| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/metrics/sparse_histogram.h" |
| |
| #include <utility> |
| |
| #include "base/memory/ptr_util.h" |
| #include "base/metrics/dummy_histogram.h" |
| #include "base/metrics/metrics_hashes.h" |
| #include "base/metrics/persistent_histogram_allocator.h" |
| #include "base/metrics/persistent_sample_map.h" |
| #include "base/metrics/sample_map.h" |
| #include "base/metrics/statistics_recorder.h" |
| #include "base/pickle.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/synchronization/lock.h" |
| |
| namespace base { |
| |
| typedef HistogramBase::Count Count; |
| typedef HistogramBase::Sample Sample; |
| |
| // static |
| HistogramBase* SparseHistogram::FactoryGet(const std::string& name, |
| int32_t flags) { |
| HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); |
| if (!histogram) { |
| // TODO(gayane): |HashMetricName| is called again in Histogram constructor. |
| // Refactor code to avoid the additional call. |
| bool should_record = |
| StatisticsRecorder::ShouldRecordHistogram(HashMetricName(name)); |
| if (!should_record) |
| return DummyHistogram::GetInstance(); |
| // Try to create the histogram using a "persistent" allocator. As of |
| // 2016-02-25, the availability of such is controlled by a base::Feature |
| // that is off by default. If the allocator doesn't exist or if |
| // allocating from it fails, code below will allocate the histogram from |
| // the process heap. |
| PersistentMemoryAllocator::Reference histogram_ref = 0; |
| std::unique_ptr<HistogramBase> tentative_histogram; |
| PersistentHistogramAllocator* allocator = GlobalHistogramAllocator::Get(); |
| if (allocator) { |
| tentative_histogram = allocator->AllocateHistogram( |
| SPARSE_HISTOGRAM, name, 0, 0, nullptr, flags, &histogram_ref); |
| } |
| |
| // Handle the case where no persistent allocator is present or the |
| // persistent allocation fails (perhaps because it is full). |
| if (!tentative_histogram) { |
| DCHECK(!histogram_ref); // Should never have been set. |
| DCHECK(!allocator); // Shouldn't have failed. |
| flags &= ~HistogramBase::kIsPersistent; |
| tentative_histogram.reset(new SparseHistogram(GetPermanentName(name))); |
| tentative_histogram->SetFlags(flags); |
| } |
| |
| // Register this histogram with the StatisticsRecorder. Keep a copy of |
| // the pointer value to tell later whether the locally created histogram |
| // was registered or deleted. The type is "void" because it could point |
| // to released memory after the following line. |
| const void* tentative_histogram_ptr = tentative_histogram.get(); |
| histogram = StatisticsRecorder::RegisterOrDeleteDuplicate( |
| tentative_histogram.release()); |
| |
| // Persistent histograms need some follow-up processing. |
| if (histogram_ref) { |
| allocator->FinalizeHistogram(histogram_ref, |
| histogram == tentative_histogram_ptr); |
| } |
| } |
| |
| CHECK_EQ(SPARSE_HISTOGRAM, histogram->GetHistogramType()); |
| return histogram; |
| } |
| |
| // static |
| std::unique_ptr<HistogramBase> SparseHistogram::PersistentCreate( |
| PersistentHistogramAllocator* allocator, |
| const char* name, |
| HistogramSamples::Metadata* meta, |
| HistogramSamples::Metadata* logged_meta) { |
| return WrapUnique( |
| new SparseHistogram(allocator, name, meta, logged_meta)); |
| } |
| |
| SparseHistogram::~SparseHistogram() = default; |
| |
| uint64_t SparseHistogram::name_hash() const { |
| return unlogged_samples_->id(); |
| } |
| |
| HistogramType SparseHistogram::GetHistogramType() const { |
| return SPARSE_HISTOGRAM; |
| } |
| |
| bool SparseHistogram::HasConstructionArguments( |
| Sample expected_minimum, |
| Sample expected_maximum, |
| uint32_t expected_bucket_count) const { |
| // SparseHistogram never has min/max/bucket_count limit. |
| return false; |
| } |
| |
| void SparseHistogram::Add(Sample value) { |
| AddCount(value, 1); |
| } |
| |
| void SparseHistogram::AddCount(Sample value, int count) { |
| if (count <= 0) { |
| NOTREACHED(); |
| return; |
| } |
| { |
| base::AutoLock auto_lock(lock_); |
| unlogged_samples_->Accumulate(value, count); |
| } |
| |
| FindAndRunCallback(value); |
| } |
| |
| std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotSamples() const { |
| std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash())); |
| |
| base::AutoLock auto_lock(lock_); |
| snapshot->Add(*unlogged_samples_); |
| snapshot->Add(*logged_samples_); |
| return std::move(snapshot); |
| } |
| |
| std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotDelta() { |
| DCHECK(!final_delta_created_); |
| |
| std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash())); |
| base::AutoLock auto_lock(lock_); |
| snapshot->Add(*unlogged_samples_); |
| |
| unlogged_samples_->Subtract(*snapshot); |
| logged_samples_->Add(*snapshot); |
| return std::move(snapshot); |
| } |
| |
| std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotFinalDelta() const { |
| DCHECK(!final_delta_created_); |
| final_delta_created_ = true; |
| |
| std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash())); |
| base::AutoLock auto_lock(lock_); |
| snapshot->Add(*unlogged_samples_); |
| |
| return std::move(snapshot); |
| } |
| |
| void SparseHistogram::AddSamples(const HistogramSamples& samples) { |
| base::AutoLock auto_lock(lock_); |
| unlogged_samples_->Add(samples); |
| } |
| |
| bool SparseHistogram::AddSamplesFromPickle(PickleIterator* iter) { |
| base::AutoLock auto_lock(lock_); |
| return unlogged_samples_->AddFromPickle(iter); |
| } |
| |
| void SparseHistogram::WriteHTMLGraph(std::string* output) const { |
| output->append("<PRE>"); |
| WriteAsciiImpl(true, "<br>", output); |
| output->append("</PRE>"); |
| } |
| |
| void SparseHistogram::WriteAscii(std::string* output) const { |
| WriteAsciiImpl(true, "\n", output); |
| } |
| |
| void SparseHistogram::SerializeInfoImpl(Pickle* pickle) const { |
| pickle->WriteString(histogram_name()); |
| pickle->WriteInt(flags()); |
| } |
| |
| SparseHistogram::SparseHistogram(const char* name) |
| : HistogramBase(name), |
| unlogged_samples_(new SampleMap(HashMetricName(name))), |
| logged_samples_(new SampleMap(unlogged_samples_->id())) {} |
| |
| SparseHistogram::SparseHistogram(PersistentHistogramAllocator* allocator, |
| const char* name, |
| HistogramSamples::Metadata* meta, |
| HistogramSamples::Metadata* logged_meta) |
| : HistogramBase(name), |
| // While other histogram types maintain a static vector of values with |
| // sufficient space for both "active" and "logged" samples, with each |
| // SampleVector being given the appropriate half, sparse histograms |
| // have no such initial allocation. Each sample has its own record |
| // attached to a single PersistentSampleMap by a common 64-bit identifier. |
| // Since a sparse histogram has two sample maps (active and logged), |
| // there must be two sets of sample records with diffent IDs. The |
| // "active" samples use, for convenience purposes, an ID matching |
| // that of the histogram while the "logged" samples use that number |
| // plus 1. |
| unlogged_samples_( |
| new PersistentSampleMap(HashMetricName(name), allocator, meta)), |
| logged_samples_(new PersistentSampleMap(unlogged_samples_->id() + 1, |
| allocator, |
| logged_meta)) {} |
| |
| HistogramBase* SparseHistogram::DeserializeInfoImpl(PickleIterator* iter) { |
| std::string histogram_name; |
| int flags; |
| if (!iter->ReadString(&histogram_name) || !iter->ReadInt(&flags)) { |
| DLOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name; |
| return nullptr; |
| } |
| |
| flags &= ~HistogramBase::kIPCSerializationSourceFlag; |
| |
| return SparseHistogram::FactoryGet(histogram_name, flags); |
| } |
| |
| void SparseHistogram::GetParameters(DictionaryValue* params) const { |
| // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.) |
| } |
| |
| void SparseHistogram::GetCountAndBucketData(Count* count, |
| int64_t* sum, |
| ListValue* buckets) const { |
| // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.) |
| } |
| |
| void SparseHistogram::WriteAsciiImpl(bool graph_it, |
| const std::string& newline, |
| std::string* output) const { |
| // Get a local copy of the data so we are consistent. |
| std::unique_ptr<HistogramSamples> snapshot = SnapshotSamples(); |
| Count total_count = snapshot->TotalCount(); |
| double scaled_total_count = total_count / 100.0; |
| |
| WriteAsciiHeader(total_count, output); |
| output->append(newline); |
| |
| // Determine how wide the largest bucket range is (how many digits to print), |
| // so that we'll be able to right-align starts for the graphical bars. |
| // Determine which bucket has the largest sample count so that we can |
| // normalize the graphical bar-width relative to that sample count. |
| Count largest_count = 0; |
| Sample largest_sample = 0; |
| std::unique_ptr<SampleCountIterator> it = snapshot->Iterator(); |
| while (!it->Done()) { |
| Sample min; |
| int64_t max; |
| Count count; |
| it->Get(&min, &max, &count); |
| if (min > largest_sample) |
| largest_sample = min; |
| if (count > largest_count) |
| largest_count = count; |
| it->Next(); |
| } |
| size_t print_width = GetSimpleAsciiBucketRange(largest_sample).size() + 1; |
| |
| // iterate over each item and display them |
| it = snapshot->Iterator(); |
| while (!it->Done()) { |
| Sample min; |
| int64_t max; |
| Count count; |
| it->Get(&min, &max, &count); |
| |
| // value is min, so display it |
| std::string range = GetSimpleAsciiBucketRange(min); |
| output->append(range); |
| for (size_t j = 0; range.size() + j < print_width + 1; ++j) |
| output->push_back(' '); |
| |
| if (graph_it) |
| WriteAsciiBucketGraph(count, largest_count, output); |
| WriteAsciiBucketValue(count, scaled_total_count, output); |
| output->append(newline); |
| it->Next(); |
| } |
| } |
| |
| void SparseHistogram::WriteAsciiHeader(const Count total_count, |
| std::string* output) const { |
| StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name(), |
| total_count); |
| if (flags()) |
| StringAppendF(output, " (flags = 0x%x)", flags()); |
| } |
| |
| } // namespace base |