| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // MSVC++ requires this to be set before any other includes to get M_SQRT1_2. |
| #define _USE_MATH_DEFINES |
| |
| #include "cobalt/media/base/channel_mixing_matrix.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| #include "base/logging.h" |
| #include "starboard/types.h" |
| |
| namespace cobalt { |
| namespace media { |
| |
| // Default scale factor for mixing two channels together. We use a different |
| // value for stereo -> mono and mono -> stereo mixes. |
| static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2); |
| |
| static void ValidateLayout(ChannelLayout layout) { |
| CHECK_NE(layout, CHANNEL_LAYOUT_NONE); |
| CHECK_LE(layout, CHANNEL_LAYOUT_MAX); |
| CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); |
| CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE); |
| CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC); |
| |
| // Verify there's at least one channel. Should always be true here by virtue |
| // of not being one of the invalid layouts, but lets double check to be sure. |
| int channel_count = ChannelLayoutToChannelCount(layout); |
| DCHECK_GT(channel_count, 0); |
| |
| // If we have more than one channel, verify a symmetric layout for sanity. |
| // The unit test will verify all possible layouts, so this can be a DCHECK. |
| // Symmetry allows simplifying the matrix building code by allowing us to |
| // assume that if one channel of a pair exists, the other will too. |
| if (channel_count > 1) { |
| // Assert that LEFT exists if and only if RIGHT exists, and so on. |
| DCHECK_EQ(ChannelOrder(layout, LEFT) >= 0, |
| ChannelOrder(layout, RIGHT) >= 0); |
| DCHECK_EQ(ChannelOrder(layout, SIDE_LEFT) >= 0, |
| ChannelOrder(layout, SIDE_RIGHT) >= 0); |
| DCHECK_EQ(ChannelOrder(layout, BACK_LEFT) >= 0, |
| ChannelOrder(layout, BACK_RIGHT) >= 0); |
| DCHECK_EQ(ChannelOrder(layout, LEFT_OF_CENTER) >= 0, |
| ChannelOrder(layout, RIGHT_OF_CENTER) >= 0); |
| } else { |
| DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); |
| } |
| } |
| |
| ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout, |
| int input_channels, |
| ChannelLayout output_layout, |
| int output_channels) |
| : input_layout_(input_layout), |
| input_channels_(input_channels), |
| output_layout_(output_layout), |
| output_channels_(output_channels) { |
| // Stereo down mix should never be the output layout. |
| CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX); |
| |
| // Verify that the layouts are supported |
| if (input_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(input_layout); |
| if (output_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(output_layout); |
| |
| // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1, |
| // which should map the back LR to side LR. |
| if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK && |
| output_layout_ == CHANNEL_LAYOUT_7_0) { |
| input_layout_ = CHANNEL_LAYOUT_5_0; |
| } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK && |
| output_layout_ == CHANNEL_LAYOUT_7_1) { |
| input_layout_ = CHANNEL_LAYOUT_5_1; |
| } |
| } |
| |
| ChannelMixingMatrix::~ChannelMixingMatrix() {} |
| |
| bool ChannelMixingMatrix::CreateTransformationMatrix( |
| std::vector<std::vector<float>>* matrix) { |
| matrix_ = matrix; |
| |
| // Size out the initial matrix. |
| matrix_->reserve(output_channels_); |
| for (int output_ch = 0; output_ch < output_channels_; ++output_ch) |
| matrix_->push_back(std::vector<float>(input_channels_, 0)); |
| |
| // First check for discrete case. |
| if (input_layout_ == CHANNEL_LAYOUT_DISCRETE || |
| output_layout_ == CHANNEL_LAYOUT_DISCRETE) { |
| // If the number of input channels is more than output channels, then |
| // copy as many as we can then drop the remaining input channels. |
| // If the number of input channels is less than output channels, then |
| // copy them all, then zero out the remaining output channels. |
| int passthrough_channels = std::min(input_channels_, output_channels_); |
| for (int i = 0; i < passthrough_channels; ++i) (*matrix_)[i][i] = 1; |
| |
| return true; |
| } |
| |
| // Route matching channels and figure out which ones aren't accounted for. |
| for (Channels ch = LEFT; ch < CHANNELS_MAX + 1; |
| ch = static_cast<Channels>(ch + 1)) { |
| int input_ch_index = ChannelOrder(input_layout_, ch); |
| if (input_ch_index < 0) continue; |
| |
| int output_ch_index = ChannelOrder(output_layout_, ch); |
| if (output_ch_index < 0) { |
| unaccounted_inputs_.push_back(ch); |
| continue; |
| } |
| |
| DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size()); |
| DCHECK_LT(static_cast<size_t>(input_ch_index), |
| (*matrix_)[output_ch_index].size()); |
| (*matrix_)[output_ch_index][input_ch_index] = 1; |
| } |
| |
| // If all input channels are accounted for, there's nothing left to do. |
| if (unaccounted_inputs_.empty()) { |
| // Since all output channels map directly to inputs we can optimize. |
| return true; |
| } |
| |
| // Mix front LR into center. |
| if (IsUnaccounted(LEFT)) { |
| // When down mixing to mono from stereo, we need to be careful of full scale |
| // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping |
| // so we use 1 / 2 instead. |
| float scale = |
| (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) |
| ? 0.5 |
| : kEqualPowerScale; |
| Mix(LEFT, CENTER, scale); |
| Mix(RIGHT, CENTER, scale); |
| } |
| |
| // Mix center into front LR. |
| if (IsUnaccounted(CENTER)) { |
| // When up mixing from mono, just do a copy to front LR. |
| float scale = (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale; |
| MixWithoutAccounting(CENTER, LEFT, scale); |
| Mix(CENTER, RIGHT, scale); |
| } |
| |
| // Mix back LR into: side LR || back center || front LR || front center. |
| if (IsUnaccounted(BACK_LEFT)) { |
| if (HasOutputChannel(SIDE_LEFT)) { |
| // If the input has side LR, mix back LR into side LR, but instead if the |
| // input doesn't have side LR (but output does) copy back LR to side LR. |
| float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1; |
| Mix(BACK_LEFT, SIDE_LEFT, scale); |
| Mix(BACK_RIGHT, SIDE_RIGHT, scale); |
| } else if (HasOutputChannel(BACK_CENTER)) { |
| // Mix back LR into back center. |
| Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale); |
| Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale); |
| } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { |
| // Mix back LR into front LR. |
| Mix(BACK_LEFT, LEFT, kEqualPowerScale); |
| Mix(BACK_RIGHT, RIGHT, kEqualPowerScale); |
| } else { |
| // Mix back LR into front center. |
| Mix(BACK_LEFT, CENTER, kEqualPowerScale); |
| Mix(BACK_RIGHT, CENTER, kEqualPowerScale); |
| } |
| } |
| |
| // Mix side LR into: back LR || back center || front LR || front center. |
| if (IsUnaccounted(SIDE_LEFT)) { |
| if (HasOutputChannel(BACK_LEFT)) { |
| // If the input has back LR, mix side LR into back LR, but instead if the |
| // input doesn't have back LR (but output does) copy side LR to back LR. |
| float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1; |
| Mix(SIDE_LEFT, BACK_LEFT, scale); |
| Mix(SIDE_RIGHT, BACK_RIGHT, scale); |
| } else if (HasOutputChannel(BACK_CENTER)) { |
| // Mix side LR into back center. |
| Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale); |
| Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale); |
| } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { |
| // Mix side LR into front LR. |
| Mix(SIDE_LEFT, LEFT, kEqualPowerScale); |
| Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale); |
| } else { |
| // Mix side LR into front center. |
| Mix(SIDE_LEFT, CENTER, kEqualPowerScale); |
| Mix(SIDE_RIGHT, CENTER, kEqualPowerScale); |
| } |
| } |
| |
| // Mix back center into: back LR || side LR || front LR || front center. |
| if (IsUnaccounted(BACK_CENTER)) { |
| if (HasOutputChannel(BACK_LEFT)) { |
| // Mix back center into back LR. |
| MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale); |
| Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale); |
| } else if (HasOutputChannel(SIDE_LEFT)) { |
| // Mix back center into side LR. |
| MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale); |
| Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale); |
| } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { |
| // Mix back center into front LR. |
| // TODO(dalecurtis): Not sure about these values? |
| MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale); |
| Mix(BACK_CENTER, RIGHT, kEqualPowerScale); |
| } else { |
| // Mix back center into front center. |
| // TODO(dalecurtis): Not sure about these values? |
| Mix(BACK_CENTER, CENTER, kEqualPowerScale); |
| } |
| } |
| |
| // Mix LR of center into: front LR || front center. |
| if (IsUnaccounted(LEFT_OF_CENTER)) { |
| if (HasOutputChannel(LEFT)) { |
| // Mix LR of center into front LR. |
| Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale); |
| Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale); |
| } else { |
| // Mix LR of center into front center. |
| Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale); |
| Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale); |
| } |
| } |
| |
| // Mix LFE into: front center || front LR. |
| if (IsUnaccounted(LFE)) { |
| if (!HasOutputChannel(CENTER)) { |
| // Mix LFE into front LR. |
| MixWithoutAccounting(LFE, LEFT, kEqualPowerScale); |
| Mix(LFE, RIGHT, kEqualPowerScale); |
| } else { |
| // Mix LFE into front center. |
| Mix(LFE, CENTER, kEqualPowerScale); |
| } |
| } |
| |
| // All channels should now be accounted for. |
| DCHECK(unaccounted_inputs_.empty()); |
| |
| // See if the output |matrix_| is simply a remapping matrix. If each input |
| // channel maps to a single output channel we can simply remap. Doing this |
| // programmatically is less fragile than logic checks on channel mappings. |
| for (int output_ch = 0; output_ch < output_channels_; ++output_ch) { |
| int input_mappings = 0; |
| for (int input_ch = 0; input_ch < input_channels_; ++input_ch) { |
| // We can only remap if each row contains a single scale of 1. I.e., each |
| // output channel is mapped from a single unscaled input channel. |
| if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1) |
| return false; |
| } |
| } |
| |
| // If we've gotten here, |matrix_| is simply a remapping. |
| return true; |
| } |
| |
| void ChannelMixingMatrix::AccountFor(Channels ch) { |
| unaccounted_inputs_.erase( |
| std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); |
| } |
| |
| bool ChannelMixingMatrix::IsUnaccounted(Channels ch) const { |
| return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), |
| ch) != unaccounted_inputs_.end(); |
| } |
| |
| bool ChannelMixingMatrix::HasInputChannel(Channels ch) const { |
| return ChannelOrder(input_layout_, ch) >= 0; |
| } |
| |
| bool ChannelMixingMatrix::HasOutputChannel(Channels ch) const { |
| return ChannelOrder(output_layout_, ch) >= 0; |
| } |
| |
| void ChannelMixingMatrix::Mix(Channels input_ch, Channels output_ch, |
| float scale) { |
| MixWithoutAccounting(input_ch, output_ch, scale); |
| AccountFor(input_ch); |
| } |
| |
| void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch, |
| Channels output_ch, |
| float scale) { |
| int input_ch_index = ChannelOrder(input_layout_, input_ch); |
| int output_ch_index = ChannelOrder(output_layout_, output_ch); |
| |
| DCHECK(IsUnaccounted(input_ch)); |
| DCHECK_GE(input_ch_index, 0); |
| DCHECK_GE(output_ch_index, 0); |
| |
| DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0); |
| (*matrix_)[output_ch_index][input_ch_index] = scale; |
| } |
| |
| } // namespace media |
| } // namespace cobalt |