| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/time/time.h" |
| |
| #include <CoreFoundation/CFDate.h> |
| #include <CoreFoundation/CFTimeZone.h> |
| #include <mach/mach.h> |
| #include <mach/mach_time.h> |
| #include <sys/sysctl.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <time.h> |
| |
| #include "base/logging.h" |
| #include "base/mac/mach_logging.h" |
| #include "base/mac/scoped_cftyperef.h" |
| #include "base/mac/scoped_mach_port.h" |
| #include "base/macros.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/time/time_override.h" |
| #include "build/build_config.h" |
| |
| #if defined(OS_IOS) |
| #include <time.h> |
| #include "base/ios/ios_util.h" |
| #include "starboard/types.h" |
| #endif |
| |
| namespace { |
| |
| #if defined(OS_MACOSX) && !defined(OS_IOS) |
| int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) { |
| static mach_timebase_info_data_t timebase_info; |
| if (timebase_info.denom == 0) { |
| // Zero-initialization of statics guarantees that denom will be 0 before |
| // calling mach_timebase_info. mach_timebase_info will never set denom to |
| // 0 as that would be invalid, so the zero-check can be used to determine |
| // whether mach_timebase_info has already been called. This is |
| // recommended by Apple's QA1398. |
| kern_return_t kr = mach_timebase_info(&timebase_info); |
| MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; |
| } |
| |
| // timebase_info converts absolute time tick units into nanoseconds. Convert |
| // to microseconds up front to stave off overflows. |
| base::CheckedNumeric<uint64_t> result(mach_absolute_time / |
| base::Time::kNanosecondsPerMicrosecond); |
| result *= timebase_info.numer; |
| result /= timebase_info.denom; |
| |
| // Don't bother with the rollover handling that the Windows version does. |
| // With numer and denom = 1 (the expected case), the 64-bit absolute time |
| // reported in nanoseconds is enough to last nearly 585 years. |
| return base::checked_cast<int64_t>(result.ValueOrDie()); |
| } |
| #endif // defined(OS_MACOSX) && !defined(OS_IOS) |
| |
| // Returns monotonically growing number of ticks in microseconds since some |
| // unspecified starting point. |
| int64_t ComputeCurrentTicks() { |
| #if defined(OS_IOS) |
| // iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is |
| // around 15 times faster than sysctl() call. Use it if possible; |
| // otherwise, fall back to sysctl(). |
| if (__builtin_available(iOS 10, *)) { |
| struct timespec tp; |
| if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { |
| return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000; |
| } |
| } |
| |
| // On iOS mach_absolute_time stops while the device is sleeping. Instead use |
| // now - KERN_BOOTTIME to get a time difference that is not impacted by clock |
| // changes. KERN_BOOTTIME will be updated by the system whenever the system |
| // clock change. |
| struct timeval boottime; |
| int mib[2] = {CTL_KERN, KERN_BOOTTIME}; |
| size_t size = sizeof(boottime); |
| int kr = sysctl(mib, arraysize(mib), &boottime, &size, nullptr, 0); |
| DCHECK_EQ(KERN_SUCCESS, kr); |
| base::TimeDelta time_difference = |
| base::subtle::TimeNowIgnoringOverride() - |
| (base::Time::FromTimeT(boottime.tv_sec) + |
| base::TimeDelta::FromMicroseconds(boottime.tv_usec)); |
| return time_difference.InMicroseconds(); |
| #else |
| // mach_absolute_time is it when it comes to ticks on the Mac. Other calls |
| // with less precision (such as TickCount) just call through to |
| // mach_absolute_time. |
| return MachAbsoluteTimeToTicks(mach_absolute_time()); |
| #endif // defined(OS_IOS) |
| } |
| |
| int64_t ComputeThreadTicks() { |
| #if defined(OS_IOS) |
| NOTREACHED(); |
| return 0; |
| #else |
| base::mac::ScopedMachSendRight thread(mach_thread_self()); |
| mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; |
| thread_basic_info_data_t thread_info_data; |
| |
| if (thread.get() == MACH_PORT_NULL) { |
| DLOG(ERROR) << "Failed to get mach_thread_self()"; |
| return 0; |
| } |
| |
| kern_return_t kr = thread_info( |
| thread.get(), |
| THREAD_BASIC_INFO, |
| reinterpret_cast<thread_info_t>(&thread_info_data), |
| &thread_info_count); |
| MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; |
| |
| base::CheckedNumeric<int64_t> absolute_micros( |
| thread_info_data.user_time.seconds + |
| thread_info_data.system_time.seconds); |
| absolute_micros *= base::Time::kMicrosecondsPerSecond; |
| absolute_micros += (thread_info_data.user_time.microseconds + |
| thread_info_data.system_time.microseconds); |
| return absolute_micros.ValueOrDie(); |
| #endif // defined(OS_IOS) |
| } |
| |
| } // namespace |
| |
| namespace base { |
| |
| // The Time routines in this file use Mach and CoreFoundation APIs, since the |
| // POSIX definition of time_t in Mac OS X wraps around after 2038--and |
| // there are already cookie expiration dates, etc., past that time out in |
| // the field. Using CFDate prevents that problem, and using mach_absolute_time |
| // for TimeTicks gives us nice high-resolution interval timing. |
| |
| // Time ----------------------------------------------------------------------- |
| |
| namespace subtle { |
| Time TimeNowIgnoringOverride() { |
| return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); |
| } |
| |
| Time TimeNowFromSystemTimeIgnoringOverride() { |
| // Just use TimeNowIgnoringOverride() because it returns the system time. |
| return TimeNowIgnoringOverride(); |
| } |
| } // namespace subtle |
| |
| // static |
| Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { |
| static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, |
| "CFAbsoluteTime must have an infinity value"); |
| if (t == 0) |
| return Time(); // Consider 0 as a null Time. |
| if (t == std::numeric_limits<CFAbsoluteTime>::infinity()) |
| return Max(); |
| return Time(static_cast<int64_t>((t + kCFAbsoluteTimeIntervalSince1970) * |
| kMicrosecondsPerSecond) + |
| kTimeTToMicrosecondsOffset); |
| } |
| |
| CFAbsoluteTime Time::ToCFAbsoluteTime() const { |
| static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, |
| "CFAbsoluteTime must have an infinity value"); |
| if (is_null()) |
| return 0; // Consider 0 as a null Time. |
| if (is_max()) |
| return std::numeric_limits<CFAbsoluteTime>::infinity(); |
| return (static_cast<CFAbsoluteTime>(us_ - kTimeTToMicrosecondsOffset) / |
| kMicrosecondsPerSecond) - |
| kCFAbsoluteTimeIntervalSince1970; |
| } |
| |
| // Note: These implementations of Time::FromExploded() and Time::Explode() are |
| // only used on iOS now. Since Mac is now always 64-bit, we can use the POSIX |
| // versions of these functions as time_t is not capped at year 2038 on 64-bit |
| // builds. The POSIX functions are preferred since they don't suffer from some |
| // performance problems that are present in these implementations. |
| // See crbug.com/781601 for more details. |
| #if defined(OS_IOS) |
| // static |
| bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { |
| base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( |
| is_local |
| ? CFTimeZoneCopySystem() |
| : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); |
| base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( |
| kCFAllocatorDefault, kCFGregorianCalendar)); |
| CFCalendarSetTimeZone(gregorian, time_zone); |
| CFAbsoluteTime absolute_time; |
| // 'S' is not defined in componentDesc in Apple documentation, but can be |
| // found at http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c |
| CFCalendarComposeAbsoluteTime( |
| gregorian, &absolute_time, "yMdHmsS", exploded.year, exploded.month, |
| exploded.day_of_month, exploded.hour, exploded.minute, exploded.second, |
| exploded.millisecond); |
| CFAbsoluteTime seconds = absolute_time + kCFAbsoluteTimeIntervalSince1970; |
| |
| // CFAbsolutTime is typedef of double. Convert seconds to |
| // microseconds and then cast to int64. If |
| // it cannot be suited to int64, then fail to avoid overflows. |
| double microseconds = |
| (seconds * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset; |
| if (microseconds > std::numeric_limits<int64_t>::max() || |
| microseconds < std::numeric_limits<int64_t>::min()) { |
| *time = Time(0); |
| return false; |
| } |
| |
| base::Time converted_time = Time(static_cast<int64_t>(microseconds)); |
| |
| // If |exploded.day_of_month| is set to 31 |
| // on a 28-30 day month, it will return the first day of the next month. |
| // Thus round-trip the time and compare the initial |exploded| with |
| // |utc_to_exploded| time. |
| base::Time::Exploded to_exploded; |
| if (!is_local) |
| converted_time.UTCExplode(&to_exploded); |
| else |
| converted_time.LocalExplode(&to_exploded); |
| |
| if (ExplodedMostlyEquals(to_exploded, exploded)) { |
| *time = converted_time; |
| return true; |
| } |
| |
| *time = Time(0); |
| return false; |
| } |
| |
| void Time::Explode(bool is_local, Exploded* exploded) const { |
| // Avoid rounding issues, by only putting the integral number of seconds |
| // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). |
| int64_t microsecond = us_ % kMicrosecondsPerSecond; |
| if (microsecond < 0) |
| microsecond += kMicrosecondsPerSecond; |
| CFAbsoluteTime seconds = ((us_ - microsecond - kTimeTToMicrosecondsOffset) / |
| kMicrosecondsPerSecond) - |
| kCFAbsoluteTimeIntervalSince1970; |
| |
| base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( |
| is_local |
| ? CFTimeZoneCopySystem() |
| : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); |
| base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( |
| kCFAllocatorDefault, kCFGregorianCalendar)); |
| CFCalendarSetTimeZone(gregorian, time_zone); |
| int second, day_of_week; |
| // 'E' sets the day of week, but is not defined in componentDesc in Apple |
| // documentation. It can be found in open source code here: |
| // http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c |
| CFCalendarDecomposeAbsoluteTime(gregorian, seconds, "yMdHmsE", |
| &exploded->year, &exploded->month, |
| &exploded->day_of_month, &exploded->hour, |
| &exploded->minute, &second, &day_of_week); |
| // Make sure seconds are rounded down towards -infinity. |
| exploded->second = floor(second); |
| // |Exploded|'s convention for day of week is 0 = Sunday, i.e. different |
| // from CF's 1 = Sunday. |
| exploded->day_of_week = (day_of_week - 1) % 7; |
| // Calculate milliseconds ourselves, since we rounded the |seconds|, making |
| // sure to round towards -infinity. |
| exploded->millisecond = |
| (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : |
| (microsecond - kMicrosecondsPerMillisecond + 1) / |
| kMicrosecondsPerMillisecond; |
| } |
| #endif // OS_IOS |
| |
| // TimeTicks ------------------------------------------------------------------ |
| |
| namespace subtle { |
| TimeTicks TimeTicksNowIgnoringOverride() { |
| return TimeTicks() + TimeDelta::FromMicroseconds(ComputeCurrentTicks()); |
| } |
| } // namespace subtle |
| |
| // static |
| bool TimeTicks::IsHighResolution() { |
| return true; |
| } |
| |
| // static |
| bool TimeTicks::IsConsistentAcrossProcesses() { |
| return true; |
| } |
| |
| #if defined(OS_MACOSX) && !defined(OS_IOS) |
| // static |
| TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { |
| return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time)); |
| } |
| #endif // defined(OS_MACOSX) && !defined(OS_IOS) |
| |
| // static |
| TimeTicks::Clock TimeTicks::GetClock() { |
| #if defined(OS_IOS) |
| return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; |
| #else |
| return Clock::MAC_MACH_ABSOLUTE_TIME; |
| #endif // defined(OS_IOS) |
| } |
| |
| // ThreadTicks ---------------------------------------------------------------- |
| |
| namespace subtle { |
| ThreadTicks ThreadTicksNowIgnoringOverride() { |
| return ThreadTicks() + TimeDelta::FromMicroseconds(ComputeThreadTicks()); |
| } |
| } // namespace subtle |
| |
| } // namespace base |