| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <vector> |
| |
| #include "base/metrics/histogram.h" |
| #include "base/metrics/histogram_base.h" |
| #include "base/metrics/persistent_histogram_allocator.h" |
| #include "base/metrics/sample_vector.h" |
| #include "base/metrics/sparse_histogram.h" |
| #include "base/metrics/statistics_recorder.h" |
| #include "base/pickle.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace base { |
| |
| class HistogramBaseTest : public testing::Test { |
| protected: |
| HistogramBaseTest() { |
| // Each test will have a clean state (no Histogram / BucketRanges |
| // registered). |
| ResetStatisticsRecorder(); |
| GlobalHistogramAllocator::ReleaseForTesting(); |
| } |
| |
| ~HistogramBaseTest() override = default; |
| |
| void ResetStatisticsRecorder() { |
| // It is necessary to fully destruct any existing StatisticsRecorder |
| // before creating a new one. |
| statistics_recorder_.reset(); |
| statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting(); |
| } |
| |
| private: |
| std::unique_ptr<StatisticsRecorder> statistics_recorder_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HistogramBaseTest); |
| }; |
| |
| TEST_F(HistogramBaseTest, DeserializeHistogram) { |
| HistogramBase* histogram = Histogram::FactoryGet( |
| "TestHistogram", 1, 1000, 10, |
| (HistogramBase::kUmaTargetedHistogramFlag | |
| HistogramBase::kIPCSerializationSourceFlag)); |
| |
| Pickle pickle; |
| histogram->SerializeInfo(&pickle); |
| |
| PickleIterator iter(pickle); |
| HistogramBase* deserialized = DeserializeHistogramInfo(&iter); |
| EXPECT_EQ(histogram, deserialized); |
| |
| ResetStatisticsRecorder(); |
| |
| PickleIterator iter2(pickle); |
| deserialized = DeserializeHistogramInfo(&iter2); |
| EXPECT_TRUE(deserialized); |
| EXPECT_NE(histogram, deserialized); |
| EXPECT_EQ("TestHistogram", StringPiece(deserialized->histogram_name())); |
| EXPECT_TRUE(deserialized->HasConstructionArguments(1, 1000, 10)); |
| |
| // kIPCSerializationSourceFlag will be cleared. |
| EXPECT_EQ(HistogramBase::kUmaTargetedHistogramFlag, deserialized->flags()); |
| } |
| |
| TEST_F(HistogramBaseTest, DeserializeLinearHistogram) { |
| HistogramBase* histogram = LinearHistogram::FactoryGet( |
| "TestHistogram", 1, 1000, 10, |
| HistogramBase::kIPCSerializationSourceFlag); |
| |
| Pickle pickle; |
| histogram->SerializeInfo(&pickle); |
| |
| PickleIterator iter(pickle); |
| HistogramBase* deserialized = DeserializeHistogramInfo(&iter); |
| EXPECT_EQ(histogram, deserialized); |
| |
| ResetStatisticsRecorder(); |
| |
| PickleIterator iter2(pickle); |
| deserialized = DeserializeHistogramInfo(&iter2); |
| EXPECT_TRUE(deserialized); |
| EXPECT_NE(histogram, deserialized); |
| EXPECT_EQ("TestHistogram", StringPiece(deserialized->histogram_name())); |
| EXPECT_TRUE(deserialized->HasConstructionArguments(1, 1000, 10)); |
| EXPECT_EQ(0, deserialized->flags()); |
| } |
| |
| TEST_F(HistogramBaseTest, DeserializeBooleanHistogram) { |
| HistogramBase* histogram = BooleanHistogram::FactoryGet( |
| "TestHistogram", HistogramBase::kIPCSerializationSourceFlag); |
| |
| Pickle pickle; |
| histogram->SerializeInfo(&pickle); |
| |
| PickleIterator iter(pickle); |
| HistogramBase* deserialized = DeserializeHistogramInfo(&iter); |
| EXPECT_EQ(histogram, deserialized); |
| |
| ResetStatisticsRecorder(); |
| |
| PickleIterator iter2(pickle); |
| deserialized = DeserializeHistogramInfo(&iter2); |
| EXPECT_TRUE(deserialized); |
| EXPECT_NE(histogram, deserialized); |
| EXPECT_EQ("TestHistogram", StringPiece(deserialized->histogram_name())); |
| EXPECT_TRUE(deserialized->HasConstructionArguments(1, 2, 3)); |
| EXPECT_EQ(0, deserialized->flags()); |
| } |
| |
| TEST_F(HistogramBaseTest, DeserializeCustomHistogram) { |
| std::vector<HistogramBase::Sample> ranges; |
| ranges.push_back(13); |
| ranges.push_back(5); |
| ranges.push_back(9); |
| |
| HistogramBase* histogram = CustomHistogram::FactoryGet( |
| "TestHistogram", ranges, HistogramBase::kIPCSerializationSourceFlag); |
| |
| Pickle pickle; |
| histogram->SerializeInfo(&pickle); |
| |
| PickleIterator iter(pickle); |
| HistogramBase* deserialized = DeserializeHistogramInfo(&iter); |
| EXPECT_EQ(histogram, deserialized); |
| |
| ResetStatisticsRecorder(); |
| |
| PickleIterator iter2(pickle); |
| deserialized = DeserializeHistogramInfo(&iter2); |
| EXPECT_TRUE(deserialized); |
| EXPECT_NE(histogram, deserialized); |
| EXPECT_EQ("TestHistogram", StringPiece(deserialized->histogram_name())); |
| EXPECT_TRUE(deserialized->HasConstructionArguments(5, 13, 4)); |
| EXPECT_EQ(0, deserialized->flags()); |
| } |
| |
| TEST_F(HistogramBaseTest, DeserializeSparseHistogram) { |
| HistogramBase* histogram = SparseHistogram::FactoryGet( |
| "TestHistogram", HistogramBase::kIPCSerializationSourceFlag); |
| |
| Pickle pickle; |
| histogram->SerializeInfo(&pickle); |
| |
| PickleIterator iter(pickle); |
| HistogramBase* deserialized = DeserializeHistogramInfo(&iter); |
| EXPECT_EQ(histogram, deserialized); |
| |
| ResetStatisticsRecorder(); |
| |
| PickleIterator iter2(pickle); |
| deserialized = DeserializeHistogramInfo(&iter2); |
| EXPECT_TRUE(deserialized); |
| EXPECT_NE(histogram, deserialized); |
| EXPECT_EQ("TestHistogram", StringPiece(deserialized->histogram_name())); |
| EXPECT_EQ(0, deserialized->flags()); |
| } |
| |
| TEST_F(HistogramBaseTest, AddKilo) { |
| HistogramBase* histogram = |
| LinearHistogram::FactoryGet("TestAddKiloHistogram", 1, 1000, 100, 0); |
| |
| histogram->AddKilo(100, 1000); |
| histogram->AddKilo(200, 2000); |
| histogram->AddKilo(300, 1500); |
| |
| std::unique_ptr<HistogramSamples> samples = histogram->SnapshotSamples(); |
| EXPECT_EQ(1, samples->GetCount(100)); |
| EXPECT_EQ(2, samples->GetCount(200)); |
| EXPECT_LE(1, samples->GetCount(300)); |
| EXPECT_GE(2, samples->GetCount(300)); |
| } |
| |
| TEST_F(HistogramBaseTest, AddKiB) { |
| HistogramBase* histogram = |
| LinearHistogram::FactoryGet("TestAddKiBHistogram", 1, 1000, 100, 0); |
| |
| histogram->AddKiB(100, 1024); |
| histogram->AddKiB(200, 2048); |
| histogram->AddKiB(300, 1536); |
| |
| std::unique_ptr<HistogramSamples> samples = histogram->SnapshotSamples(); |
| EXPECT_EQ(1, samples->GetCount(100)); |
| EXPECT_EQ(2, samples->GetCount(200)); |
| EXPECT_LE(1, samples->GetCount(300)); |
| EXPECT_GE(2, samples->GetCount(300)); |
| } |
| |
| TEST_F(HistogramBaseTest, AddTimeMillisecondsGranularityOverflow) { |
| const HistogramBase::Sample sample_max = |
| std::numeric_limits<HistogramBase::Sample>::max() / 2; |
| HistogramBase* histogram = LinearHistogram::FactoryGet( |
| "TestAddTimeMillisecondsGranularity1", 1, sample_max, 100, 0); |
| int64_t large_positive = std::numeric_limits<int64_t>::max(); |
| // |add_count| is the number of large values that have been added to the |
| // histogram. We consider a number to be 'large' if it cannot be represented |
| // in a HistogramBase::Sample. |
| int add_count = 0; |
| while (large_positive > std::numeric_limits<HistogramBase::Sample>::max()) { |
| // Add the TimeDelta corresponding to |large_positive| milliseconds to the |
| // histogram. |
| histogram->AddTimeMillisecondsGranularity( |
| TimeDelta::FromMilliseconds(large_positive)); |
| ++add_count; |
| // Reduce the value of |large_positive|. The choice of 7 here is |
| // arbitrary. |
| large_positive /= 7; |
| } |
| std::unique_ptr<HistogramSamples> samples = histogram->SnapshotSamples(); |
| // All of the reported values must have gone into the max overflow bucket. |
| EXPECT_EQ(add_count, samples->GetCount(sample_max)); |
| |
| // We now perform the analoguous operations, now with negative values with a |
| // large absolute value. |
| histogram = LinearHistogram::FactoryGet("TestAddTimeMillisecondsGranularity2", |
| 1, sample_max, 100, 0); |
| int64_t large_negative = std::numeric_limits<int64_t>::min(); |
| add_count = 0; |
| while (large_negative < std::numeric_limits<HistogramBase::Sample>::min()) { |
| histogram->AddTimeMillisecondsGranularity( |
| TimeDelta::FromMilliseconds(large_negative)); |
| ++add_count; |
| large_negative /= 7; |
| } |
| samples = histogram->SnapshotSamples(); |
| // All of the reported values must have gone into the min overflow bucket. |
| EXPECT_EQ(add_count, samples->GetCount(0)); |
| } |
| |
| TEST_F(HistogramBaseTest, AddTimeMicrosecondsGranularityOverflow) { |
| // Nothing to test if we don't have a high resolution clock. |
| if (!TimeTicks::IsHighResolution()) |
| return; |
| |
| const HistogramBase::Sample sample_max = |
| std::numeric_limits<HistogramBase::Sample>::max() / 2; |
| HistogramBase* histogram = LinearHistogram::FactoryGet( |
| "TestAddTimeMicrosecondsGranularity1", 1, sample_max, 100, 0); |
| int64_t large_positive = std::numeric_limits<int64_t>::max(); |
| // |add_count| is the number of large values that have been added to the |
| // histogram. We consider a number to be 'large' if it cannot be represented |
| // in a HistogramBase::Sample. |
| int add_count = 0; |
| while (large_positive > std::numeric_limits<HistogramBase::Sample>::max()) { |
| // Add the TimeDelta corresponding to |large_positive| microseconds to the |
| // histogram. |
| histogram->AddTimeMicrosecondsGranularity( |
| TimeDelta::FromMicroseconds(large_positive)); |
| ++add_count; |
| // Reduce the value of |large_positive|. The choice of 7 here is |
| // arbitrary. |
| large_positive /= 7; |
| } |
| std::unique_ptr<HistogramSamples> samples = histogram->SnapshotSamples(); |
| // All of the reported values must have gone into the max overflow bucket. |
| EXPECT_EQ(add_count, samples->GetCount(sample_max)); |
| |
| // We now perform the analoguous operations, now with negative values with a |
| // large absolute value. |
| histogram = LinearHistogram::FactoryGet("TestAddTimeMicrosecondsGranularity2", |
| 1, sample_max, 100, 0); |
| int64_t large_negative = std::numeric_limits<int64_t>::min(); |
| add_count = 0; |
| while (large_negative < std::numeric_limits<HistogramBase::Sample>::min()) { |
| histogram->AddTimeMicrosecondsGranularity( |
| TimeDelta::FromMicroseconds(large_negative)); |
| ++add_count; |
| large_negative /= 7; |
| } |
| samples = histogram->SnapshotSamples(); |
| // All of the reported values must have gone into the min overflow bucket. |
| EXPECT_EQ(add_count, samples->GetCount(0)); |
| } |
| |
| } // namespace base |