| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <iostream> // NOLINT(readability/streams) |
| |
| #include "src/arm/simulator-arm.h" |
| #include "src/assembler-inl.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/disassembler.h" |
| #include "src/double.h" |
| #include "src/factory.h" |
| #include "src/macro-assembler.h" |
| #include "src/ostreams.h" |
| #include "src/v8.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace test_assembler_arm { |
| |
| using base::RandomNumberGenerator; |
| |
| // Define these function prototypes to match JSEntryFunction in execution.cc. |
| typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); |
| typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); |
| typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4); |
| typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4); |
| typedef Object* (*F5)(uint32_t p0, void* p1, void* p2, int p3, int p4); |
| |
| #define __ assm. |
| |
| TEST(0) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| __ add(r0, r0, Operand(r1)); |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F2 f = FUNCTION_CAST<F2>(code->entry()); |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, 3, 4, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(7, res); |
| } |
| |
| |
| TEST(1) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| __ mov(r1, Operand(r0)); |
| __ mov(r0, Operand::Zero()); |
| __ b(&C); |
| |
| __ bind(&L); |
| __ add(r0, r0, Operand(r1)); |
| __ sub(r1, r1, Operand(1)); |
| |
| __ bind(&C); |
| __ teq(r1, Operand::Zero()); |
| __ b(ne, &L); |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, 100, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(5050, res); |
| } |
| |
| |
| TEST(2) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| __ mov(r1, Operand(r0)); |
| __ mov(r0, Operand(1)); |
| __ b(&C); |
| |
| __ bind(&L); |
| __ mul(r0, r1, r0); |
| __ sub(r1, r1, Operand(1)); |
| |
| __ bind(&C); |
| __ teq(r1, Operand::Zero()); |
| __ b(ne, &L); |
| __ mov(pc, Operand(lr)); |
| |
| // some relocated stuff here, not executed |
| __ RecordComment("dead code, just testing relocations"); |
| __ mov(r0, Operand(isolate->factory()->true_value())); |
| __ RecordComment("dead code, just testing immediate operands"); |
| __ mov(r0, Operand(-1)); |
| __ mov(r0, Operand(0xFF000000)); |
| __ mov(r0, Operand(0xF0F0F0F0)); |
| __ mov(r0, Operand(0xFFF0FFFF)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, 10, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(3628800, res); |
| } |
| |
| |
| TEST(3) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| int i; |
| char c; |
| int16_t s; |
| } T; |
| T t; |
| |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| __ sub(fp, ip, Operand(4)); |
| __ mov(r4, Operand(r0)); |
| __ ldr(r0, MemOperand(r4, offsetof(T, i))); |
| __ mov(r2, Operand(r0, ASR, 1)); |
| __ str(r2, MemOperand(r4, offsetof(T, i))); |
| __ ldrsb(r2, MemOperand(r4, offsetof(T, c))); |
| __ add(r0, r2, Operand(r0)); |
| __ mov(r2, Operand(r2, LSL, 2)); |
| __ strb(r2, MemOperand(r4, offsetof(T, c))); |
| __ ldrsh(r2, MemOperand(r4, offsetof(T, s))); |
| __ add(r0, r2, Operand(r0)); |
| __ mov(r2, Operand(r2, ASR, 3)); |
| __ strh(r2, MemOperand(r4, offsetof(T, s))); |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.i = 100000; |
| t.c = 10; |
| t.s = 1000; |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(101010, res); |
| CHECK_EQ(100000/2, t.i); |
| CHECK_EQ(10*4, t.c); |
| CHECK_EQ(1000/8, t.s); |
| } |
| |
| |
| TEST(4) { |
| // Test the VFP floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double a; |
| double b; |
| double c; |
| double d; |
| double e; |
| double f; |
| double g; |
| double h; |
| int i; |
| double j; |
| double m; |
| double n; |
| float o; |
| float p; |
| float x; |
| float y; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the doubles and floats. |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| if (CpuFeatures::IsSupported(VFPv3)) { |
| CpuFeatureScope scope(&assm, VFPv3); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| __ sub(fp, ip, Operand(4)); |
| |
| __ mov(r4, Operand(r0)); |
| __ vldr(d6, r4, offsetof(T, a)); |
| __ vldr(d7, r4, offsetof(T, b)); |
| __ vadd(d5, d6, d7); |
| __ vstr(d5, r4, offsetof(T, c)); |
| |
| __ vmla(d5, d6, d7); |
| __ vmls(d5, d5, d6); |
| |
| __ vmov(r2, r3, d5); |
| __ vmov(d4, r2, r3); |
| __ vstr(d4, r4, offsetof(T, b)); |
| |
| // Load t.x and t.y, switch values, and store back to the struct. |
| __ vldr(s0, r4, offsetof(T, x)); |
| __ vldr(s1, r4, offsetof(T, y)); |
| __ vmov(s2, s0); |
| __ vmov(s0, s1); |
| __ vmov(s1, s2); |
| __ vstr(s0, r4, offsetof(T, x)); |
| __ vstr(s1, r4, offsetof(T, y)); |
| |
| // Move a literal into a register that can be encoded in the instruction. |
| __ vmov(d4, Double(1.0)); |
| __ vstr(d4, r4, offsetof(T, e)); |
| |
| // Move a literal into a register that requires 64 bits to encode. |
| // 0x3ff0000010000000 = 1.000000059604644775390625 |
| __ vmov(d4, Double(1.000000059604644775390625)); |
| __ vstr(d4, r4, offsetof(T, d)); |
| |
| // Convert from floating point to integer. |
| __ vmov(d4, Double(2.0)); |
| __ vcvt_s32_f64(s1, d4); |
| __ vstr(s1, r4, offsetof(T, i)); |
| |
| // Convert from integer to floating point. |
| __ mov(lr, Operand(42)); |
| __ vmov(s1, lr); |
| __ vcvt_f64_s32(d4, s1); |
| __ vstr(d4, r4, offsetof(T, f)); |
| |
| // Convert from fixed point to floating point. |
| __ mov(lr, Operand(2468)); |
| __ vmov(s8, lr); |
| __ vcvt_f64_s32(d4, 2); |
| __ vstr(d4, r4, offsetof(T, j)); |
| |
| // Test vabs. |
| __ vldr(d1, r4, offsetof(T, g)); |
| __ vabs(d0, d1); |
| __ vstr(d0, r4, offsetof(T, g)); |
| __ vldr(d2, r4, offsetof(T, h)); |
| __ vabs(d0, d2); |
| __ vstr(d0, r4, offsetof(T, h)); |
| |
| // Test vneg. |
| __ vldr(d1, r4, offsetof(T, m)); |
| __ vneg(d0, d1); |
| __ vstr(d0, r4, offsetof(T, m)); |
| __ vldr(d1, r4, offsetof(T, n)); |
| __ vneg(d0, d1); |
| __ vstr(d0, r4, offsetof(T, n)); |
| |
| // Test vmov for single-precision immediates. |
| __ vmov(s0, Float32(0.25f)); |
| __ vstr(s0, r4, offsetof(T, o)); |
| __ vmov(s0, Float32(-16.0f)); |
| __ vstr(s0, r4, offsetof(T, p)); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.a = 1.5; |
| t.b = 2.75; |
| t.c = 17.17; |
| t.d = 0.0; |
| t.e = 0.0; |
| t.f = 0.0; |
| t.g = -2718.2818; |
| t.h = 31415926.5; |
| t.i = 0; |
| t.j = 0; |
| t.m = -2718.2818; |
| t.n = 123.456; |
| t.x = 4.5; |
| t.y = 9.0; |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| CHECK_EQ(-16.0f, t.p); |
| CHECK_EQ(0.25f, t.o); |
| CHECK_EQ(-123.456, t.n); |
| CHECK_EQ(2718.2818, t.m); |
| CHECK_EQ(2, t.i); |
| CHECK_EQ(2718.2818, t.g); |
| CHECK_EQ(31415926.5, t.h); |
| CHECK_EQ(617.0, t.j); |
| CHECK_EQ(42.0, t.f); |
| CHECK_EQ(1.0, t.e); |
| CHECK_EQ(1.000000059604644775390625, t.d); |
| CHECK_EQ(4.25, t.c); |
| CHECK_EQ(-4.1875, t.b); |
| CHECK_EQ(1.5, t.a); |
| CHECK_EQ(4.5f, t.y); |
| CHECK_EQ(9.0f, t.x); |
| } |
| } |
| |
| |
| TEST(5) { |
| // Test the ARMv7 bitfield instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| CpuFeatureScope scope(&assm, ARMv7); |
| // On entry, r0 = 0xAAAAAAAA = 0b10..10101010. |
| __ ubfx(r0, r0, 1, 12); // 0b00..010101010101 = 0x555 |
| __ sbfx(r0, r0, 0, 5); // 0b11..111111110101 = -11 |
| __ bfc(r0, 1, 3); // 0b11..111111110001 = -15 |
| __ mov(r1, Operand(7)); |
| __ bfi(r0, r1, 3, 3); // 0b11..111111111001 = -7 |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = reinterpret_cast<int>( |
| CALL_GENERATED_CODE(isolate, f, 0xAAAAAAAA, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(-7, res); |
| } |
| } |
| |
| |
| TEST(6) { |
| // Test saturating instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| __ usat(r1, 8, Operand(r0)); // Sat 0xFFFF to 0-255 = 0xFF. |
| __ usat(r2, 12, Operand(r0, ASR, 9)); // Sat (0xFFFF>>9) to 0-4095 = 0x7F. |
| __ usat(r3, 1, Operand(r0, LSL, 16)); // Sat (0xFFFF<<16) to 0-1 = 0x0. |
| __ add(r0, r1, Operand(r2)); |
| __ add(r0, r0, Operand(r3)); |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = reinterpret_cast<int>( |
| CALL_GENERATED_CODE(isolate, f, 0xFFFF, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(382, res); |
| } |
| |
| |
| enum VCVTTypes { |
| s32_f64, |
| u32_f64 |
| }; |
| |
| static void TestRoundingMode(VCVTTypes types, |
| VFPRoundingMode mode, |
| double value, |
| int expected, |
| bool expected_exception = false) { |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| Label wrong_exception; |
| |
| __ vmrs(r1); |
| // Set custom FPSCR. |
| __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask)); |
| __ orr(r2, r2, Operand(mode)); |
| __ vmsr(r2); |
| |
| // Load value, convert, and move back result to r0 if everything went well. |
| __ vmov(d1, Double(value)); |
| switch (types) { |
| case s32_f64: |
| __ vcvt_s32_f64(s0, d1, kFPSCRRounding); |
| break; |
| |
| case u32_f64: |
| __ vcvt_u32_f64(s0, d1, kFPSCRRounding); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| // Check for vfp exceptions |
| __ vmrs(r2); |
| __ tst(r2, Operand(kVFPExceptionMask)); |
| // Check that we behaved as expected. |
| __ b(&wrong_exception, expected_exception ? eq : ne); |
| // There was no exception. Retrieve the result and return. |
| __ vmov(r0, s0); |
| __ mov(pc, Operand(lr)); |
| |
| // The exception behaviour is not what we expected. |
| // Load a special value and return. |
| __ bind(&wrong_exception); |
| __ mov(r0, Operand(11223344)); |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); |
| ::printf("res = %d\n", res); |
| CHECK_EQ(expected, res); |
| } |
| |
| |
| TEST(7) { |
| CcTest::InitializeVM(); |
| // Test vfp rounding modes. |
| |
| // s32_f64 (double to integer). |
| |
| TestRoundingMode(s32_f64, RN, 0, 0); |
| TestRoundingMode(s32_f64, RN, 0.5, 0); |
| TestRoundingMode(s32_f64, RN, -0.5, 0); |
| TestRoundingMode(s32_f64, RN, 1.5, 2); |
| TestRoundingMode(s32_f64, RN, -1.5, -2); |
| TestRoundingMode(s32_f64, RN, 123.7, 124); |
| TestRoundingMode(s32_f64, RN, -123.7, -124); |
| TestRoundingMode(s32_f64, RN, 123456.2, 123456); |
| TestRoundingMode(s32_f64, RN, -123456.2, -123456); |
| TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt); |
| TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true); |
| TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true); |
| TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt); |
| TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt); |
| TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true); |
| TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true); |
| |
| TestRoundingMode(s32_f64, RM, 0, 0); |
| TestRoundingMode(s32_f64, RM, 0.5, 0); |
| TestRoundingMode(s32_f64, RM, -0.5, -1); |
| TestRoundingMode(s32_f64, RM, 123.7, 123); |
| TestRoundingMode(s32_f64, RM, -123.7, -124); |
| TestRoundingMode(s32_f64, RM, 123456.2, 123456); |
| TestRoundingMode(s32_f64, RM, -123456.2, -123457); |
| TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt); |
| TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true); |
| TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt); |
| TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true); |
| TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt); |
| |
| TestRoundingMode(s32_f64, RZ, 0, 0); |
| TestRoundingMode(s32_f64, RZ, 0.5, 0); |
| TestRoundingMode(s32_f64, RZ, -0.5, 0); |
| TestRoundingMode(s32_f64, RZ, 123.7, 123); |
| TestRoundingMode(s32_f64, RZ, -123.7, -123); |
| TestRoundingMode(s32_f64, RZ, 123456.2, 123456); |
| TestRoundingMode(s32_f64, RZ, -123456.2, -123456); |
| TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt); |
| TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true); |
| TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt); |
| TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt); |
| TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true); |
| |
| |
| // u32_f64 (double to integer). |
| |
| // Negative values. |
| TestRoundingMode(u32_f64, RN, -0.5, 0); |
| TestRoundingMode(u32_f64, RN, -123456.7, 0, true); |
| TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true); |
| TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true); |
| |
| TestRoundingMode(u32_f64, RM, -0.5, 0, true); |
| TestRoundingMode(u32_f64, RM, -123456.7, 0, true); |
| TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true); |
| TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true); |
| |
| TestRoundingMode(u32_f64, RZ, -0.5, 0); |
| TestRoundingMode(u32_f64, RZ, -123456.7, 0, true); |
| TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true); |
| TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true); |
| |
| // Positive values. |
| // kMaxInt is the maximum *signed* integer: 0x7fffffff. |
| static const uint32_t kMaxUInt = 0xffffffffu; |
| TestRoundingMode(u32_f64, RZ, 0, 0); |
| TestRoundingMode(u32_f64, RZ, 0.5, 0); |
| TestRoundingMode(u32_f64, RZ, 123.7, 123); |
| TestRoundingMode(u32_f64, RZ, 123456.2, 123456); |
| TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt); |
| TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0), |
| static_cast<uint32_t>(kMaxInt) + 1); |
| TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt); |
| TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true); |
| |
| TestRoundingMode(u32_f64, RM, 0, 0); |
| TestRoundingMode(u32_f64, RM, 0.5, 0); |
| TestRoundingMode(u32_f64, RM, 123.7, 123); |
| TestRoundingMode(u32_f64, RM, 123456.2, 123456); |
| TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt); |
| TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0), |
| static_cast<uint32_t>(kMaxInt) + 1); |
| TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt); |
| TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true); |
| |
| TestRoundingMode(u32_f64, RN, 0, 0); |
| TestRoundingMode(u32_f64, RN, 0.5, 0); |
| TestRoundingMode(u32_f64, RN, 1.5, 2); |
| TestRoundingMode(u32_f64, RN, 123.7, 124); |
| TestRoundingMode(u32_f64, RN, 123456.2, 123456); |
| TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt); |
| TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt); |
| TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5), |
| static_cast<uint32_t>(kMaxInt) + 1); |
| TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt); |
| TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true); |
| TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true); |
| } |
| |
| |
| TEST(8) { |
| // Test VFP multi load/store with ia_w. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double a; |
| double b; |
| double c; |
| double d; |
| double e; |
| double f; |
| double g; |
| double h; |
| } D; |
| D d; |
| |
| typedef struct { |
| float a; |
| float b; |
| float c; |
| float d; |
| float e; |
| float f; |
| float g; |
| float h; |
| } F; |
| F f; |
| |
| // Create a function that uses vldm/vstm to move some double and |
| // single precision values around in memory. |
| Assembler assm(isolate, NULL, 0); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| __ sub(fp, ip, Operand(4)); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a)))); |
| __ vldm(ia_w, r4, d0, d3); |
| __ vldm(ia_w, r4, d4, d7); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a)))); |
| __ vstm(ia_w, r4, d6, d7); |
| __ vstm(ia_w, r4, d0, d5); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a)))); |
| __ vldm(ia_w, r4, s0, s3); |
| __ vldm(ia_w, r4, s4, s7); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a)))); |
| __ vstm(ia_w, r4, s6, s7); |
| __ vstm(ia_w, r4, s0, s5); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 fn = FUNCTION_CAST<F4>(code->entry()); |
| d.a = 1.1; |
| d.b = 2.2; |
| d.c = 3.3; |
| d.d = 4.4; |
| d.e = 5.5; |
| d.f = 6.6; |
| d.g = 7.7; |
| d.h = 8.8; |
| |
| f.a = 1.0; |
| f.b = 2.0; |
| f.c = 3.0; |
| f.d = 4.0; |
| f.e = 5.0; |
| f.f = 6.0; |
| f.g = 7.0; |
| f.h = 8.0; |
| |
| Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); |
| USE(dummy); |
| |
| CHECK_EQ(7.7, d.a); |
| CHECK_EQ(8.8, d.b); |
| CHECK_EQ(1.1, d.c); |
| CHECK_EQ(2.2, d.d); |
| CHECK_EQ(3.3, d.e); |
| CHECK_EQ(4.4, d.f); |
| CHECK_EQ(5.5, d.g); |
| CHECK_EQ(6.6, d.h); |
| |
| CHECK_EQ(7.0f, f.a); |
| CHECK_EQ(8.0f, f.b); |
| CHECK_EQ(1.0f, f.c); |
| CHECK_EQ(2.0f, f.d); |
| CHECK_EQ(3.0f, f.e); |
| CHECK_EQ(4.0f, f.f); |
| CHECK_EQ(5.0f, f.g); |
| CHECK_EQ(6.0f, f.h); |
| } |
| |
| |
| TEST(9) { |
| // Test VFP multi load/store with ia. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double a; |
| double b; |
| double c; |
| double d; |
| double e; |
| double f; |
| double g; |
| double h; |
| } D; |
| D d; |
| |
| typedef struct { |
| float a; |
| float b; |
| float c; |
| float d; |
| float e; |
| float f; |
| float g; |
| float h; |
| } F; |
| F f; |
| |
| // Create a function that uses vldm/vstm to move some double and |
| // single precision values around in memory. |
| Assembler assm(isolate, NULL, 0); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| __ sub(fp, ip, Operand(4)); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a)))); |
| __ vldm(ia, r4, d0, d3); |
| __ add(r4, r4, Operand(4 * 8)); |
| __ vldm(ia, r4, d4, d7); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, a)))); |
| __ vstm(ia, r4, d6, d7); |
| __ add(r4, r4, Operand(2 * 8)); |
| __ vstm(ia, r4, d0, d5); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a)))); |
| __ vldm(ia, r4, s0, s3); |
| __ add(r4, r4, Operand(4 * 4)); |
| __ vldm(ia, r4, s4, s7); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, a)))); |
| __ vstm(ia, r4, s6, s7); |
| __ add(r4, r4, Operand(2 * 4)); |
| __ vstm(ia, r4, s0, s5); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 fn = FUNCTION_CAST<F4>(code->entry()); |
| d.a = 1.1; |
| d.b = 2.2; |
| d.c = 3.3; |
| d.d = 4.4; |
| d.e = 5.5; |
| d.f = 6.6; |
| d.g = 7.7; |
| d.h = 8.8; |
| |
| f.a = 1.0; |
| f.b = 2.0; |
| f.c = 3.0; |
| f.d = 4.0; |
| f.e = 5.0; |
| f.f = 6.0; |
| f.g = 7.0; |
| f.h = 8.0; |
| |
| Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); |
| USE(dummy); |
| |
| CHECK_EQ(7.7, d.a); |
| CHECK_EQ(8.8, d.b); |
| CHECK_EQ(1.1, d.c); |
| CHECK_EQ(2.2, d.d); |
| CHECK_EQ(3.3, d.e); |
| CHECK_EQ(4.4, d.f); |
| CHECK_EQ(5.5, d.g); |
| CHECK_EQ(6.6, d.h); |
| |
| CHECK_EQ(7.0f, f.a); |
| CHECK_EQ(8.0f, f.b); |
| CHECK_EQ(1.0f, f.c); |
| CHECK_EQ(2.0f, f.d); |
| CHECK_EQ(3.0f, f.e); |
| CHECK_EQ(4.0f, f.f); |
| CHECK_EQ(5.0f, f.g); |
| CHECK_EQ(6.0f, f.h); |
| } |
| |
| |
| TEST(10) { |
| // Test VFP multi load/store with db_w. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double a; |
| double b; |
| double c; |
| double d; |
| double e; |
| double f; |
| double g; |
| double h; |
| } D; |
| D d; |
| |
| typedef struct { |
| float a; |
| float b; |
| float c; |
| float d; |
| float e; |
| float f; |
| float g; |
| float h; |
| } F; |
| F f; |
| |
| // Create a function that uses vldm/vstm to move some double and |
| // single precision values around in memory. |
| Assembler assm(isolate, NULL, 0); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| __ sub(fp, ip, Operand(4)); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, h)) + 8)); |
| __ vldm(db_w, r4, d4, d7); |
| __ vldm(db_w, r4, d0, d3); |
| |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(D, h)) + 8)); |
| __ vstm(db_w, r4, d0, d5); |
| __ vstm(db_w, r4, d6, d7); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, h)) + 4)); |
| __ vldm(db_w, r4, s4, s7); |
| __ vldm(db_w, r4, s0, s3); |
| |
| __ add(r4, r1, Operand(static_cast<int32_t>(offsetof(F, h)) + 4)); |
| __ vstm(db_w, r4, s0, s5); |
| __ vstm(db_w, r4, s6, s7); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 fn = FUNCTION_CAST<F4>(code->entry()); |
| d.a = 1.1; |
| d.b = 2.2; |
| d.c = 3.3; |
| d.d = 4.4; |
| d.e = 5.5; |
| d.f = 6.6; |
| d.g = 7.7; |
| d.h = 8.8; |
| |
| f.a = 1.0; |
| f.b = 2.0; |
| f.c = 3.0; |
| f.d = 4.0; |
| f.e = 5.0; |
| f.f = 6.0; |
| f.g = 7.0; |
| f.h = 8.0; |
| |
| Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0); |
| USE(dummy); |
| |
| CHECK_EQ(7.7, d.a); |
| CHECK_EQ(8.8, d.b); |
| CHECK_EQ(1.1, d.c); |
| CHECK_EQ(2.2, d.d); |
| CHECK_EQ(3.3, d.e); |
| CHECK_EQ(4.4, d.f); |
| CHECK_EQ(5.5, d.g); |
| CHECK_EQ(6.6, d.h); |
| |
| CHECK_EQ(7.0f, f.a); |
| CHECK_EQ(8.0f, f.b); |
| CHECK_EQ(1.0f, f.c); |
| CHECK_EQ(2.0f, f.d); |
| CHECK_EQ(3.0f, f.e); |
| CHECK_EQ(4.0f, f.f); |
| CHECK_EQ(5.0f, f.g); |
| CHECK_EQ(6.0f, f.h); |
| } |
| |
| |
| TEST(11) { |
| // Test instructions using the carry flag. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| int32_t a; |
| int32_t b; |
| int32_t c; |
| int32_t d; |
| } I; |
| I i; |
| |
| i.a = 0xabcd0001; |
| i.b = 0xabcd0000; |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| // Test HeapObject untagging. |
| __ ldr(r1, MemOperand(r0, offsetof(I, a))); |
| __ mov(r1, Operand(r1, ASR, 1), SetCC); |
| __ adc(r1, r1, Operand(r1), LeaveCC, cs); |
| __ str(r1, MemOperand(r0, offsetof(I, a))); |
| |
| __ ldr(r2, MemOperand(r0, offsetof(I, b))); |
| __ mov(r2, Operand(r2, ASR, 1), SetCC); |
| __ adc(r2, r2, Operand(r2), LeaveCC, cs); |
| __ str(r2, MemOperand(r0, offsetof(I, b))); |
| |
| // Test corner cases. |
| __ mov(r1, Operand(0xffffffff)); |
| __ mov(r2, Operand::Zero()); |
| __ mov(r3, Operand(r1, ASR, 1), SetCC); // Set the carry. |
| __ adc(r3, r1, Operand(r2)); |
| __ str(r3, MemOperand(r0, offsetof(I, c))); |
| |
| __ mov(r1, Operand(0xffffffff)); |
| __ mov(r2, Operand::Zero()); |
| __ mov(r3, Operand(r2, ASR, 1), SetCC); // Unset the carry. |
| __ adc(r3, r1, Operand(r2)); |
| __ str(r3, MemOperand(r0, offsetof(I, d))); |
| |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &i, 0, 0, 0, 0); |
| USE(dummy); |
| |
| CHECK_EQ(static_cast<int32_t>(0xabcd0001), i.a); |
| CHECK_EQ(static_cast<int32_t>(0xabcd0000) >> 1, i.b); |
| CHECK_EQ(0x00000000, i.c); |
| CHECK_EQ(static_cast<int32_t>(0xffffffff), i.d); |
| } |
| |
| |
| TEST(12) { |
| // Test chaining of label usages within instructions (issue 1644). |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label target; |
| __ b(eq, &target); |
| __ b(ne, &target); |
| __ bind(&target); |
| __ nop(); |
| } |
| |
| |
| TEST(13) { |
| // Test VFP instructions using registers d16-d31. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| if (!CpuFeatures::IsSupported(VFP32DREGS)) { |
| return; |
| } |
| |
| typedef struct { |
| double a; |
| double b; |
| double c; |
| double x; |
| double y; |
| double z; |
| double i; |
| double j; |
| double k; |
| uint32_t low; |
| uint32_t high; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the doubles and floats. |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| if (CpuFeatures::IsSupported(VFPv3)) { |
| CpuFeatureScope scope(&assm, VFPv3); |
| |
| __ stm(db_w, sp, r4.bit() | lr.bit()); |
| |
| // Load a, b, c into d16, d17, d18. |
| __ mov(r4, Operand(r0)); |
| __ vldr(d16, r4, offsetof(T, a)); |
| __ vldr(d17, r4, offsetof(T, b)); |
| __ vldr(d18, r4, offsetof(T, c)); |
| |
| __ vneg(d25, d16); |
| __ vadd(d25, d25, d17); |
| __ vsub(d25, d25, d18); |
| __ vmul(d25, d25, d25); |
| __ vdiv(d25, d25, d18); |
| |
| __ vmov(d16, d25); |
| __ vsqrt(d17, d25); |
| __ vneg(d17, d17); |
| __ vabs(d17, d17); |
| __ vmla(d18, d16, d17); |
| |
| // Store d16, d17, d18 into a, b, c. |
| __ mov(r4, Operand(r0)); |
| __ vstr(d16, r4, offsetof(T, a)); |
| __ vstr(d17, r4, offsetof(T, b)); |
| __ vstr(d18, r4, offsetof(T, c)); |
| |
| // Load x, y, z into d29-d31. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, x)))); |
| __ vldm(ia_w, r4, d29, d31); |
| |
| // Swap d29 and d30 via r registers. |
| __ vmov(r1, r2, d29); |
| __ vmov(d29, d30); |
| __ vmov(d30, r1, r2); |
| |
| // Convert to and from integer. |
| __ vcvt_s32_f64(s1, d31); |
| __ vcvt_f64_u32(d31, s1); |
| |
| // Store d29-d31 into x, y, z. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, x)))); |
| __ vstm(ia_w, r4, d29, d31); |
| |
| // Move constants into d20, d21, d22 and store into i, j, k. |
| __ vmov(d20, Double(14.7610017472335499)); |
| __ vmov(d21, Double(16.0)); |
| __ mov(r1, Operand(372106121)); |
| __ mov(r2, Operand(1079146608)); |
| __ vmov(d22, VmovIndexLo, r1); |
| __ vmov(d22, VmovIndexHi, r2); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, i)))); |
| __ vstm(ia_w, r4, d20, d22); |
| // Move d22 into low and high. |
| __ vmov(r4, VmovIndexLo, d22); |
| __ str(r4, MemOperand(r0, offsetof(T, low))); |
| __ vmov(r4, VmovIndexHi, d22); |
| __ str(r4, MemOperand(r0, offsetof(T, high))); |
| |
| __ ldm(ia_w, sp, r4.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.a = 1.5; |
| t.b = 2.75; |
| t.c = 17.17; |
| t.x = 1.5; |
| t.y = 2.75; |
| t.z = 17.17; |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| CHECK_EQ(14.7610017472335499, t.a); |
| CHECK_EQ(3.84200491244266251, t.b); |
| CHECK_EQ(73.8818412254460241, t.c); |
| CHECK_EQ(2.75, t.x); |
| CHECK_EQ(1.5, t.y); |
| CHECK_EQ(17.0, t.z); |
| CHECK_EQ(14.7610017472335499, t.i); |
| CHECK_EQ(16.0, t.j); |
| CHECK_EQ(73.8818412254460241, t.k); |
| CHECK_EQ(372106121u, t.low); |
| CHECK_EQ(1079146608u, t.high); |
| } |
| } |
| |
| |
| TEST(14) { |
| // Test the VFP Canonicalized Nan mode. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double left; |
| double right; |
| double add_result; |
| double sub_result; |
| double mul_result; |
| double div_result; |
| } T; |
| T t; |
| |
| // Create a function that makes the four basic operations. |
| Assembler assm(isolate, NULL, 0); |
| |
| // Ensure FPSCR state (as JSEntryStub does). |
| Label fpscr_done; |
| __ vmrs(r1); |
| __ tst(r1, Operand(kVFPDefaultNaNModeControlBit)); |
| __ b(ne, &fpscr_done); |
| __ orr(r1, r1, Operand(kVFPDefaultNaNModeControlBit)); |
| __ vmsr(r1); |
| __ bind(&fpscr_done); |
| |
| __ vldr(d0, r0, offsetof(T, left)); |
| __ vldr(d1, r0, offsetof(T, right)); |
| __ vadd(d2, d0, d1); |
| __ vstr(d2, r0, offsetof(T, add_result)); |
| __ vsub(d2, d0, d1); |
| __ vstr(d2, r0, offsetof(T, sub_result)); |
| __ vmul(d2, d0, d1); |
| __ vstr(d2, r0, offsetof(T, mul_result)); |
| __ vdiv(d2, d0, d1); |
| __ vstr(d2, r0, offsetof(T, div_result)); |
| |
| __ mov(pc, Operand(lr)); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.left = bit_cast<double>(kHoleNanInt64); |
| t.right = 1; |
| t.add_result = 0; |
| t.sub_result = 0; |
| t.mul_result = 0; |
| t.div_result = 0; |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| const uint32_t kArmNanUpper32 = 0x7ff80000; |
| const uint32_t kArmNanLower32 = 0x00000000; |
| #ifdef DEBUG |
| const uint64_t kArmNanInt64 = |
| (static_cast<uint64_t>(kArmNanUpper32) << 32) | kArmNanLower32; |
| CHECK(kArmNanInt64 != kHoleNanInt64); |
| #endif |
| // With VFP2 the sign of the canonicalized Nan is undefined. So |
| // we remove the sign bit for the upper tests. |
| CHECK_EQ(kArmNanUpper32, |
| (bit_cast<int64_t>(t.add_result) >> 32) & 0x7fffffff); |
| CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.add_result) & 0xffffffffu); |
| CHECK_EQ(kArmNanUpper32, |
| (bit_cast<int64_t>(t.sub_result) >> 32) & 0x7fffffff); |
| CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.sub_result) & 0xffffffffu); |
| CHECK_EQ(kArmNanUpper32, |
| (bit_cast<int64_t>(t.mul_result) >> 32) & 0x7fffffff); |
| CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.mul_result) & 0xffffffffu); |
| CHECK_EQ(kArmNanUpper32, |
| (bit_cast<int64_t>(t.div_result) >> 32) & 0x7fffffff); |
| CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.div_result) & 0xffffffffu); |
| } |
| |
| #define CHECK_EQ_SPLAT(field, ex) \ |
| CHECK_EQ(ex, t.field[0]); \ |
| CHECK_EQ(ex, t.field[1]); \ |
| CHECK_EQ(ex, t.field[2]); \ |
| CHECK_EQ(ex, t.field[3]); |
| |
| #define CHECK_EQ_32X2(field, ex0, ex1) \ |
| CHECK_EQ(ex0, t.field[0]); \ |
| CHECK_EQ(ex1, t.field[1]); |
| |
| #define CHECK_EQ_32X4(field, ex0, ex1, ex2, ex3) \ |
| CHECK_EQ(ex0, t.field[0]); \ |
| CHECK_EQ(ex1, t.field[1]); \ |
| CHECK_EQ(ex2, t.field[2]); \ |
| CHECK_EQ(ex3, t.field[3]); |
| |
| #define CHECK_ESTIMATE(expected, tolerance, value) \ |
| CHECK_LT((expected) - (tolerance), value); \ |
| CHECK_GT((expected) + (tolerance), value); |
| |
| #define CHECK_ESTIMATE_SPLAT(field, ex, tol) \ |
| CHECK_ESTIMATE(ex, tol, t.field[0]); \ |
| CHECK_ESTIMATE(ex, tol, t.field[1]); \ |
| CHECK_ESTIMATE(ex, tol, t.field[2]); \ |
| CHECK_ESTIMATE(ex, tol, t.field[3]); |
| |
| #define INT32_TO_FLOAT(val) \ |
| std::round(static_cast<float>(bit_cast<int32_t>(val))) |
| #define UINT32_TO_FLOAT(val) \ |
| std::round(static_cast<float>(bit_cast<uint32_t>(val))) |
| |
| TEST(15) { |
| // Test the Neon instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| uint32_t src0; |
| uint32_t src1; |
| uint32_t src2; |
| uint32_t src3; |
| uint32_t src4; |
| uint32_t src5; |
| uint32_t src6; |
| uint32_t src7; |
| uint32_t dst0; |
| uint32_t dst1; |
| uint32_t dst2; |
| uint32_t dst3; |
| uint32_t dst4; |
| uint32_t dst5; |
| uint32_t dst6; |
| uint32_t dst7; |
| uint32_t srcA0; |
| uint32_t srcA1; |
| uint32_t dstA0; |
| uint32_t dstA1; |
| uint32_t dstA2; |
| uint32_t dstA3; |
| uint32_t lane_test[4]; |
| uint64_t vmov_to_scalar1, vmov_to_scalar2; |
| uint32_t vmov_from_scalar_s8, vmov_from_scalar_u8; |
| uint32_t vmov_from_scalar_s16, vmov_from_scalar_u16; |
| uint32_t vmov_from_scalar_32; |
| uint32_t vmov[4], vmvn[4]; |
| uint32_t vmovl_s8[4], vmovl_u16[4], vmovl_s32[4]; |
| uint32_t vqmovn_s8[2], vqmovn_u16[2], vqmovn_s32[2]; |
| int32_t vcvt_s32_f32[4]; |
| uint32_t vcvt_u32_f32[4]; |
| float vcvt_f32_s32[4], vcvt_f32_u32[4]; |
| uint32_t vdup8[4], vdup16[4], vdup32[4]; |
| float vabsf[4], vnegf[4]; |
| uint32_t vabs_s8[4], vabs_s16[4], vabs_s32[4]; |
| uint32_t vneg_s8[4], vneg_s16[4], vneg_s32[4]; |
| uint32_t veor[4], vand[4], vorr[4]; |
| float vdupf[4], vaddf[4], vpaddf[2], vsubf[4], vmulf[4]; |
| uint32_t vdupf_16[2], vdupf_8[4]; |
| uint32_t vmin_s8[4], vmin_u16[4], vmin_s32[4]; |
| uint32_t vmax_s8[4], vmax_u16[4], vmax_s32[4]; |
| uint32_t vpadd_i8[2], vpadd_i16[2], vpadd_i32[2]; |
| uint32_t vpmin_s8[2], vpmin_u16[2], vpmin_s32[2]; |
| uint32_t vpmax_s8[2], vpmax_u16[2], vpmax_s32[2]; |
| uint32_t vadd8[4], vadd16[4], vadd32[4]; |
| uint32_t vqadd_s8[4], vqadd_u16[4], vqadd_s32[4]; |
| uint32_t vsub8[4], vsub16[4], vsub32[4]; |
| uint32_t vqsub_u8[4], vqsub_s16[4], vqsub_u32[4]; |
| uint32_t vmul8[4], vmul16[4], vmul32[4]; |
| uint32_t vshl8[4], vshl16[4], vshl32[5]; |
| uint32_t vshr_s8[4], vshr_u16[4], vshr_s32[5]; |
| uint32_t vsli_64[2], vsri_64[2], vsli_32[2], vsri_32[2]; |
| uint32_t vceq[4], vceqf[4], vcgef[4], vcgtf[4]; |
| uint32_t vcge_s8[4], vcge_u16[4], vcge_s32[4]; |
| uint32_t vcgt_s8[4], vcgt_u16[4], vcgt_s32[4]; |
| float vrecpe[4], vrecps[4], vrsqrte[4], vrsqrts[4]; |
| float vminf[4], vmaxf[4]; |
| uint32_t vtst[4], vbsl[4]; |
| uint32_t vext[4]; |
| uint32_t vzip8a[4], vzip8b[4], vzip16a[4], vzip16b[4], vzip32a[4], |
| vzip32b[4]; |
| uint32_t vzipd8a[2], vzipd8b[2], vzipd16a[2], vzipd16b[2]; |
| uint32_t vuzp8a[4], vuzp8b[4], vuzp16a[4], vuzp16b[4], vuzp32a[4], |
| vuzp32b[4]; |
| uint32_t vuzpd8a[2], vuzpd8b[2], vuzpd16a[2], vuzpd16b[2]; |
| uint32_t vrev64_32[4], vrev64_16[4], vrev64_8[4]; |
| uint32_t vrev32_16[4], vrev32_8[4], vrev16_8[4]; |
| uint32_t vtrn8a[4], vtrn8b[4], vtrn16a[4], vtrn16b[4], vtrn32a[4], |
| vtrn32b[4]; |
| uint32_t vtrnd8a[2], vtrnd8b[2], vtrnd16a[2], vtrnd16b[2], vtrnd32a[2], |
| vtrnd32b[2]; |
| uint32_t vtbl[2], vtbx[2]; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the doubles, floats, and SIMD values. |
| Assembler assm(isolate, NULL, 0); |
| |
| if (CpuFeatures::IsSupported(NEON)) { |
| CpuFeatureScope scope(&assm, NEON); |
| |
| __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit()); |
| // Move 32 bytes with neon. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, src0)))); |
| __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, dst0)))); |
| __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4)); |
| |
| // Expand 8 bytes into 8 words(16 bits). |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, srcA0)))); |
| __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(r4)); |
| __ vmovl(NeonU8, q0, d0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, dstA0)))); |
| __ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(r4)); |
| |
| // The same expansion, but with different source and destination registers. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, srcA0)))); |
| __ vld1(Neon8, NeonListOperand(d1), NeonMemOperand(r4)); |
| __ vmovl(NeonS8, q1, d1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_s8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vmovl(NeonU16, q2, d3); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_u16)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vmovl(NeonS32, q3, d4); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmovl_s32)))); |
| __ vst1(Neon8, NeonListOperand(q3), NeonMemOperand(r4)); |
| // Narrow what we widened. |
| __ vqmovn(NeonU16, d0, q2); |
| __ vstr(d0, r0, offsetof(T, vqmovn_u16)); |
| __ vmov(d1, d0); |
| __ vqmovn(NeonS8, d2, q0); |
| __ vstr(d2, r0, offsetof(T, vqmovn_s8)); |
| __ vqmovn(NeonS32, d4, q3); |
| __ vstr(d4, r0, offsetof(T, vqmovn_s32)); |
| |
| // ARM core register to scalar. |
| __ mov(r4, Operand(0xfffffff8)); |
| __ vmov(d0, Double(0.0)); |
| __ vmov(NeonS8, d0, 1, r4); |
| __ vmov(NeonS16, d0, 1, r4); |
| __ vmov(NeonS32, d0, 1, r4); |
| __ vstr(d0, r0, offsetof(T, vmov_to_scalar1)); |
| __ vmov(d0, Double(0.0)); |
| __ vmov(NeonS8, d0, 3, r4); |
| __ vmov(NeonS16, d0, 3, r4); |
| __ vstr(d0, r0, offsetof(T, vmov_to_scalar2)); |
| |
| // Scalar to ARM core register. |
| __ mov(r4, Operand(0xffffff00)); |
| __ mov(r5, Operand(0xffffffff)); |
| __ vmov(d0, r4, r5); |
| __ vmov(NeonS8, r4, d0, 1); |
| __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s8))); |
| __ vmov(NeonU8, r4, d0, 1); |
| __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u8))); |
| __ vmov(NeonS16, r4, d0, 1); |
| __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_s16))); |
| __ vmov(NeonU16, r4, d0, 1); |
| __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_u16))); |
| __ vmov(NeonS32, r4, d0, 1); |
| __ str(r4, MemOperand(r0, offsetof(T, vmov_from_scalar_32))); |
| |
| // vmov for q-registers. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmov)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vmvn. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmvn(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmvn)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vcvt for q-registers. |
| __ vmov(s0, Float32(-1.5f)); |
| __ vmov(s1, Float32(-1.0f)); |
| __ vmov(s2, Float32(1.0f)); |
| __ vmov(s3, Float32(1.5f)); |
| __ vcvt_s32_f32(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_s32_f32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vcvt_u32_f32(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_u32_f32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(kMinInt)); |
| __ mov(r5, Operand(kMaxInt)); |
| __ vmov(d0, r4, r5); |
| __ mov(r4, Operand(kMaxUInt32)); |
| __ mov(r5, Operand(kMinInt + 1)); |
| __ vmov(d1, r4, r5); // q0 = [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1] |
| __ vcvt_f32_s32(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_f32_s32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vcvt_f32_u32(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcvt_f32_u32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vdup (from register). |
| __ mov(r4, Operand(0xa)); |
| __ vdup(Neon8, q0, r4); |
| __ vdup(Neon16, q1, r4); |
| __ vdup(Neon32, q2, r4); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup8)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdup32)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| |
| // vdup (from scalar). |
| __ vmov(s0, Float32(-1.0f)); |
| __ vdup(Neon32, q1, d0, 0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdupf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vdup(Neon16, d2, d0, 1); |
| __ vstr(d2, r0, offsetof(T, vdupf_16)); |
| __ vdup(Neon8, q1, d0, 3); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vdupf_8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vabs (float). |
| __ vmov(s0, Float32(-1.0f)); |
| __ vmov(s1, Float32(-0.0f)); |
| __ vmov(s2, Float32(0.0f)); |
| __ vmov(s3, Float32(1.0f)); |
| __ vabs(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabsf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vneg (float). |
| __ vneg(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vnegf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vabs (integer). |
| __ mov(r4, Operand(0x7f7f7f7f)); |
| __ mov(r5, Operand(0x01010101)); |
| __ vmov(d0, r4, r5); |
| __ mov(r4, Operand(0xffffffff)); |
| __ mov(r5, Operand(0x80808080)); |
| __ vmov(d1, r4, r5); |
| __ vabs(Neon8, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vabs(Neon16, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vabs(Neon32, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vabs_s32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vneg (integer). |
| __ vneg(Neon8, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vneg(Neon16, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vneg(Neon32, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vneg_s32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // veor. |
| __ mov(r4, Operand(0xaa)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x55)); |
| __ vdup(Neon16, q1, r4); |
| __ veor(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, veor)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vand. |
| __ mov(r4, Operand(0xff)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0xfe)); |
| __ vdup(Neon16, q1, r4); |
| __ vand(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vand)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vorr. |
| __ mov(r4, Operand(0xaa)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x55)); |
| __ vdup(Neon16, q1, r4); |
| __ vorr(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vorr)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vmin (float). |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vmov(s4, Float32(1.0f)); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vmin(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vminf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vmax (float). |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vmov(s4, Float32(1.0f)); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vmax(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmaxf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vadd (float). |
| __ vmov(s4, Float32(1.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vadd(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vaddf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vpadd (float). |
| __ vmov(s0, Float32(1.0f)); |
| __ vmov(s1, Float32(2.0f)); |
| __ vmov(s2, Float32(3.0f)); |
| __ vmov(s3, Float32(4.0f)); |
| __ vpadd(d2, d0, d1); |
| __ vstr(d2, r0, offsetof(T, vpaddf)); |
| // vsub (float). |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vmov(s4, Float32(1.0f)); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vsub(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsubf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vmul (float). |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vmul(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmulf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vrecpe. |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vrecpe(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrecpe)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vrecps. |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vmov(s4, Float32(1.5f)); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vrecps(q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrecps)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vrsqrte. |
| __ vmov(s4, Float32(4.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vrsqrte(q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrsqrte)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vrsqrts. |
| __ vmov(s4, Float32(2.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vmov(s4, Float32(2.5f)); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vrsqrts(q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrsqrts)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vceq (float). |
| __ vmov(s4, Float32(1.0f)); |
| __ vdup(Neon32, q0, d2, 0); |
| __ vdup(Neon32, q1, d2, 0); |
| __ vceq(q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vceqf)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| // vcge (float). |
| __ vmov(s0, Float32(1.0f)); |
| __ vmov(s1, Float32(-1.0f)); |
| __ vmov(s2, Float32(-0.0f)); |
| __ vmov(s3, Float32(0.0f)); |
| __ vdup(Neon32, q1, d1, 1); |
| __ vcge(q2, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgef)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vcgt(q2, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgtf)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| |
| // vmin/vmax integer. |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vmin(NeonS8, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_s8)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vmax(NeonS8, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_s8)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0xff)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vmin(NeonU16, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_u16)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vmax(NeonU16, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_u16)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0xff)); |
| __ vdup(Neon32, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vmin(NeonS32, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmin_s32)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vmax(NeonS32, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmax_s32)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| |
| // vpadd integer. |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vpadd(Neon8, d0, d0, d2); |
| __ vstr(d0, r0, offsetof(T, vpadd_i8)); |
| __ vpadd(Neon16, d0, d0, d2); |
| __ vstr(d0, r0, offsetof(T, vpadd_i16)); |
| __ vpadd(Neon32, d0, d0, d2); |
| __ vstr(d0, r0, offsetof(T, vpadd_i32)); |
| |
| // vpmin/vpmax integer. |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vpmin(NeonS8, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmin_s8)); |
| __ vpmax(NeonS8, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmax_s8)); |
| __ mov(r4, Operand(0xffff)); |
| __ vdup(Neon32, q0, r4); |
| __ vdup(Neon16, q1, r4); |
| __ vpmin(NeonU16, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmin_u16)); |
| __ vpmax(NeonU16, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmax_u16)); |
| __ mov(r4, Operand(0xff)); |
| __ veor(q0, q0, q0); |
| __ vmov(s0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vpmin(NeonS32, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmin_s32)); |
| __ vpmax(NeonS32, d4, d0, d2); |
| __ vstr(d4, r0, offsetof(T, vpmax_s32)); |
| |
| // vadd (integer). |
| __ mov(r4, Operand(0x81)); |
| __ vdup(Neon8, q0, r4); |
| __ mov(r4, Operand(0x82)); |
| __ vdup(Neon8, q1, r4); |
| __ vadd(Neon8, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x8001)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x8002)); |
| __ vdup(Neon16, q1, r4); |
| __ vadd(Neon16, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x80000001)); |
| __ vdup(Neon32, q0, r4); |
| __ mov(r4, Operand(0x80000002)); |
| __ vdup(Neon32, q1, r4); |
| __ vadd(Neon32, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vadd32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vqadd. |
| __ mov(r4, Operand(0x81)); |
| __ vdup(Neon8, q0, r4); |
| __ mov(r4, Operand(0x82)); |
| __ vdup(Neon8, q1, r4); |
| __ vqadd(NeonS8, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_s8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x8000)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon16, q1, r4); |
| __ vqadd(NeonU16, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_u16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x80000001)); |
| __ vdup(Neon32, q0, r4); |
| __ mov(r4, Operand(0x80000002)); |
| __ vdup(Neon32, q1, r4); |
| __ vqadd(NeonS32, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqadd_s32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vsub (integer). |
| __ mov(r4, Operand(0x01)); |
| __ vdup(Neon8, q0, r4); |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon8, q1, r4); |
| __ vsub(Neon8, q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x0001)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x0003)); |
| __ vdup(Neon16, q1, r4); |
| __ vsub(Neon16, q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x00000001)); |
| __ vdup(Neon32, q0, r4); |
| __ mov(r4, Operand(0x00000003)); |
| __ vdup(Neon32, q1, r4); |
| __ vsub(Neon32, q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vsub32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vqsub. |
| __ mov(r4, Operand(0x7f)); |
| __ vdup(Neon8, q0, r4); |
| __ mov(r4, Operand(0x3f)); |
| __ vdup(Neon8, q1, r4); |
| __ vqsub(NeonU8, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_u8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x8000)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x7fff)); |
| __ vdup(Neon16, q1, r4); |
| __ vqsub(NeonS16, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_s16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x80000001)); |
| __ vdup(Neon32, q0, r4); |
| __ mov(r4, Operand(0x80000000)); |
| __ vdup(Neon32, q1, r4); |
| __ vqsub(NeonU32, q1, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vqsub_u32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vmul (integer). |
| __ mov(r4, Operand(0x02)); |
| __ vdup(Neon8, q0, r4); |
| __ vmul(Neon8, q1, q0, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x0002)); |
| __ vdup(Neon16, q0, r4); |
| __ vmul(Neon16, q1, q0, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0x00000002)); |
| __ vdup(Neon32, q0, r4); |
| __ vmul(Neon32, q1, q0, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vmul32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vshl. |
| __ mov(r4, Operand(0x55)); |
| __ vdup(Neon8, q0, r4); |
| __ vshl(NeonS8, q1, q0, 1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vshl(NeonU16, q1, q0, 9); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vshl(NeonS32, q1, q0, 17); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshl32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vshr.s, vshr.u. |
| __ mov(r4, Operand(0x80)); |
| __ vdup(Neon8, q0, r4); |
| __ vshr(NeonS8, q1, q0, 1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_s8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vshr(NeonU16, q1, q0, 9); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_u16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vshr(NeonS32, q1, q0, 17); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vshr_s32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vsli, vsri. |
| __ mov(r4, Operand(0xffffffff)); |
| __ mov(r5, Operand(0x1)); |
| __ vmov(d0, r4, r5); |
| __ vmov(d1, r5, r5); |
| __ vsli(Neon64, d1, d0, 32); |
| __ vstr(d1, r0, offsetof(T, vsli_64)); |
| __ vmov(d0, r5, r4); |
| __ vmov(d1, r5, r5); |
| __ vsri(Neon64, d1, d0, 32); |
| __ vstr(d1, r0, offsetof(T, vsri_64)); |
| __ vmov(d0, r4, r5); |
| __ vmov(d1, r5, r5); |
| __ vsli(Neon32, d1, d0, 16); |
| __ vstr(d1, r0, offsetof(T, vsli_32)); |
| __ vmov(d0, r5, r4); |
| __ vmov(d1, r5, r5); |
| __ vsri(Neon32, d1, d0, 16); |
| __ vstr(d1, r0, offsetof(T, vsri_32)); |
| |
| // vceq. |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon8, q0, r4); |
| __ vdup(Neon16, q1, r4); |
| __ vceq(Neon8, q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vceq)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vcge/vcgt (integer). |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vcge(NeonS8, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_s8)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vcgt(NeonS8, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_s8)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0xff)); |
| __ vdup(Neon16, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vcge(NeonU16, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_u16)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vcgt(NeonU16, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_u16)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ mov(r4, Operand(0xff)); |
| __ vdup(Neon32, q0, r4); |
| __ vdup(Neon8, q1, r4); |
| __ vcge(NeonS32, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcge_s32)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| __ vcgt(NeonS32, q2, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vcgt_s32)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| |
| // vtst. |
| __ mov(r4, Operand(0x03)); |
| __ vdup(Neon8, q0, r4); |
| __ mov(r4, Operand(0x02)); |
| __ vdup(Neon16, q1, r4); |
| __ vtst(Neon8, q1, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtst)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vbsl. |
| __ mov(r4, Operand(0x00ff)); |
| __ vdup(Neon16, q0, r4); |
| __ mov(r4, Operand(0x01)); |
| __ vdup(Neon8, q1, r4); |
| __ mov(r4, Operand(0x02)); |
| __ vdup(Neon8, q2, r4); |
| __ vbsl(q0, q1, q2); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vbsl)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| |
| // vext. |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vext(q2, q0, q1, 3); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vext)))); |
| __ vst1(Neon8, NeonListOperand(q2), NeonMemOperand(r4)); |
| |
| // vzip (q-register). |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vzip(Neon8, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip8a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip8b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vzip(Neon16, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip16a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip16b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vzip(Neon32, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip32a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vzip32b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vzip (d-register). |
| __ vldr(d2, r0, offsetof(T, lane_test)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vzip(Neon8, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vzipd8a)); |
| __ vstr(d1, r0, offsetof(T, vzipd8b)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vzip(Neon16, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vzipd16a)); |
| __ vstr(d1, r0, offsetof(T, vzipd16b)); |
| |
| // vuzp (q-register). |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vuzp(Neon8, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp8a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp8b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vuzp(Neon16, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp16a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp16b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vuzp(Neon32, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp32a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vuzp32b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vuzp (d-register). |
| __ vldr(d2, r0, offsetof(T, lane_test)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vuzp(Neon8, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vuzpd8a)); |
| __ vstr(d1, r0, offsetof(T, vuzpd8b)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vuzp(Neon16, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vuzpd16a)); |
| __ vstr(d1, r0, offsetof(T, vuzpd16b)); |
| |
| // vtrn (q-register). |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vtrn(Neon8, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn8a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn8b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vtrn(Neon16, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn16a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn16b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vmov(q1, q0); |
| __ vtrn(Neon32, q0, q1); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn32a)))); |
| __ vst1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vtrn32b)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vtrn (d-register). |
| __ vldr(d2, r0, offsetof(T, lane_test)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vtrn(Neon8, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vtrnd8a)); |
| __ vstr(d1, r0, offsetof(T, vtrnd8b)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vtrn(Neon16, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vtrnd16a)); |
| __ vstr(d1, r0, offsetof(T, vtrnd16b)); |
| __ vmov(d0, d2); |
| __ vmov(d1, d2); |
| __ vtrn(Neon32, d0, d1); |
| __ vstr(d0, r0, offsetof(T, vtrnd32a)); |
| __ vstr(d1, r0, offsetof(T, vtrnd32b)); |
| |
| // vrev64/32/16 |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, lane_test)))); |
| __ vld1(Neon8, NeonListOperand(q0), NeonMemOperand(r4)); |
| __ vrev64(Neon32, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_32)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vrev64(Neon16, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vrev64(Neon8, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev64_8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vrev32(Neon16, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev32_16)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vrev32(Neon8, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev32_8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| __ vrev16(Neon8, q1, q0); |
| __ add(r4, r0, Operand(static_cast<int32_t>(offsetof(T, vrev16_8)))); |
| __ vst1(Neon8, NeonListOperand(q1), NeonMemOperand(r4)); |
| |
| // vtb[l/x]. |
| __ mov(r4, Operand(0x06040200)); |
| __ mov(r5, Operand(0xff050301)); |
| __ vmov(d2, r4, r5); // d2 = ff05030106040200 |
| __ vtbl(d0, NeonListOperand(d2, 1), d2); |
| __ vstr(d0, r0, offsetof(T, vtbl)); |
| __ vtbx(d2, NeonListOperand(d2, 1), d2); |
| __ vstr(d2, r0, offsetof(T, vtbx)); |
| |
| // Restore and return. |
| __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.src0 = 0x01020304; |
| t.src1 = 0x11121314; |
| t.src2 = 0x21222324; |
| t.src3 = 0x31323334; |
| t.src4 = 0x41424344; |
| t.src5 = 0x51525354; |
| t.src6 = 0x61626364; |
| t.src7 = 0x71727374; |
| t.dst0 = 0; |
| t.dst1 = 0; |
| t.dst2 = 0; |
| t.dst3 = 0; |
| t.dst4 = 0; |
| t.dst5 = 0; |
| t.dst6 = 0; |
| t.dst7 = 0; |
| t.srcA0 = 0x41424344; |
| t.srcA1 = 0x81828384; |
| t.dstA0 = 0; |
| t.dstA1 = 0; |
| t.dstA2 = 0; |
| t.dstA3 = 0; |
| t.lane_test[0] = 0x03020100; |
| t.lane_test[1] = 0x07060504; |
| t.lane_test[2] = 0x0b0a0908; |
| t.lane_test[3] = 0x0f0e0d0c; |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| |
| CHECK_EQ(0x01020304u, t.dst0); |
| CHECK_EQ(0x11121314u, t.dst1); |
| CHECK_EQ(0x21222324u, t.dst2); |
| CHECK_EQ(0x31323334u, t.dst3); |
| CHECK_EQ(0x41424344u, t.dst4); |
| CHECK_EQ(0x51525354u, t.dst5); |
| CHECK_EQ(0x61626364u, t.dst6); |
| CHECK_EQ(0x71727374u, t.dst7); |
| CHECK_EQ(0x00430044u, t.dstA0); |
| CHECK_EQ(0x00410042u, t.dstA1); |
| CHECK_EQ(0x00830084u, t.dstA2); |
| CHECK_EQ(0x00810082u, t.dstA3); |
| |
| CHECK_EQ_32X4(vmovl_s8, 0x00430044u, 0x00410042u, 0xff83ff84u, 0xff81ff82u); |
| CHECK_EQ_32X4(vmovl_u16, 0xff84u, 0xff83u, 0xff82u, 0xff81u); |
| CHECK_EQ_32X4(vmovl_s32, 0xff84u, 0x0u, 0xff83u, 0x0u); |
| CHECK_EQ_32X2(vqmovn_u16, 0xff83ff84u, 0xff81ff82u); |
| CHECK_EQ_32X2(vqmovn_s8, 0x81828384u, 0x81828384u); |
| CHECK_EQ_32X2(vqmovn_s32, 0xff84u, 0xff83u); |
| |
| CHECK_EQ(0xfffffff8fff8f800u, t.vmov_to_scalar1); |
| CHECK_EQ(0xfff80000f8000000u, t.vmov_to_scalar2); |
| CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s8); |
| CHECK_EQ(0xFFu, t.vmov_from_scalar_u8); |
| CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_s16); |
| CHECK_EQ(0xFFFFu, t.vmov_from_scalar_u16); |
| CHECK_EQ(0xFFFFFFFFu, t.vmov_from_scalar_32); |
| |
| CHECK_EQ_32X4(vmov, 0x03020100u, 0x07060504u, 0x0b0a0908u, 0x0f0e0d0cu); |
| CHECK_EQ_32X4(vmvn, 0xfcfdfeffu, 0xf8f9fafbu, 0xf4f5f6f7u, 0xf0f1f2f3u); |
| |
| CHECK_EQ_SPLAT(vdup8, 0x0a0a0a0au); |
| CHECK_EQ_SPLAT(vdup16, 0x000a000au); |
| CHECK_EQ_SPLAT(vdup32, 0x0000000au); |
| CHECK_EQ_SPLAT(vdupf, -1.0); // bit pattern is 0xbf800000. |
| CHECK_EQ_32X2(vdupf_16, 0xbf80bf80u, 0xbf80bf80u); |
| CHECK_EQ_SPLAT(vdupf_8, 0xbfbfbfbfu); |
| |
| // src: [-1, -1, 1, 1] |
| CHECK_EQ_32X4(vcvt_s32_f32, -1, -1, 1, 1); |
| CHECK_EQ_32X4(vcvt_u32_f32, 0u, 0u, 1u, 1u); |
| // src: [kMinInt, kMaxInt, kMaxUInt32, kMinInt + 1] |
| CHECK_EQ_32X4(vcvt_f32_s32, INT32_TO_FLOAT(kMinInt), |
| INT32_TO_FLOAT(kMaxInt), INT32_TO_FLOAT(kMaxUInt32), |
| INT32_TO_FLOAT(kMinInt + 1)); |
| CHECK_EQ_32X4(vcvt_f32_u32, UINT32_TO_FLOAT(kMinInt), |
| UINT32_TO_FLOAT(kMaxInt), UINT32_TO_FLOAT(kMaxUInt32), |
| UINT32_TO_FLOAT(kMinInt + 1)); |
| |
| CHECK_EQ_32X4(vabsf, 1.0, 0.0, 0.0, 1.0); |
| CHECK_EQ_32X4(vnegf, 1.0, 0.0, -0.0, -1.0); |
| // src: [0x7f7f7f7f, 0x01010101, 0xffffffff, 0x80808080] |
| CHECK_EQ_32X4(vabs_s8, 0x7f7f7f7fu, 0x01010101u, 0x01010101u, 0x80808080u); |
| CHECK_EQ_32X4(vabs_s16, 0x7f7f7f7fu, 0x01010101u, 0x00010001u, 0x7f807f80u); |
| CHECK_EQ_32X4(vabs_s32, 0x7f7f7f7fu, 0x01010101u, 0x00000001u, 0x7f7f7f80u); |
| CHECK_EQ_32X4(vneg_s8, 0x81818181u, 0xffffffffu, 0x01010101u, 0x80808080u); |
| CHECK_EQ_32X4(vneg_s16, 0x80818081u, 0xfefffeffu, 0x00010001u, 0x7f807f80u); |
| CHECK_EQ_32X4(vneg_s32, 0x80808081u, 0xfefefeffu, 0x00000001u, 0x7f7f7f80u); |
| |
| CHECK_EQ_SPLAT(veor, 0x00ff00ffu); |
| CHECK_EQ_SPLAT(vand, 0x00fe00feu); |
| CHECK_EQ_SPLAT(vorr, 0x00ff00ffu); |
| CHECK_EQ_SPLAT(vaddf, 2.0); |
| CHECK_EQ_32X2(vpaddf, 3.0, 7.0); |
| CHECK_EQ_SPLAT(vminf, 1.0); |
| CHECK_EQ_SPLAT(vmaxf, 2.0); |
| CHECK_EQ_SPLAT(vsubf, -1.0); |
| CHECK_EQ_SPLAT(vmulf, 4.0); |
| CHECK_ESTIMATE_SPLAT(vrecpe, 0.5f, 0.1f); // 1 / 2 |
| CHECK_EQ_SPLAT(vrecps, -1.0f); // 2 - (2 * 1.5) |
| CHECK_ESTIMATE_SPLAT(vrsqrte, 0.5f, 0.1f); // 1 / sqrt(4) |
| CHECK_EQ_SPLAT(vrsqrts, -1.0f); // (3 - (2 * 2.5)) / 2 |
| CHECK_EQ_SPLAT(vceqf, 0xffffffffu); |
| // [0] >= [-1, 1, -0, 0] |
| CHECK_EQ_32X4(vcgef, 0u, 0xffffffffu, 0xffffffffu, 0xffffffffu); |
| CHECK_EQ_32X4(vcgtf, 0u, 0xffffffffu, 0u, 0u); |
| // [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...] |
| CHECK_EQ_SPLAT(vmin_s8, 0x00030003u); |
| CHECK_EQ_SPLAT(vmax_s8, 0x03030303u); |
| // [0x00ff, 0x00ff, ...] and [0xffff, 0xffff, ...] |
| CHECK_EQ_SPLAT(vmin_u16, 0x00ff00ffu); |
| CHECK_EQ_SPLAT(vmax_u16, 0xffffffffu); |
| // [0x000000ff, 0x000000ff, ...] and [0xffffffff, 0xffffffff, ...] |
| CHECK_EQ_SPLAT(vmin_s32, 0xffffffffu); |
| CHECK_EQ_SPLAT(vmax_s32, 0xffu); |
| // [0, 3, 0, 3, ...] and [3, 3, 3, 3, ...] |
| CHECK_EQ_32X2(vpadd_i8, 0x03030303u, 0x06060606u); |
| CHECK_EQ_32X2(vpadd_i16, 0x0c0c0606u, 0x06060606u); |
| CHECK_EQ_32X2(vpadd_i32, 0x12120c0cu, 0x06060606u); |
| CHECK_EQ_32X2(vpmin_s8, 0x00000000u, 0x03030303u); |
| CHECK_EQ_32X2(vpmax_s8, 0x03030303u, 0x03030303u); |
| // [0, ffff, 0, ffff] and [ffff, ffff] |
| CHECK_EQ_32X2(vpmin_u16, 0x00000000u, 0xffffffffu); |
| CHECK_EQ_32X2(vpmax_u16, 0xffffffffu, 0xffffffffu); |
| // [0x000000ff, 0x00000000u] and [0xffffffff, 0xffffffff, ...] |
| CHECK_EQ_32X2(vpmin_s32, 0x00u, 0xffffffffu); |
| CHECK_EQ_32X2(vpmax_s32, 0xffu, 0xffffffffu); |
| CHECK_EQ_SPLAT(vadd8, 0x03030303u); |
| CHECK_EQ_SPLAT(vadd16, 0x00030003u); |
| CHECK_EQ_SPLAT(vadd32, 0x00000003u); |
| CHECK_EQ_SPLAT(vqadd_s8, 0x80808080u); |
| CHECK_EQ_SPLAT(vqadd_u16, 0xffffffffu); |
| CHECK_EQ_SPLAT(vqadd_s32, 0x80000000u); |
| CHECK_EQ_SPLAT(vqsub_u8, 0x00000000u); |
| CHECK_EQ_SPLAT(vqsub_s16, 0x7fff7fffu); |
| CHECK_EQ_SPLAT(vqsub_u32, 0x00000000u); |
| CHECK_EQ_SPLAT(vsub8, 0xfefefefeu); |
| CHECK_EQ_SPLAT(vsub16, 0xfffefffeu); |
| CHECK_EQ_SPLAT(vsub32, 0xfffffffeu); |
| CHECK_EQ_SPLAT(vmul8, 0x04040404u); |
| CHECK_EQ_SPLAT(vmul16, 0x00040004u); |
| CHECK_EQ_SPLAT(vmul32, 0x00000004u); |
| CHECK_EQ_SPLAT(vshl8, 0xaaaaaaaau); |
| CHECK_EQ_SPLAT(vshl16, 0xaa00aa00u); |
| CHECK_EQ_SPLAT(vshl32, 0xaaaa0000u); |
| CHECK_EQ_SPLAT(vshr_s8, 0xc0c0c0c0u); |
| CHECK_EQ_SPLAT(vshr_u16, 0x00400040u); |
| CHECK_EQ_SPLAT(vshr_s32, 0xffffc040u); |
| CHECK_EQ_32X2(vsli_64, 0x01u, 0xffffffffu); |
| CHECK_EQ_32X2(vsri_64, 0xffffffffu, 0x01u); |
| CHECK_EQ_32X2(vsli_32, 0xffff0001u, 0x00010001u); |
| CHECK_EQ_32X2(vsri_32, 0x00000000u, 0x0000ffffu); |
| CHECK_EQ_SPLAT(vceq, 0x00ff00ffu); |
| // [0, 3, 0, 3, ...] >= [3, 3, 3, 3, ...] |
| CHECK_EQ_SPLAT(vcge_s8, 0x00ff00ffu); |
| CHECK_EQ_SPLAT(vcgt_s8, 0u); |
| // [0x00ff, 0x00ff, ...] >= [0xffff, 0xffff, ...] |
| CHECK_EQ_SPLAT(vcge_u16, 0u); |
| CHECK_EQ_SPLAT(vcgt_u16, 0u); |
| // [0x000000ff, 0x000000ff, ...] >= [0xffffffff, 0xffffffff, ...] |
| CHECK_EQ_SPLAT(vcge_s32, 0xffffffffu); |
| CHECK_EQ_SPLAT(vcgt_s32, 0xffffffffu); |
| CHECK_EQ_SPLAT(vtst, 0x00ff00ffu); |
| CHECK_EQ_SPLAT(vbsl, 0x02010201u); |
| |
| CHECK_EQ_32X4(vext, 0x06050403u, 0x0a090807u, 0x0e0d0c0bu, 0x0201000fu); |
| |
| CHECK_EQ_32X4(vzip8a, 0x01010000u, 0x03030202u, 0x05050404u, 0x07070606u); |
| CHECK_EQ_32X4(vzip8b, 0x09090808u, 0x0b0b0a0au, 0x0d0d0c0cu, 0x0f0f0e0eu); |
| CHECK_EQ_32X4(vzip16a, 0x01000100u, 0x03020302u, 0x05040504u, 0x07060706u); |
| CHECK_EQ_32X4(vzip16b, 0x09080908u, 0x0b0a0b0au, 0x0d0c0d0cu, 0x0f0e0f0eu); |
| CHECK_EQ_32X4(vzip32a, 0x03020100u, 0x03020100u, 0x07060504u, 0x07060504u); |
| CHECK_EQ_32X4(vzip32b, 0x0b0a0908u, 0x0b0a0908u, 0x0f0e0d0cu, 0x0f0e0d0cu); |
| |
| CHECK_EQ_32X2(vzipd8a, 0x01010000u, 0x03030202u); |
| CHECK_EQ_32X2(vzipd8b, 0x05050404u, 0x07070606u); |
| CHECK_EQ_32X2(vzipd16a, 0x01000100u, 0x03020302u); |
| CHECK_EQ_32X2(vzipd16b, 0x05040504u, 0x07060706u); |
| |
| CHECK_EQ_32X4(vuzp8a, 0x06040200u, 0x0e0c0a08u, 0x06040200u, 0x0e0c0a08u); |
| CHECK_EQ_32X4(vuzp8b, 0x07050301u, 0x0f0d0b09u, 0x07050301u, 0x0f0d0b09u); |
| CHECK_EQ_32X4(vuzp16a, 0x05040100u, 0x0d0c0908u, 0x05040100u, 0x0d0c0908u); |
| CHECK_EQ_32X4(vuzp16b, 0x07060302u, 0x0f0e0b0au, 0x07060302u, 0x0f0e0b0au); |
| CHECK_EQ_32X4(vuzp32a, 0x03020100u, 0x0b0a0908u, 0x03020100u, 0x0b0a0908u); |
| CHECK_EQ_32X4(vuzp32b, 0x07060504u, 0x0f0e0d0cu, 0x07060504u, 0x0f0e0d0cu); |
| |
| CHECK_EQ_32X2(vuzpd8a, 0x06040200u, 0x06040200u); |
| CHECK_EQ_32X2(vuzpd8b, 0x07050301u, 0x07050301u); |
| CHECK_EQ_32X2(vuzpd16a, 0x05040100u, 0x05040100u); |
| CHECK_EQ_32X2(vuzpd16b, 0x07060302u, 0x07060302u); |
| |
| CHECK_EQ_32X4(vtrn8a, 0x02020000u, 0x06060404u, 0x0a0a0808u, 0x0e0e0c0cu); |
| CHECK_EQ_32X4(vtrn8b, 0x03030101u, 0x07070505u, 0x0b0b0909u, 0x0f0f0d0du); |
| CHECK_EQ_32X4(vtrn16a, 0x01000100u, 0x05040504u, 0x09080908u, 0x0d0c0d0cu); |
| CHECK_EQ_32X4(vtrn16b, 0x03020302u, 0x07060706u, 0x0b0a0b0au, 0x0f0e0f0eu); |
| CHECK_EQ_32X4(vtrn32a, 0x03020100u, 0x03020100u, 0x0b0a0908u, 0x0b0a0908u); |
| CHECK_EQ_32X4(vtrn32b, 0x07060504u, 0x07060504u, 0x0f0e0d0cu, 0x0f0e0d0cu); |
| |
| CHECK_EQ_32X2(vtrnd8a, 0x02020000u, 0x06060404u); |
| CHECK_EQ_32X2(vtrnd8b, 0x03030101u, 0x07070505u); |
| CHECK_EQ_32X2(vtrnd16a, 0x01000100u, 0x05040504u); |
| CHECK_EQ_32X2(vtrnd16b, 0x03020302u, 0x07060706u); |
| CHECK_EQ_32X2(vtrnd32a, 0x03020100u, 0x03020100u); |
| CHECK_EQ_32X2(vtrnd32b, 0x07060504u, 0x07060504u); |
| |
| // src: 0 1 2 3 4 5 6 7 8 9 a b c d e f (little endian) |
| CHECK_EQ_32X4(vrev64_32, 0x07060504u, 0x03020100u, 0x0f0e0d0cu, |
| 0x0b0a0908u); |
| CHECK_EQ_32X4(vrev64_16, 0x05040706u, 0x01000302u, 0x0d0c0f0eu, |
| 0x09080b0au); |
| CHECK_EQ_32X4(vrev64_8, 0x04050607u, 0x00010203u, 0x0c0d0e0fu, 0x08090a0bu); |
| CHECK_EQ_32X4(vrev32_16, 0x01000302u, 0x05040706u, 0x09080b0au, |
| 0x0d0c0f0eu); |
| CHECK_EQ_32X4(vrev32_8, 0x00010203u, 0x04050607u, 0x08090a0bu, 0x0c0d0e0fu); |
| CHECK_EQ_32X4(vrev16_8, 0x02030001u, 0x06070405u, 0x0a0b0809u, 0x0e0f0c0du); |
| |
| CHECK_EQ(0x05010400u, t.vtbl[0]); |
| CHECK_EQ(0x00030602u, t.vtbl[1]); |
| CHECK_EQ(0x05010400u, t.vtbx[0]); |
| CHECK_EQ(0xff030602u, t.vtbx[1]); |
| } |
| } |
| |
| TEST(16) { |
| // Test the pkh, uxtb, uxtab and uxtb16 instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| uint32_t src0; |
| uint32_t src1; |
| uint32_t src2; |
| uint32_t dst0; |
| uint32_t dst1; |
| uint32_t dst2; |
| uint32_t dst3; |
| uint32_t dst4; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the doubles and floats. |
| Assembler assm(isolate, NULL, 0); |
| |
| __ stm(db_w, sp, r4.bit() | lr.bit()); |
| |
| __ mov(r4, Operand(r0)); |
| __ ldr(r0, MemOperand(r4, offsetof(T, src0))); |
| __ ldr(r1, MemOperand(r4, offsetof(T, src1))); |
| |
| __ pkhbt(r2, r0, Operand(r1, LSL, 8)); |
| __ str(r2, MemOperand(r4, offsetof(T, dst0))); |
| |
| __ pkhtb(r2, r0, Operand(r1, ASR, 8)); |
| __ str(r2, MemOperand(r4, offsetof(T, dst1))); |
| |
| __ uxtb16(r2, r0, 8); |
| __ str(r2, MemOperand(r4, offsetof(T, dst2))); |
| |
| __ uxtb(r2, r0, 8); |
| __ str(r2, MemOperand(r4, offsetof(T, dst3))); |
| |
| __ ldr(r0, MemOperand(r4, offsetof(T, src2))); |
| __ uxtab(r2, r0, r1, 8); |
| __ str(r2, MemOperand(r4, offsetof(T, dst4))); |
| |
| __ ldm(ia_w, sp, r4.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| t.src0 = 0x01020304; |
| t.src1 = 0x11121314; |
| t.src2 = 0x11121300; |
| t.dst0 = 0; |
| t.dst1 = 0; |
| t.dst2 = 0; |
| t.dst3 = 0; |
| t.dst4 = 0; |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| CHECK_EQ(0x12130304u, t.dst0); |
| CHECK_EQ(0x01021213u, t.dst1); |
| CHECK_EQ(0x00010003u, t.dst2); |
| CHECK_EQ(0x00000003u, t.dst3); |
| CHECK_EQ(0x11121313u, t.dst4); |
| } |
| |
| |
| TEST(17) { |
| // Test generating labels at high addresses. |
| // Should not assert. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| // Generate a code segment that will be longer than 2^24 bytes. |
| Assembler assm(isolate, NULL, 0); |
| for (size_t i = 0; i < 1 << 23 ; ++i) { // 2^23 |
| __ nop(); |
| } |
| |
| Label target; |
| __ b(eq, &target); |
| __ bind(&target); |
| __ nop(); |
| } |
| |
| |
| #define TEST_SDIV(expected_, dividend_, divisor_) \ |
| t.dividend = dividend_; \ |
| t.divisor = divisor_; \ |
| t.result = 0; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ |
| CHECK_EQ(expected_, t.result); |
| |
| |
| TEST(sdiv) { |
| // Test the sdiv. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| Assembler assm(isolate, NULL, 0); |
| |
| struct T { |
| int32_t dividend; |
| int32_t divisor; |
| int32_t result; |
| } t; |
| |
| if (CpuFeatures::IsSupported(SUDIV)) { |
| CpuFeatureScope scope(&assm, SUDIV); |
| |
| __ mov(r3, Operand(r0)); |
| |
| __ ldr(r0, MemOperand(r3, offsetof(T, dividend))); |
| __ ldr(r1, MemOperand(r3, offsetof(T, divisor))); |
| |
| __ sdiv(r2, r0, r1); |
| __ str(r2, MemOperand(r3, offsetof(T, result))); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| Object* dummy; |
| TEST_SDIV(0, kMinInt, 0); |
| TEST_SDIV(0, 1024, 0); |
| TEST_SDIV(1073741824, kMinInt, -2); |
| TEST_SDIV(kMinInt, kMinInt, -1); |
| TEST_SDIV(5, 10, 2); |
| TEST_SDIV(3, 10, 3); |
| TEST_SDIV(-5, 10, -2); |
| TEST_SDIV(-3, 10, -3); |
| TEST_SDIV(-5, -10, 2); |
| TEST_SDIV(-3, -10, 3); |
| TEST_SDIV(5, -10, -2); |
| TEST_SDIV(3, -10, -3); |
| USE(dummy); |
| } |
| } |
| |
| |
| #undef TEST_SDIV |
| |
| |
| #define TEST_UDIV(expected_, dividend_, divisor_) \ |
| t.dividend = dividend_; \ |
| t.divisor = divisor_; \ |
| t.result = 0; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ |
| CHECK_EQ(expected_, t.result); |
| |
| |
| TEST(udiv) { |
| // Test the udiv. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| Assembler assm(isolate, NULL, 0); |
| |
| struct T { |
| uint32_t dividend; |
| uint32_t divisor; |
| uint32_t result; |
| } t; |
| |
| if (CpuFeatures::IsSupported(SUDIV)) { |
| CpuFeatureScope scope(&assm, SUDIV); |
| |
| __ mov(r3, Operand(r0)); |
| |
| __ ldr(r0, MemOperand(r3, offsetof(T, dividend))); |
| __ ldr(r1, MemOperand(r3, offsetof(T, divisor))); |
| |
| __ sdiv(r2, r0, r1); |
| __ str(r2, MemOperand(r3, offsetof(T, result))); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| Object* dummy; |
| TEST_UDIV(0u, 0, 0); |
| TEST_UDIV(0u, 1024, 0); |
| TEST_UDIV(5u, 10, 2); |
| TEST_UDIV(3u, 10, 3); |
| USE(dummy); |
| } |
| } |
| |
| |
| #undef TEST_UDIV |
| |
| |
| TEST(smmla) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ smmla(r1, r1, r2, r3); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(), z = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, z, 0); |
| CHECK_EQ(base::bits::SignedMulHighAndAdd32(x, y, z), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(smmul) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ smmul(r1, r1, r2); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); |
| CHECK_EQ(base::bits::SignedMulHigh32(x, y), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(sxtb) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ sxtb(r1, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<int8_t>(x)), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(sxtab) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ sxtab(r1, r2, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<int8_t>(x)) + y, r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(sxth) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ sxth(r1, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<int16_t>(x)), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(sxtah) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ sxtah(r1, r2, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<int16_t>(x)) + y, r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(uxtb) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ uxtb(r1, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<uint8_t>(x)), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(uxtab) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ uxtab(r1, r2, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<uint8_t>(x)) + y, r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(uxth) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ uxth(r1, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, 0, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<uint16_t>(x)), r); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(uxtah) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| RandomNumberGenerator* const rng = isolate->random_number_generator(); |
| Assembler assm(isolate, nullptr, 0); |
| __ uxtah(r1, r2, r1); |
| __ str(r1, MemOperand(r0)); |
| __ bx(lr); |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| for (size_t i = 0; i < 128; ++i) { |
| int32_t r, x = rng->NextInt(), y = rng->NextInt(); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &r, x, y, 0, 0); |
| CHECK_EQ(static_cast<int32_t>(static_cast<uint16_t>(x)) + y, r); |
| USE(dummy); |
| } |
| } |
| |
| #define TEST_RBIT(expected_, input_) \ |
| t.input = input_; \ |
| t.result = 0; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ |
| CHECK_EQ(static_cast<uint32_t>(expected_), t.result); |
| |
| TEST(rbit) { |
| CcTest::InitializeVM(); |
| Isolate* const isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| Assembler assm(isolate, nullptr, 0); |
| |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| CpuFeatureScope scope(&assm, ARMv7); |
| |
| typedef struct { |
| uint32_t input; |
| uint32_t result; |
| } T; |
| T t; |
| |
| __ ldr(r1, MemOperand(r0, offsetof(T, input))); |
| __ rbit(r1, r1); |
| __ str(r1, MemOperand(r0, offsetof(T, result))); |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| Object* dummy = NULL; |
| TEST_RBIT(0xffffffff, 0xffffffff); |
| TEST_RBIT(0x00000000, 0x00000000); |
| TEST_RBIT(0xffff0000, 0x0000ffff); |
| TEST_RBIT(0xff00ff00, 0x00ff00ff); |
| TEST_RBIT(0xf0f0f0f0, 0x0f0f0f0f); |
| TEST_RBIT(0x1e6a2c48, 0x12345678); |
| USE(dummy); |
| } |
| } |
| |
| |
| TEST(code_relative_offset) { |
| // Test extracting the offset of a label from the beginning of the code |
| // in a register. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| // Initialize a code object that will contain the code. |
| Handle<HeapObject> code_object(isolate->heap()->undefined_value(), isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| Label start, target_away, target_faraway; |
| |
| __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit()); |
| |
| // r3 is used as the address zero, the test will crash when we load it. |
| __ mov(r3, Operand::Zero()); |
| |
| // r5 will be a pointer to the start of the code. |
| __ mov(r5, Operand(code_object)); |
| __ mov_label_offset(r4, &start); |
| |
| __ mov_label_offset(r1, &target_faraway); |
| __ str(r1, MemOperand(sp, kPointerSize, NegPreIndex)); |
| |
| __ mov_label_offset(r1, &target_away); |
| |
| // Jump straight to 'target_away' the first time and use the relative |
| // position the second time. This covers the case when extracting the |
| // position of a label which is linked. |
| __ mov(r2, Operand::Zero()); |
| __ bind(&start); |
| __ cmp(r2, Operand::Zero()); |
| __ b(eq, &target_away); |
| __ add(pc, r5, r1); |
| // Emit invalid instructions to push the label between 2^8 and 2^16 |
| // instructions away. The test will crash if they are reached. |
| for (int i = 0; i < (1 << 10); i++) { |
| __ ldr(r3, MemOperand(r3)); |
| } |
| __ bind(&target_away); |
| // This will be hit twice: r0 = r0 + 5 + 5. |
| __ add(r0, r0, Operand(5)); |
| |
| __ ldr(r1, MemOperand(sp, kPointerSize, PostIndex), ne); |
| __ add(pc, r5, r4, LeaveCC, ne); |
| |
| __ mov(r2, Operand(1)); |
| __ b(&start); |
| // Emit invalid instructions to push the label between 2^16 and 2^24 |
| // instructions away. The test will crash if they are reached. |
| for (int i = 0; i < (1 << 21); i++) { |
| __ ldr(r3, MemOperand(r3)); |
| } |
| __ bind(&target_faraway); |
| // r0 = r0 + 5 + 5 + 11 |
| __ add(r0, r0, Operand(11)); |
| |
| __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, code_object); |
| F1 f = FUNCTION_CAST<F1>(code->entry()); |
| int res = |
| reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, 21, 0, 0, 0, 0)); |
| ::printf("f() = %d\n", res); |
| CHECK_EQ(42, res); |
| } |
| |
| TEST(msr_mrs) { |
| // Test msr and mrs. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| // Create a helper function: |
| // void TestMsrMrs(uint32_t nzcv, |
| // uint32_t * result_conditionals, |
| // uint32_t * result_mrs); |
| __ msr(CPSR_f, Operand(r0)); |
| |
| // Test that the condition flags have taken effect. |
| __ mov(r3, Operand(0)); |
| __ orr(r3, r3, Operand(1 << 31), LeaveCC, mi); // N |
| __ orr(r3, r3, Operand(1 << 30), LeaveCC, eq); // Z |
| __ orr(r3, r3, Operand(1 << 29), LeaveCC, cs); // C |
| __ orr(r3, r3, Operand(1 << 28), LeaveCC, vs); // V |
| __ str(r3, MemOperand(r1)); |
| |
| // Also check mrs, ignoring everything other than the flags. |
| __ mrs(r3, CPSR); |
| __ and_(r3, r3, Operand(kSpecialCondition)); |
| __ str(r3, MemOperand(r2)); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F5 f = FUNCTION_CAST<F5>(code->entry()); |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_MSR_MRS(n, z, c, v) \ |
| do { \ |
| uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \ |
| uint32_t result_conditionals = -1; \ |
| uint32_t result_mrs = -1; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, nzcv, &result_conditionals, \ |
| &result_mrs, 0, 0); \ |
| CHECK_EQ(nzcv, result_conditionals); \ |
| CHECK_EQ(nzcv, result_mrs); \ |
| } while (0); |
| |
| // N Z C V |
| CHECK_MSR_MRS(0, 0, 0, 0); |
| CHECK_MSR_MRS(0, 0, 0, 1); |
| CHECK_MSR_MRS(0, 0, 1, 0); |
| CHECK_MSR_MRS(0, 0, 1, 1); |
| CHECK_MSR_MRS(0, 1, 0, 0); |
| CHECK_MSR_MRS(0, 1, 0, 1); |
| CHECK_MSR_MRS(0, 1, 1, 0); |
| CHECK_MSR_MRS(0, 1, 1, 1); |
| CHECK_MSR_MRS(1, 0, 0, 0); |
| CHECK_MSR_MRS(1, 0, 0, 1); |
| CHECK_MSR_MRS(1, 0, 1, 0); |
| CHECK_MSR_MRS(1, 0, 1, 1); |
| CHECK_MSR_MRS(1, 1, 0, 0); |
| CHECK_MSR_MRS(1, 1, 0, 1); |
| CHECK_MSR_MRS(1, 1, 1, 0); |
| CHECK_MSR_MRS(1, 1, 1, 1); |
| |
| #undef CHECK_MSR_MRS |
| } |
| |
| TEST(ARMv8_float32_vrintX) { |
| // Test the vrintX floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| float input; |
| float ar; |
| float nr; |
| float mr; |
| float pr; |
| float zr; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the floats. |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(&assm, ARMv8); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| |
| __ mov(r4, Operand(r0)); |
| |
| // Test vrinta |
| __ vldr(s6, r4, offsetof(T, input)); |
| __ vrinta(s5, s6); |
| __ vstr(s5, r4, offsetof(T, ar)); |
| |
| // Test vrintn |
| __ vldr(s6, r4, offsetof(T, input)); |
| __ vrintn(s5, s6); |
| __ vstr(s5, r4, offsetof(T, nr)); |
| |
| // Test vrintp |
| __ vldr(s6, r4, offsetof(T, input)); |
| __ vrintp(s5, s6); |
| __ vstr(s5, r4, offsetof(T, pr)); |
| |
| // Test vrintm |
| __ vldr(s6, r4, offsetof(T, input)); |
| __ vrintm(s5, s6); |
| __ vstr(s5, r4, offsetof(T, mr)); |
| |
| // Test vrintz |
| __ vldr(s6, r4, offsetof(T, input)); |
| __ vrintz(s5, s6); |
| __ vstr(s5, r4, offsetof(T, zr)); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \ |
| t.input = input_val; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ |
| CHECK_EQ(ares, t.ar); \ |
| CHECK_EQ(nres, t.nr); \ |
| CHECK_EQ(mres, t.mr); \ |
| CHECK_EQ(pres, t.pr); \ |
| CHECK_EQ(zres, t.zr); |
| |
| CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0) |
| CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0) |
| CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0) |
| CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0) |
| CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0) |
| CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0) |
| float inf = std::numeric_limits<float>::infinity(); |
| CHECK_VRINT(inf, inf, inf, inf, inf, inf) |
| CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf) |
| CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0) |
| |
| // Check NaN propagation. |
| float nan = std::numeric_limits<float>::quiet_NaN(); |
| t.input = nan; |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.ar)); |
| CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.nr)); |
| CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.mr)); |
| CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.pr)); |
| CHECK_EQ(bit_cast<int32_t>(nan), bit_cast<int32_t>(t.zr)); |
| |
| #undef CHECK_VRINT |
| } |
| } |
| |
| |
| TEST(ARMv8_vrintX) { |
| // Test the vrintX floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| double input; |
| double ar; |
| double nr; |
| double mr; |
| double pr; |
| double zr; |
| } T; |
| T t; |
| |
| // Create a function that accepts &t, and loads, manipulates, and stores |
| // the doubles and floats. |
| Assembler assm(isolate, NULL, 0); |
| Label L, C; |
| |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(&assm, ARMv8); |
| |
| __ mov(ip, Operand(sp)); |
| __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit()); |
| |
| __ mov(r4, Operand(r0)); |
| |
| // Test vrinta |
| __ vldr(d6, r4, offsetof(T, input)); |
| __ vrinta(d5, d6); |
| __ vstr(d5, r4, offsetof(T, ar)); |
| |
| // Test vrintn |
| __ vldr(d6, r4, offsetof(T, input)); |
| __ vrintn(d5, d6); |
| __ vstr(d5, r4, offsetof(T, nr)); |
| |
| // Test vrintp |
| __ vldr(d6, r4, offsetof(T, input)); |
| __ vrintp(d5, d6); |
| __ vstr(d5, r4, offsetof(T, pr)); |
| |
| // Test vrintm |
| __ vldr(d6, r4, offsetof(T, input)); |
| __ vrintm(d5, d6); |
| __ vstr(d5, r4, offsetof(T, mr)); |
| |
| // Test vrintz |
| __ vldr(d6, r4, offsetof(T, input)); |
| __ vrintz(d5, d6); |
| __ vstr(d5, r4, offsetof(T, zr)); |
| |
| __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit()); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_VRINT(input_val, ares, nres, mres, pres, zres) \ |
| t.input = input_val; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); \ |
| CHECK_EQ(ares, t.ar); \ |
| CHECK_EQ(nres, t.nr); \ |
| CHECK_EQ(mres, t.mr); \ |
| CHECK_EQ(pres, t.pr); \ |
| CHECK_EQ(zres, t.zr); |
| |
| CHECK_VRINT(-0.5, -1.0, -0.0, -1.0, -0.0, -0.0) |
| CHECK_VRINT(-0.6, -1.0, -1.0, -1.0, -0.0, -0.0) |
| CHECK_VRINT(-1.1, -1.0, -1.0, -2.0, -1.0, -1.0) |
| CHECK_VRINT(0.5, 1.0, 0.0, 0.0, 1.0, 0.0) |
| CHECK_VRINT(0.6, 1.0, 1.0, 0.0, 1.0, 0.0) |
| CHECK_VRINT(1.1, 1.0, 1.0, 1.0, 2.0, 1.0) |
| double inf = std::numeric_limits<double>::infinity(); |
| CHECK_VRINT(inf, inf, inf, inf, inf, inf) |
| CHECK_VRINT(-inf, -inf, -inf, -inf, -inf, -inf) |
| CHECK_VRINT(-0.0, -0.0, -0.0, -0.0, -0.0, -0.0) |
| |
| // Check NaN propagation. |
| double nan = std::numeric_limits<double>::quiet_NaN(); |
| t.input = nan; |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.ar)); |
| CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.nr)); |
| CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.mr)); |
| CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.pr)); |
| CHECK_EQ(bit_cast<int64_t>(nan), bit_cast<int64_t>(t.zr)); |
| |
| #undef CHECK_VRINT |
| } |
| } |
| |
| TEST(ARMv8_vsel) { |
| // Test the vsel floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| // Used to indicate whether a condition passed or failed. |
| static constexpr float kResultPass = 1.0f; |
| static constexpr float kResultFail = -kResultPass; |
| |
| struct ResultsF32 { |
| float vseleq_; |
| float vselge_; |
| float vselgt_; |
| float vselvs_; |
| |
| // The following conditions aren't architecturally supported, but the |
| // assembler implements them by swapping the inputs. |
| float vselne_; |
| float vsellt_; |
| float vselle_; |
| float vselvc_; |
| }; |
| |
| struct ResultsF64 { |
| double vseleq_; |
| double vselge_; |
| double vselgt_; |
| double vselvs_; |
| |
| // The following conditions aren't architecturally supported, but the |
| // assembler implements them by swapping the inputs. |
| double vselne_; |
| double vsellt_; |
| double vselle_; |
| double vselvc_; |
| }; |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(&assm, ARMv8); |
| |
| // Create a helper function: |
| // void TestVsel(uint32_t nzcv, |
| // ResultsF32* results_f32, |
| // ResultsF64* results_f64); |
| __ msr(CPSR_f, Operand(r0)); |
| |
| __ vmov(s1, Float32(kResultPass)); |
| __ vmov(s2, Float32(kResultFail)); |
| |
| __ vsel(eq, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vseleq_)); |
| __ vsel(ge, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselge_)); |
| __ vsel(gt, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselgt_)); |
| __ vsel(vs, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselvs_)); |
| |
| __ vsel(ne, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselne_)); |
| __ vsel(lt, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vsellt_)); |
| __ vsel(le, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselle_)); |
| __ vsel(vc, s0, s1, s2); |
| __ vstr(s0, r1, offsetof(ResultsF32, vselvc_)); |
| |
| __ vmov(d1, Double(kResultPass)); |
| __ vmov(d2, Double(kResultFail)); |
| |
| __ vsel(eq, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vseleq_)); |
| __ vsel(ge, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselge_)); |
| __ vsel(gt, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselgt_)); |
| __ vsel(vs, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselvs_)); |
| |
| __ vsel(ne, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselne_)); |
| __ vsel(lt, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vsellt_)); |
| __ vsel(le, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselle_)); |
| __ vsel(vc, d0, d1, d2); |
| __ vstr(d0, r2, offsetof(ResultsF64, vselvc_)); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F5 f = FUNCTION_CAST<F5>(code->entry()); |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| STATIC_ASSERT(kResultPass == -kResultFail); |
| #define CHECK_VSEL(n, z, c, v, vseleq, vselge, vselgt, vselvs) \ |
| do { \ |
| ResultsF32 results_f32; \ |
| ResultsF64 results_f64; \ |
| uint32_t nzcv = (n << 31) | (z << 30) | (c << 29) | (v << 28); \ |
| dummy = CALL_GENERATED_CODE(isolate, f, nzcv, &results_f32, &results_f64, \ |
| 0, 0); \ |
| CHECK_EQ(vseleq, results_f32.vseleq_); \ |
| CHECK_EQ(vselge, results_f32.vselge_); \ |
| CHECK_EQ(vselgt, results_f32.vselgt_); \ |
| CHECK_EQ(vselvs, results_f32.vselvs_); \ |
| CHECK_EQ(-vseleq, results_f32.vselne_); \ |
| CHECK_EQ(-vselge, results_f32.vsellt_); \ |
| CHECK_EQ(-vselgt, results_f32.vselle_); \ |
| CHECK_EQ(-vselvs, results_f32.vselvc_); \ |
| CHECK_EQ(vseleq, results_f64.vseleq_); \ |
| CHECK_EQ(vselge, results_f64.vselge_); \ |
| CHECK_EQ(vselgt, results_f64.vselgt_); \ |
| CHECK_EQ(vselvs, results_f64.vselvs_); \ |
| CHECK_EQ(-vseleq, results_f64.vselne_); \ |
| CHECK_EQ(-vselge, results_f64.vsellt_); \ |
| CHECK_EQ(-vselgt, results_f64.vselle_); \ |
| CHECK_EQ(-vselvs, results_f64.vselvc_); \ |
| } while (0); |
| |
| // N Z C V vseleq vselge vselgt vselvs |
| CHECK_VSEL(0, 0, 0, 0, kResultFail, kResultPass, kResultPass, kResultFail); |
| CHECK_VSEL(0, 0, 0, 1, kResultFail, kResultFail, kResultFail, kResultPass); |
| CHECK_VSEL(0, 0, 1, 0, kResultFail, kResultPass, kResultPass, kResultFail); |
| CHECK_VSEL(0, 0, 1, 1, kResultFail, kResultFail, kResultFail, kResultPass); |
| CHECK_VSEL(0, 1, 0, 0, kResultPass, kResultPass, kResultFail, kResultFail); |
| CHECK_VSEL(0, 1, 0, 1, kResultPass, kResultFail, kResultFail, kResultPass); |
| CHECK_VSEL(0, 1, 1, 0, kResultPass, kResultPass, kResultFail, kResultFail); |
| CHECK_VSEL(0, 1, 1, 1, kResultPass, kResultFail, kResultFail, kResultPass); |
| CHECK_VSEL(1, 0, 0, 0, kResultFail, kResultFail, kResultFail, kResultFail); |
| CHECK_VSEL(1, 0, 0, 1, kResultFail, kResultPass, kResultPass, kResultPass); |
| CHECK_VSEL(1, 0, 1, 0, kResultFail, kResultFail, kResultFail, kResultFail); |
| CHECK_VSEL(1, 0, 1, 1, kResultFail, kResultPass, kResultPass, kResultPass); |
| CHECK_VSEL(1, 1, 0, 0, kResultPass, kResultFail, kResultFail, kResultFail); |
| CHECK_VSEL(1, 1, 0, 1, kResultPass, kResultPass, kResultFail, kResultPass); |
| CHECK_VSEL(1, 1, 1, 0, kResultPass, kResultFail, kResultFail, kResultFail); |
| CHECK_VSEL(1, 1, 1, 1, kResultPass, kResultPass, kResultFail, kResultPass); |
| |
| #undef CHECK_VSEL |
| } |
| } |
| |
| TEST(ARMv8_vminmax_f64) { |
| // Test the vminnm and vmaxnm floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| struct Inputs { |
| double left_; |
| double right_; |
| }; |
| |
| struct Results { |
| double vminnm_; |
| double vmaxnm_; |
| }; |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(&assm, ARMv8); |
| |
| // Create a helper function: |
| // void TestVminmax(const Inputs* inputs, |
| // Results* results); |
| __ vldr(d1, r0, offsetof(Inputs, left_)); |
| __ vldr(d2, r0, offsetof(Inputs, right_)); |
| |
| __ vminnm(d0, d1, d2); |
| __ vstr(d0, r1, offsetof(Results, vminnm_)); |
| __ vmaxnm(d0, d1, d2); |
| __ vstr(d0, r1, offsetof(Results, vmaxnm_)); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 f = FUNCTION_CAST<F4>(code->entry()); |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \ |
| do { \ |
| Inputs inputs = {left, right}; \ |
| Results results; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| CHECK_EQ(bit_cast<uint64_t>(vminnm), bit_cast<uint64_t>(results.vminnm_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(vmaxnm), bit_cast<uint64_t>(results.vmaxnm_)); \ |
| } while (0); |
| |
| double nan_a = bit_cast<double>(UINT64_C(0x7ff8000000000001)); |
| double nan_b = bit_cast<double>(UINT64_C(0x7ff8000000000002)); |
| |
| CHECK_VMINMAX(1.0, -1.0, -1.0, 1.0); |
| CHECK_VMINMAX(-1.0, 1.0, -1.0, 1.0); |
| CHECK_VMINMAX(0.0, -1.0, -1.0, 0.0); |
| CHECK_VMINMAX(-1.0, 0.0, -1.0, 0.0); |
| CHECK_VMINMAX(-0.0, -1.0, -1.0, -0.0); |
| CHECK_VMINMAX(-1.0, -0.0, -1.0, -0.0); |
| CHECK_VMINMAX(0.0, 1.0, 0.0, 1.0); |
| CHECK_VMINMAX(1.0, 0.0, 0.0, 1.0); |
| |
| CHECK_VMINMAX(0.0, 0.0, 0.0, 0.0); |
| CHECK_VMINMAX(-0.0, -0.0, -0.0, -0.0); |
| CHECK_VMINMAX(-0.0, 0.0, -0.0, 0.0); |
| CHECK_VMINMAX(0.0, -0.0, -0.0, 0.0); |
| |
| CHECK_VMINMAX(0.0, nan_a, 0.0, 0.0); |
| CHECK_VMINMAX(nan_a, 0.0, 0.0, 0.0); |
| CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_VMINMAX |
| } |
| } |
| |
| TEST(ARMv8_vminmax_f32) { |
| // Test the vminnm and vmaxnm floating point instructions. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| struct Inputs { |
| float left_; |
| float right_; |
| }; |
| |
| struct Results { |
| float vminnm_; |
| float vmaxnm_; |
| }; |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(&assm, ARMv8); |
| |
| // Create a helper function: |
| // void TestVminmax(const Inputs* inputs, |
| // Results* results); |
| __ vldr(s1, r0, offsetof(Inputs, left_)); |
| __ vldr(s2, r0, offsetof(Inputs, right_)); |
| |
| __ vminnm(s0, s1, s2); |
| __ vstr(s0, r1, offsetof(Results, vminnm_)); |
| __ vmaxnm(s0, s1, s2); |
| __ vstr(s0, r1, offsetof(Results, vmaxnm_)); |
| |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 f = FUNCTION_CAST<F4>(code->entry()); |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_VMINMAX(left, right, vminnm, vmaxnm) \ |
| do { \ |
| Inputs inputs = {left, right}; \ |
| Results results; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| CHECK_EQ(bit_cast<uint32_t>(vminnm), bit_cast<uint32_t>(results.vminnm_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(vmaxnm), bit_cast<uint32_t>(results.vmaxnm_)); \ |
| } while (0); |
| |
| float nan_a = bit_cast<float>(UINT32_C(0x7fc00001)); |
| float nan_b = bit_cast<float>(UINT32_C(0x7fc00002)); |
| |
| CHECK_VMINMAX(1.0f, -1.0f, -1.0f, 1.0f); |
| CHECK_VMINMAX(-1.0f, 1.0f, -1.0f, 1.0f); |
| CHECK_VMINMAX(0.0f, -1.0f, -1.0f, 0.0f); |
| CHECK_VMINMAX(-1.0f, 0.0f, -1.0f, 0.0f); |
| CHECK_VMINMAX(-0.0f, -1.0f, -1.0f, -0.0f); |
| CHECK_VMINMAX(-1.0f, -0.0f, -1.0f, -0.0f); |
| CHECK_VMINMAX(0.0f, 1.0f, 0.0f, 1.0f); |
| CHECK_VMINMAX(1.0f, 0.0f, 0.0f, 1.0f); |
| |
| CHECK_VMINMAX(0.0f, 0.0f, 0.0f, 0.0f); |
| CHECK_VMINMAX(-0.0f, -0.0f, -0.0f, -0.0f); |
| CHECK_VMINMAX(-0.0f, 0.0f, -0.0f, 0.0f); |
| CHECK_VMINMAX(0.0f, -0.0f, -0.0f, 0.0f); |
| |
| CHECK_VMINMAX(0.0f, nan_a, 0.0f, 0.0f); |
| CHECK_VMINMAX(nan_a, 0.0f, 0.0f, 0.0f); |
| CHECK_VMINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_VMINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_VMINMAX |
| } |
| } |
| |
| template <typename T, typename Inputs, typename Results> |
| static F4 GenerateMacroFloatMinMax(MacroAssembler& assm) { |
| T a = T::from_code(0); // d0/s0 |
| T b = T::from_code(1); // d1/s1 |
| T c = T::from_code(2); // d2/s2 |
| |
| // Create a helper function: |
| // void TestFloatMinMax(const Inputs* inputs, |
| // Results* results); |
| Label ool_min_abc, ool_min_aab, ool_min_aba; |
| Label ool_max_abc, ool_max_aab, ool_max_aba; |
| |
| Label done_min_abc, done_min_aab, done_min_aba; |
| Label done_max_abc, done_max_aab, done_max_aba; |
| |
| // a = min(b, c); |
| __ vldr(b, r0, offsetof(Inputs, left_)); |
| __ vldr(c, r0, offsetof(Inputs, right_)); |
| __ FloatMin(a, b, c, &ool_min_abc); |
| __ bind(&done_min_abc); |
| __ vstr(a, r1, offsetof(Results, min_abc_)); |
| |
| // a = min(a, b); |
| __ vldr(a, r0, offsetof(Inputs, left_)); |
| __ vldr(b, r0, offsetof(Inputs, right_)); |
| __ FloatMin(a, a, b, &ool_min_aab); |
| __ bind(&done_min_aab); |
| __ vstr(a, r1, offsetof(Results, min_aab_)); |
| |
| // a = min(b, a); |
| __ vldr(b, r0, offsetof(Inputs, left_)); |
| __ vldr(a, r0, offsetof(Inputs, right_)); |
| __ FloatMin(a, b, a, &ool_min_aba); |
| __ bind(&done_min_aba); |
| __ vstr(a, r1, offsetof(Results, min_aba_)); |
| |
| // a = max(b, c); |
| __ vldr(b, r0, offsetof(Inputs, left_)); |
| __ vldr(c, r0, offsetof(Inputs, right_)); |
| __ FloatMax(a, b, c, &ool_max_abc); |
| __ bind(&done_max_abc); |
| __ vstr(a, r1, offsetof(Results, max_abc_)); |
| |
| // a = max(a, b); |
| __ vldr(a, r0, offsetof(Inputs, left_)); |
| __ vldr(b, r0, offsetof(Inputs, right_)); |
| __ FloatMax(a, a, b, &ool_max_aab); |
| __ bind(&done_max_aab); |
| __ vstr(a, r1, offsetof(Results, max_aab_)); |
| |
| // a = max(b, a); |
| __ vldr(b, r0, offsetof(Inputs, left_)); |
| __ vldr(a, r0, offsetof(Inputs, right_)); |
| __ FloatMax(a, b, a, &ool_max_aba); |
| __ bind(&done_max_aba); |
| __ vstr(a, r1, offsetof(Results, max_aba_)); |
| |
| __ bx(lr); |
| |
| // Generate out-of-line cases. |
| __ bind(&ool_min_abc); |
| __ FloatMinOutOfLine(a, b, c); |
| __ b(&done_min_abc); |
| |
| __ bind(&ool_min_aab); |
| __ FloatMinOutOfLine(a, a, b); |
| __ b(&done_min_aab); |
| |
| __ bind(&ool_min_aba); |
| __ FloatMinOutOfLine(a, b, a); |
| __ b(&done_min_aba); |
| |
| __ bind(&ool_max_abc); |
| __ FloatMaxOutOfLine(a, b, c); |
| __ b(&done_max_abc); |
| |
| __ bind(&ool_max_aab); |
| __ FloatMaxOutOfLine(a, a, b); |
| __ b(&done_max_aab); |
| |
| __ bind(&ool_max_aba); |
| __ FloatMaxOutOfLine(a, b, a); |
| __ b(&done_max_aba); |
| |
| CodeDesc desc; |
| assm.GetCode(assm.isolate(), &desc); |
| Handle<Code> code = |
| assm.isolate()->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| return FUNCTION_CAST<F4>(code->entry()); |
| } |
| |
| TEST(macro_float_minmax_f64) { |
| // Test the FloatMin and FloatMax macros. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| MacroAssembler assm(isolate, NULL, 0, CodeObjectRequired::kYes); |
| |
| struct Inputs { |
| double left_; |
| double right_; |
| }; |
| |
| struct Results { |
| // Check all register aliasing possibilities in order to exercise all |
| // code-paths in the macro assembler. |
| double min_abc_; |
| double min_aab_; |
| double min_aba_; |
| double max_abc_; |
| double max_aab_; |
| double max_aba_; |
| }; |
| |
| F4 f = GenerateMacroFloatMinMax<DwVfpRegister, Inputs, Results>(assm); |
| |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_MINMAX(left, right, min, max) \ |
| do { \ |
| Inputs inputs = {left, right}; \ |
| Results results; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \ |
| } while (0) |
| |
| double nan_a = bit_cast<double>(UINT64_C(0x7ff8000000000001)); |
| double nan_b = bit_cast<double>(UINT64_C(0x7ff8000000000002)); |
| |
| CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); |
| CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); |
| CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); |
| CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); |
| CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); |
| CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); |
| CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); |
| CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); |
| |
| CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); |
| CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); |
| CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); |
| CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); |
| |
| CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_MINMAX |
| } |
| |
| TEST(macro_float_minmax_f32) { |
| // Test the FloatMin and FloatMax macros. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| MacroAssembler assm(isolate, NULL, 0, CodeObjectRequired::kYes); |
| |
| struct Inputs { |
| float left_; |
| float right_; |
| }; |
| |
| struct Results { |
| // Check all register aliasing possibilities in order to exercise all |
| // code-paths in the macro assembler. |
| float min_abc_; |
| float min_aab_; |
| float min_aba_; |
| float max_abc_; |
| float max_aab_; |
| float max_aba_; |
| }; |
| |
| F4 f = GenerateMacroFloatMinMax<SwVfpRegister, Inputs, Results>(assm); |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #define CHECK_MINMAX(left, right, min, max) \ |
| do { \ |
| Inputs inputs = {left, right}; \ |
| Results results; \ |
| dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \ |
| } while (0) |
| |
| float nan_a = bit_cast<float>(UINT32_C(0x7fc00001)); |
| float nan_b = bit_cast<float>(UINT32_C(0x7fc00002)); |
| |
| CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); |
| CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); |
| CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); |
| CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); |
| CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); |
| CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); |
| CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); |
| CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); |
| |
| CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); |
| CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); |
| CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); |
| CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); |
| |
| CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_MINMAX |
| } |
| |
| TEST(unaligned_loads) { |
| // All supported ARM targets allow unaligned accesses. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| typedef struct { |
| uint32_t ldrh; |
| uint32_t ldrsh; |
| uint32_t ldr; |
| } T; |
| T t; |
| |
| Assembler assm(isolate, NULL, 0); |
| __ ldrh(ip, MemOperand(r1, r2)); |
| __ str(ip, MemOperand(r0, offsetof(T, ldrh))); |
| __ ldrsh(ip, MemOperand(r1, r2)); |
| __ str(ip, MemOperand(r0, offsetof(T, ldrsh))); |
| __ ldr(ip, MemOperand(r1, r2)); |
| __ str(ip, MemOperand(r0, offsetof(T, ldr))); |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 f = FUNCTION_CAST<F4>(code->entry()); |
| |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #ifndef V8_TARGET_LITTLE_ENDIAN |
| #error This test assumes a little-endian layout. |
| #endif |
| uint64_t data = UINT64_C(0x84838281807f7e7d); |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 0, 0, 0); |
| CHECK_EQ(0x00007e7du, t.ldrh); |
| CHECK_EQ(0x00007e7du, t.ldrsh); |
| CHECK_EQ(0x807f7e7du, t.ldr); |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 1, 0, 0); |
| CHECK_EQ(0x00007f7eu, t.ldrh); |
| CHECK_EQ(0x00007f7eu, t.ldrsh); |
| CHECK_EQ(0x81807f7eu, t.ldr); |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 2, 0, 0); |
| CHECK_EQ(0x0000807fu, t.ldrh); |
| CHECK_EQ(0xffff807fu, t.ldrsh); |
| CHECK_EQ(0x8281807fu, t.ldr); |
| dummy = CALL_GENERATED_CODE(isolate, f, &t, &data, 3, 0, 0); |
| CHECK_EQ(0x00008180u, t.ldrh); |
| CHECK_EQ(0xffff8180u, t.ldrsh); |
| CHECK_EQ(0x83828180u, t.ldr); |
| } |
| |
| TEST(unaligned_stores) { |
| // All supported ARM targets allow unaligned accesses. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| __ strh(r3, MemOperand(r0, r2)); |
| __ str(r3, MemOperand(r1, r2)); |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F4 f = FUNCTION_CAST<F4>(code->entry()); |
| |
| Object* dummy = nullptr; |
| USE(dummy); |
| |
| #ifndef V8_TARGET_LITTLE_ENDIAN |
| #error This test assumes a little-endian layout. |
| #endif |
| { |
| uint64_t strh = 0; |
| uint64_t str = 0; |
| dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 0, 0xfedcba98, 0); |
| CHECK_EQ(UINT64_C(0x000000000000ba98), strh); |
| CHECK_EQ(UINT64_C(0x00000000fedcba98), str); |
| } |
| { |
| uint64_t strh = 0; |
| uint64_t str = 0; |
| dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 1, 0xfedcba98, 0); |
| CHECK_EQ(UINT64_C(0x0000000000ba9800), strh); |
| CHECK_EQ(UINT64_C(0x000000fedcba9800), str); |
| } |
| { |
| uint64_t strh = 0; |
| uint64_t str = 0; |
| dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 2, 0xfedcba98, 0); |
| CHECK_EQ(UINT64_C(0x00000000ba980000), strh); |
| CHECK_EQ(UINT64_C(0x0000fedcba980000), str); |
| } |
| { |
| uint64_t strh = 0; |
| uint64_t str = 0; |
| dummy = CALL_GENERATED_CODE(isolate, f, &strh, &str, 3, 0xfedcba98, 0); |
| CHECK_EQ(UINT64_C(0x000000ba98000000), strh); |
| CHECK_EQ(UINT64_C(0x00fedcba98000000), str); |
| } |
| } |
| |
| TEST(vswp) { |
| if (!CpuFeatures::IsSupported(NEON)) return; |
| |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| Assembler assm(isolate, NULL, 0); |
| |
| typedef struct { |
| uint64_t vswp_d0; |
| uint64_t vswp_d1; |
| uint64_t vswp_d30; |
| uint64_t vswp_d31; |
| uint32_t vswp_q4[4]; |
| uint32_t vswp_q5[4]; |
| } T; |
| T t; |
| |
| __ stm(db_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | lr.bit()); |
| |
| uint64_t one = bit_cast<uint64_t>(1.0); |
| __ mov(r5, Operand(one >> 32)); |
| __ mov(r4, Operand(one & 0xffffffff)); |
| uint64_t minus_one = bit_cast<uint64_t>(-1.0); |
| __ mov(r7, Operand(minus_one >> 32)); |
| __ mov(r6, Operand(minus_one & 0xffffffff)); |
| |
| __ vmov(d0, r4, r5); // d0 = 1.0 |
| __ vmov(d1, r6, r7); // d1 = -1.0 |
| __ vswp(d0, d1); |
| __ vstr(d0, r0, offsetof(T, vswp_d0)); |
| __ vstr(d1, r0, offsetof(T, vswp_d1)); |
| |
| if (CpuFeatures::IsSupported(VFP32DREGS)) { |
| __ vmov(d30, r4, r5); // d30 = 1.0 |
| __ vmov(d31, r6, r7); // d31 = -1.0 |
| __ vswp(d30, d31); |
| __ vstr(d30, r0, offsetof(T, vswp_d30)); |
| __ vstr(d31, r0, offsetof(T, vswp_d31)); |
| } |
| |
| // q-register swap. |
| const uint32_t test_1 = 0x01234567; |
| const uint32_t test_2 = 0x89abcdef; |
| __ mov(r4, Operand(test_1)); |
| __ mov(r5, Operand(test_2)); |
| __ vdup(Neon32, q4, r4); |
| __ vdup(Neon32, q5, r5); |
| __ vswp(q4, q5); |
| __ add(r6, r0, Operand(static_cast<int32_t>(offsetof(T, vswp_q4)))); |
| __ vst1(Neon8, NeonListOperand(q4), NeonMemOperand(r6)); |
| __ add(r6, r0, Operand(static_cast<int32_t>(offsetof(T, vswp_q5)))); |
| __ vst1(Neon8, NeonListOperand(q5), NeonMemOperand(r6)); |
| |
| __ ldm(ia_w, sp, r4.bit() | r5.bit() | r6.bit() | r7.bit() | pc.bit()); |
| __ bx(lr); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = |
| isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>()); |
| #ifdef DEBUG |
| OFStream os(stdout); |
| code->Print(os); |
| #endif |
| F3 f = FUNCTION_CAST<F3>(code->entry()); |
| Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); |
| USE(dummy); |
| CHECK_EQ(minus_one, t.vswp_d0); |
| CHECK_EQ(one, t.vswp_d1); |
| if (CpuFeatures::IsSupported(VFP32DREGS)) { |
| CHECK_EQ(minus_one, t.vswp_d30); |
| CHECK_EQ(one, t.vswp_d31); |
| } |
| CHECK_EQ(t.vswp_q4[0], test_2); |
| CHECK_EQ(t.vswp_q4[1], test_2); |
| CHECK_EQ(t.vswp_q4[2], test_2); |
| CHECK_EQ(t.vswp_q4[3], test_2); |
| CHECK_EQ(t.vswp_q5[0], test_1); |
| CHECK_EQ(t.vswp_q5[1], test_1); |
| CHECK_EQ(t.vswp_q5[2], test_1); |
| CHECK_EQ(t.vswp_q5[3], test_1); |
| } |
| |
| TEST(regress4292_b) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label end; |
| __ mov(r0, Operand(isolate->factory()->infinity_value())); |
| for (int i = 0; i < 1020; ++i) { |
| __ b(hi, &end); |
| } |
| __ bind(&end); |
| } |
| |
| |
| TEST(regress4292_bl) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label end; |
| __ mov(r0, Operand(isolate->factory()->infinity_value())); |
| for (int i = 0; i < 1020; ++i) { |
| __ bl(hi, &end); |
| } |
| __ bind(&end); |
| } |
| |
| |
| TEST(regress4292_blx) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| Label end; |
| __ mov(r0, Operand(isolate->factory()->infinity_value())); |
| for (int i = 0; i < 1020; ++i) { |
| __ blx(&end); |
| } |
| __ bind(&end); |
| } |
| |
| |
| TEST(regress4292_CheckConstPool) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| __ mov(r0, Operand(isolate->factory()->infinity_value())); |
| __ BlockConstPoolFor(1019); |
| for (int i = 0; i < 1019; ++i) __ nop(); |
| __ vldr(d0, MemOperand(r0, 0)); |
| } |
| |
| TEST(use_scratch_register_scope) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| Assembler assm(isolate, NULL, 0); |
| |
| // The assembler should have ip as a scratch by default. |
| CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); |
| |
| { |
| UseScratchRegisterScope temps(&assm); |
| CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); |
| |
| Register scratch = temps.Acquire(); |
| CHECK_EQ(scratch.code(), ip.code()); |
| CHECK_EQ(*assm.GetScratchRegisterList(), 0); |
| } |
| |
| CHECK_EQ(*assm.GetScratchRegisterList(), ip.bit()); |
| } |
| |
| #undef __ |
| |
| } // namespace test_assembler_arm |
| } // namespace internal |
| } // namespace v8 |