| // Copyright 2016 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "components/client_update_protocol/ecdsa.h" |
| |
| #include "base/logging.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/stl_util.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_piece.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "crypto/random.h" |
| #include "crypto/sha2.h" |
| #include "crypto/signature_verifier.h" |
| |
| namespace client_update_protocol { |
| |
| namespace { |
| |
| std::vector<uint8_t> SHA256HashStr(const base::StringPiece& str) { |
| std::vector<uint8_t> result(crypto::kSHA256Length); |
| crypto::SHA256HashString(str, &result.front(), result.size()); |
| return result; |
| } |
| |
| std::vector<uint8_t> SHA256HashVec(const std::vector<uint8_t>& vec) { |
| if (vec.empty()) |
| return SHA256HashStr(base::StringPiece()); |
| |
| return SHA256HashStr(base::StringPiece( |
| reinterpret_cast<const char*>(&vec.front()), vec.size())); |
| } |
| |
| bool ParseETagHeader(const base::StringPiece& etag_header_value_in, |
| std::vector<uint8_t>* ecdsa_signature_out, |
| std::vector<uint8_t>* request_hash_out) { |
| DCHECK(ecdsa_signature_out); |
| DCHECK(request_hash_out); |
| |
| // The ETag value is a UTF-8 string, formatted as "S:H", where: |
| // * S is the ECDSA signature in DER-encoded ASN.1 form, converted to hex. |
| // * H is the SHA-256 hash of the observed request body, standard hex format. |
| // A Weak ETag is formatted as W/"S:H". This function treats it the same as a |
| // strong ETag. |
| base::StringPiece etag_header_value(etag_header_value_in); |
| |
| // Remove the weak prefix, then remove the begin and the end quotes. |
| const char kWeakETagPrefix[] = "W/"; |
| if (etag_header_value.starts_with(kWeakETagPrefix)) |
| etag_header_value.remove_prefix(base::size(kWeakETagPrefix) - 1); |
| if (etag_header_value.size() >= 2 && etag_header_value.starts_with("\"") && |
| etag_header_value.ends_with("\"")) { |
| etag_header_value.remove_prefix(1); |
| etag_header_value.remove_suffix(1); |
| } |
| |
| const base::StringPiece::size_type delim_pos = etag_header_value.find(':'); |
| if (delim_pos == base::StringPiece::npos || delim_pos == 0 || |
| delim_pos == etag_header_value.size() - 1) |
| return false; |
| |
| const base::StringPiece sig_hex = etag_header_value.substr(0, delim_pos); |
| const base::StringPiece hash_hex = etag_header_value.substr(delim_pos + 1); |
| |
| // Decode the ECDSA signature. Don't bother validating the contents of it; |
| // the SignatureValidator class will handle the actual DER decoding and |
| // ASN.1 parsing. Check for an expected size range only -- valid ECDSA |
| // signatures are between 8 and 72 bytes. |
| if (!base::HexStringToBytes(sig_hex, ecdsa_signature_out)) |
| return false; |
| if (ecdsa_signature_out->size() < 8 || ecdsa_signature_out->size() > 72) |
| return false; |
| |
| // Decode the SHA-256 hash; it should be exactly 32 bytes, no more or less. |
| if (!base::HexStringToBytes(hash_hex, request_hash_out)) |
| return false; |
| if (request_hash_out->size() != crypto::kSHA256Length) |
| return false; |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| Ecdsa::Ecdsa(int key_version, const base::StringPiece& public_key) |
| : pub_key_version_(key_version), |
| public_key_(public_key.begin(), public_key.end()) {} |
| |
| Ecdsa::~Ecdsa() {} |
| |
| std::unique_ptr<Ecdsa> Ecdsa::Create(int key_version, |
| const base::StringPiece& public_key) { |
| DCHECK_GT(key_version, 0); |
| DCHECK(!public_key.empty()); |
| |
| return base::WrapUnique(new Ecdsa(key_version, public_key)); |
| } |
| |
| void Ecdsa::OverrideNonceForTesting(int key_version, uint32_t nonce) { |
| DCHECK(!request_query_cup2key_.empty()); |
| request_query_cup2key_ = base::StringPrintf("%d:%u", pub_key_version_, nonce); |
| } |
| |
| void Ecdsa::SignRequest(const base::StringPiece& request_body, |
| std::string* query_params) { |
| DCHECK(query_params); |
| |
| // Generate a random nonce to use for freshness, build the cup2key query |
| // string, and compute the SHA-256 hash of the request body. Set these |
| // two pieces of data aside to use during ValidateResponse(). |
| uint32_t nonce = 0; |
| crypto::RandBytes(&nonce, sizeof(nonce)); |
| request_query_cup2key_ = base::StringPrintf("%d:%u", pub_key_version_, nonce); |
| request_hash_ = SHA256HashStr(request_body); |
| |
| // Return the query string for the user to send with the request. |
| std::string request_hash_hex = |
| base::HexEncode(&request_hash_.front(), request_hash_.size()); |
| request_hash_hex = base::ToLowerASCII(request_hash_hex); |
| |
| *query_params = base::StringPrintf("cup2key=%s&cup2hreq=%s", |
| request_query_cup2key_.c_str(), |
| request_hash_hex.c_str()); |
| } |
| |
| bool Ecdsa::ValidateResponse(const base::StringPiece& response_body, |
| const base::StringPiece& server_etag) { |
| DCHECK(!request_hash_.empty()); |
| DCHECK(!request_query_cup2key_.empty()); |
| |
| if (response_body.empty() || server_etag.empty()) |
| return false; |
| |
| // Break the ETag into its two components (the ECDSA signature, and the |
| // hash of the request that the server observed) and decode to byte buffers. |
| std::vector<uint8_t> signature; |
| std::vector<uint8_t> observed_request_hash; |
| if (!ParseETagHeader(server_etag, &signature, &observed_request_hash)) |
| return false; |
| |
| // Check that the server's observed request hash is equal to the original |
| // request hash. (This is a quick rejection test; the signature test is |
| // authoritative, but slower.) |
| DCHECK_EQ(request_hash_.size(), crypto::kSHA256Length); |
| if (observed_request_hash.size() != crypto::kSHA256Length) |
| return false; |
| if (!std::equal(observed_request_hash.begin(), observed_request_hash.end(), |
| request_hash_.begin())) |
| return false; |
| |
| // Next, build the buffer that the server will have signed on its end: |
| // hash( hash(request) | hash(response) | cup2key_query_string ) |
| // When building the client's version of the buffer, it's important to use |
| // the original request hash that it attempted to send, and not the observed |
| // request hash that the server sent back to us. |
| const std::vector<uint8_t> response_hash = SHA256HashStr(response_body); |
| |
| std::vector<uint8_t> signed_message; |
| signed_message.insert(signed_message.end(), request_hash_.begin(), |
| request_hash_.end()); |
| signed_message.insert(signed_message.end(), response_hash.begin(), |
| response_hash.end()); |
| signed_message.insert(signed_message.end(), request_query_cup2key_.begin(), |
| request_query_cup2key_.end()); |
| |
| const std::vector<uint8_t> signed_message_hash = |
| SHA256HashVec(signed_message); |
| |
| // Initialize the signature verifier. |
| crypto::SignatureVerifier verifier; |
| if (!verifier.VerifyInit(crypto::SignatureVerifier::ECDSA_SHA256, signature, |
| public_key_)) { |
| DVLOG(1) << "Couldn't init SignatureVerifier."; |
| return false; |
| } |
| |
| // If the verification fails, that implies one of two outcomes: |
| // * The signature was modified |
| // * The buffer that the server signed does not match the buffer that the |
| // client assembled -- implying that either request body or response body |
| // was modified, or a different nonce value was used. |
| verifier.VerifyUpdate(signed_message_hash); |
| return verifier.VerifyFinal(); |
| } |
| |
| } // namespace client_update_protocol |