2, pred)` would return true.
{
int a[] = {1, 2, 3, 4, 5};
int b[] = {1, 2, 3, 4, 5};
int expected = 5;
{
auto ret = std::ranges::is_permutation(a, a + 5, b, b + 5, pred, proj1, proj2);
assert(ret);
assert(predCount == expected);
assert(proj1Count == expected);
assert(proj2Count == expected);
reset_counters();
}
{
auto ret = std::ranges::is_permutation(a, b, pred, proj1, proj2);
assert(ret);
assert(predCount == expected);
assert(proj1Count == expected);
assert(proj2Count == expected);
reset_counters();
}
}
// Note: we currently don't have the setup to test big-O complexity, but copying the requirement for completeness'
// sake.
// 3. Otherwise, at worst `O(N^2)`, where `N` has the value `last1 - first1`.
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}