| /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
| /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
| /* This Source Code Form is subject to the terms of the Mozilla Public |
| * License, v. 2.0. If a copy of the MPL was not distributed with this |
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
| |
| /* Various predicates and operations on IEEE-754 floating point types. */ |
| |
| #ifndef mozilla_FloatingPoint_h |
| #define mozilla_FloatingPoint_h |
| |
| #include "mozilla/Assertions.h" |
| #include "mozilla/Attributes.h" |
| #include "mozilla/Casting.h" |
| #include "mozilla/MathAlgorithms.h" |
| #include "mozilla/Types.h" |
| |
| #include <stdint.h> |
| |
| namespace mozilla { |
| |
| /* |
| * It's reasonable to ask why we have this header at all. Don't isnan, |
| * copysign, the built-in comparison operators, and the like solve these |
| * problems? Unfortunately, they don't. We've found that various compilers |
| * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile |
| * the standard methods in various situations, so we can't use them. Some of |
| * these compilers even have problems compiling seemingly reasonable bitwise |
| * algorithms! But with some care we've found algorithms that seem to not |
| * trigger those compiler bugs. |
| * |
| * For the aforementioned reasons, be very wary of making changes to any of |
| * these algorithms. If you must make changes, keep a careful eye out for |
| * compiler bustage, particularly PGO-specific bustage. |
| */ |
| |
| struct FloatTypeTraits |
| { |
| typedef uint32_t Bits; |
| |
| static const unsigned kExponentBias = 127; |
| static const unsigned kExponentShift = 23; |
| |
| static const Bits kSignBit = 0x80000000UL; |
| static const Bits kExponentBits = 0x7F800000UL; |
| static const Bits kSignificandBits = 0x007FFFFFUL; |
| }; |
| |
| struct DoubleTypeTraits |
| { |
| typedef uint64_t Bits; |
| |
| static const unsigned kExponentBias = 1023; |
| static const unsigned kExponentShift = 52; |
| |
| static const Bits kSignBit = 0x8000000000000000ULL; |
| static const Bits kExponentBits = 0x7ff0000000000000ULL; |
| static const Bits kSignificandBits = 0x000fffffffffffffULL; |
| }; |
| |
| template<typename T> struct SelectTrait; |
| template<> struct SelectTrait<float> : public FloatTypeTraits {}; |
| template<> struct SelectTrait<double> : public DoubleTypeTraits {}; |
| |
| /* |
| * This struct contains details regarding the encoding of floating-point |
| * numbers that can be useful for direct bit manipulation. As of now, the |
| * template parameter has to be float or double. |
| * |
| * The nested typedef |Bits| is the unsigned integral type with the same size |
| * as T: uint32_t for float and uint64_t for double (static assertions |
| * double-check these assumptions). |
| * |
| * kExponentBias is the offset that is subtracted from the exponent when |
| * computing the value, i.e. one plus the opposite of the mininum possible |
| * exponent. |
| * kExponentShift is the shift that one needs to apply to retrieve the |
| * exponent component of the value. |
| * |
| * kSignBit contains a bits mask. Bit-and-ing with this mask will result in |
| * obtaining the sign bit. |
| * kExponentBits contains the mask needed for obtaining the exponent bits and |
| * kSignificandBits contains the mask needed for obtaining the significand |
| * bits. |
| * |
| * Full details of how floating point number formats are encoded are beyond |
| * the scope of this comment. For more information, see |
| * http://en.wikipedia.org/wiki/IEEE_floating_point |
| * http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers |
| */ |
| template<typename T> |
| struct FloatingPoint : public SelectTrait<T> |
| { |
| typedef SelectTrait<T> Base; |
| typedef typename Base::Bits Bits; |
| |
| static_assert((Base::kSignBit & Base::kExponentBits) == 0, |
| "sign bit shouldn't overlap exponent bits"); |
| static_assert((Base::kSignBit & Base::kSignificandBits) == 0, |
| "sign bit shouldn't overlap significand bits"); |
| static_assert((Base::kExponentBits & Base::kSignificandBits) == 0, |
| "exponent bits shouldn't overlap significand bits"); |
| |
| static_assert((Base::kSignBit | Base::kExponentBits | Base::kSignificandBits) == |
| ~Bits(0), |
| "all bits accounted for"); |
| |
| /* |
| * These implementations assume float/double are 32/64-bit single/double |
| * format number types compatible with the IEEE-754 standard. C++ don't |
| * require this to be the case. But we required this in implementations of |
| * these algorithms that preceded this header, so we shouldn't break anything |
| * if we keep doing so. |
| */ |
| static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T"); |
| }; |
| |
| /** Determines whether a float/double is NaN. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE MOZ_CONSTEXPR bool |
| IsNaN(T aValue) |
| { |
| /* |
| * A float/double is NaN if all exponent bits are 1 and the significand |
| * contains at least one non-zero bit. |
| */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| return (BitwiseCast<Bits>(aValue) & Traits::kExponentBits) == Traits::kExponentBits && |
| (BitwiseCast<Bits>(aValue) & Traits::kSignificandBits) != 0; |
| } |
| |
| /** Determines whether a float/double is +Infinity or -Infinity. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| IsInfinite(T aValue) |
| { |
| /* Infinities have all exponent bits set to 1 and an all-0 significand. */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| Bits bits = BitwiseCast<Bits>(aValue); |
| return (bits & ~Traits::kSignBit) == Traits::kExponentBits; |
| } |
| |
| /** Determines whether a float/double is not NaN or infinite. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| IsFinite(T aValue) |
| { |
| /* |
| * NaN and Infinities are the only non-finite floats/doubles, and both have |
| * all exponent bits set to 1. |
| */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| Bits bits = BitwiseCast<Bits>(aValue); |
| return (bits & Traits::kExponentBits) != Traits::kExponentBits; |
| } |
| |
| /** |
| * Determines whether a float/double is negative or -0. It is an error |
| * to call this method on a float/double which is NaN. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| IsNegative(T aValue) |
| { |
| MOZ_ASSERT(!IsNaN(aValue), "NaN does not have a sign"); |
| |
| /* The sign bit is set if the double is negative. */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| Bits bits = BitwiseCast<Bits>(aValue); |
| return (bits & Traits::kSignBit) != 0; |
| } |
| |
| /** Determines whether a float/double represents -0. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| IsNegativeZero(T aValue) |
| { |
| /* Only the sign bit is set if the value is -0. */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| Bits bits = BitwiseCast<Bits>(aValue); |
| return bits == Traits::kSignBit; |
| } |
| |
| /** |
| * Returns 0 if a float/double is NaN or infinite; |
| * otherwise, the float/double is returned. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| ToZeroIfNonfinite(T aValue) |
| { |
| return IsFinite(aValue) ? aValue : 0; |
| } |
| |
| /** |
| * Returns the exponent portion of the float/double. |
| * |
| * Zero is not special-cased, so ExponentComponent(0.0) is |
| * -int_fast16_t(Traits::kExponentBias). |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE int_fast16_t |
| ExponentComponent(T aValue) |
| { |
| /* |
| * The exponent component of a float/double is an unsigned number, biased |
| * from its actual value. Subtract the bias to retrieve the actual exponent. |
| */ |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| Bits bits = BitwiseCast<Bits>(aValue); |
| return int_fast16_t((bits & Traits::kExponentBits) >> Traits::kExponentShift) - |
| int_fast16_t(Traits::kExponentBias); |
| } |
| |
| /** Returns +Infinity. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| PositiveInfinity() |
| { |
| /* |
| * Positive infinity has all exponent bits set, sign bit set to 0, and no |
| * significand. |
| */ |
| typedef FloatingPoint<T> Traits; |
| return BitwiseCast<T>(Traits::kExponentBits); |
| } |
| |
| /** Returns -Infinity. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| NegativeInfinity() |
| { |
| /* |
| * Negative infinity has all exponent bits set, sign bit set to 1, and no |
| * significand. |
| */ |
| typedef FloatingPoint<T> Traits; |
| return BitwiseCast<T>(Traits::kSignBit | Traits::kExponentBits); |
| } |
| |
| |
| /** Constructs a NaN value with the specified sign bit and significand bits. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand) |
| { |
| typedef FloatingPoint<T> Traits; |
| MOZ_ASSERT(signbit == 0 || signbit == 1); |
| MOZ_ASSERT((significand & ~Traits::kSignificandBits) == 0); |
| MOZ_ASSERT(significand & Traits::kSignificandBits); |
| |
| T t = BitwiseCast<T>((signbit ? Traits::kSignBit : 0) | |
| Traits::kExponentBits | |
| significand); |
| MOZ_ASSERT(IsNaN(t)); |
| return t; |
| } |
| |
| /** Computes the smallest non-zero positive float/double value. */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| MinNumberValue() |
| { |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| return BitwiseCast<T>(Bits(1)); |
| } |
| |
| /** |
| * If aValue is equal to some int32_t value, set *aInt32 to that value and |
| * return true; otherwise return false. |
| * |
| * Note that negative zero is "equal" to zero here. To test whether a value can |
| * be losslessly converted to int32_t and back, use NumberIsInt32 instead. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| NumberEqualsInt32(T aValue, int32_t* aInt32) |
| { |
| /* |
| * XXX Casting a floating-point value that doesn't truncate to int32_t, to |
| * int32_t, induces undefined behavior. We should definitely fix this |
| * (bug 744965), but as apparently it "works" in practice, it's not a |
| * pressing concern now. |
| */ |
| return aValue == (*aInt32 = int32_t(aValue)); |
| } |
| |
| /** |
| * If d can be converted to int32_t and back to an identical double value, |
| * set *aInt32 to that value and return true; otherwise return false. |
| * |
| * The difference between this and NumberEqualsInt32 is that this method returns |
| * false for negative zero. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| NumberIsInt32(T aValue, int32_t* aInt32) |
| { |
| return !IsNegativeZero(aValue) && NumberEqualsInt32(aValue, aInt32); |
| } |
| |
| /** |
| * Computes a NaN value. Do not use this method if you depend upon a particular |
| * NaN value being returned. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE T |
| UnspecifiedNaN() |
| { |
| /* |
| * If we can use any quiet NaN, we might as well use the all-ones NaN, |
| * since it's cheap to materialize on common platforms (such as x64, where |
| * this value can be represented in a 32-bit signed immediate field, allowing |
| * it to be stored to memory in a single instruction). |
| */ |
| typedef FloatingPoint<T> Traits; |
| return SpecificNaN<T>(1, Traits::kSignificandBits); |
| } |
| |
| /** |
| * Compare two doubles for equality, *without* equating -0 to +0, and equating |
| * any NaN value to any other NaN value. (The normal equality operators equate |
| * -0 with +0, and they equate NaN to no other value.) |
| */ |
| template<typename T> |
| static inline bool |
| NumbersAreIdentical(T aValue1, T aValue2) |
| { |
| typedef FloatingPoint<T> Traits; |
| typedef typename Traits::Bits Bits; |
| if (IsNaN(aValue1)) { |
| return IsNaN(aValue2); |
| } |
| return BitwiseCast<Bits>(aValue1) == BitwiseCast<Bits>(aValue2); |
| } |
| |
| namespace detail { |
| |
| template<typename T> |
| struct FuzzyEqualsEpsilon; |
| |
| template<> |
| struct FuzzyEqualsEpsilon<float> |
| { |
| // A number near 1e-5 that is exactly representable in a float. |
| static float value() { return 1.0f / (1 << 17); } |
| }; |
| |
| template<> |
| struct FuzzyEqualsEpsilon<double> |
| { |
| // A number near 1e-12 that is exactly representable in a double. |
| static double value() { return 1.0 / (1LL << 40); } |
| }; |
| |
| } // namespace detail |
| |
| /** |
| * Compare two floating point values for equality, modulo rounding error. That |
| * is, the two values are considered equal if they are both not NaN and if they |
| * are less than or equal to aEpsilon apart. The default value of aEpsilon is |
| * near 1e-5. |
| * |
| * For most scenarios you will want to use FuzzyEqualsMultiplicative instead, |
| * as it is more reasonable over the entire range of floating point numbers. |
| * This additive version should only be used if you know the range of the |
| * numbers you are dealing with is bounded and stays around the same order of |
| * magnitude. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| FuzzyEqualsAdditive(T aValue1, T aValue2, |
| T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) |
| { |
| static_assert(IsFloatingPoint<T>::value, "floating point type required"); |
| return Abs(aValue1 - aValue2) <= aEpsilon; |
| } |
| |
| /** |
| * Compare two floating point values for equality, allowing for rounding error |
| * relative to the magnitude of the values. That is, the two values are |
| * considered equal if they are both not NaN and they are less than or equal to |
| * some aEpsilon apart, where the aEpsilon is scaled by the smaller of the two |
| * argument values. |
| * |
| * In most cases you will want to use this rather than FuzzyEqualsAdditive, as |
| * this function effectively masks out differences in the bottom few bits of |
| * the floating point numbers being compared, regardless of what order of |
| * magnitude those numbers are at. |
| */ |
| template<typename T> |
| static MOZ_ALWAYS_INLINE bool |
| FuzzyEqualsMultiplicative(T aValue1, T aValue2, |
| T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) |
| { |
| static_assert(IsFloatingPoint<T>::value, "floating point type required"); |
| |
| // Short-circuit the common case in order to avoid the expensive operations |
| // below. |
| if (aValue1 == aValue2) { |
| return true; |
| } |
| |
| // can't use std::min because of bug 965340 |
| T smaller = Abs(aValue1) < Abs(aValue2) ? Abs(aValue1) : Abs(aValue2); |
| return Abs(aValue1 - aValue2) <= aEpsilon * smaller; |
| } |
| |
| /** |
| * Returns true if the given value can be losslessly represented as an IEEE-754 |
| * single format number, false otherwise. All NaN values are considered |
| * representable (notwithstanding that the exact bit pattern of a double format |
| * NaN value can't be exactly represented in single format). |
| * |
| * This function isn't inlined to avoid buggy optimizations by MSVC. |
| */ |
| MOZ_WARN_UNUSED_RESULT |
| extern MFBT_API bool |
| IsFloat32Representable(double aFloat32); |
| |
| } /* namespace mozilla */ |
| |
| #endif /* mozilla_FloatingPoint_h */ |