| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2009-2012, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: normalizer2impl.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2009nov22 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_NORMALIZATION |
| |
| #include "unicode/normalizer2.h" |
| #include "unicode/udata.h" |
| #include "unicode/ustring.h" |
| #include "unicode/utf16.h" |
| #include "cmemory.h" |
| #include "mutex.h" |
| #include "normalizer2impl.h" |
| #include "putilimp.h" |
| #include "uassert.h" |
| #include "uset_imp.h" |
| #include "utrie2.h" |
| #include "uvector.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| // ReorderingBuffer -------------------------------------------------------- *** |
| |
| UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
| int32_t length=str.length(); |
| start=str.getBuffer(destCapacity); |
| if(start==NULL) { |
| // getBuffer() already did str.setToBogus() |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| limit=start+length; |
| remainingCapacity=str.getCapacity()-length; |
| reorderStart=start; |
| if(start==limit) { |
| lastCC=0; |
| } else { |
| setIterator(); |
| lastCC=previousCC(); |
| // Set reorderStart after the last code point with cc<=1 if there is one. |
| if(lastCC>1) { |
| while(previousCC()>1) {} |
| } |
| reorderStart=codePointLimit; |
| } |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
| int32_t length=(int32_t)(limit-start); |
| return |
| length==(int32_t)(otherLimit-otherStart) && |
| 0==u_memcmp(start, otherStart, length); |
| } |
| |
| UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
| if(remainingCapacity<2 && !resize(2, errorCode)) { |
| return FALSE; |
| } |
| if(lastCC<=cc || cc==0) { |
| limit[0]=U16_LEAD(c); |
| limit[1]=U16_TRAIL(c); |
| limit+=2; |
| lastCC=cc; |
| if(cc<=1) { |
| reorderStart=limit; |
| } |
| } else { |
| insert(c, cc); |
| } |
| remainingCapacity-=2; |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::append(const UChar *s, int32_t length, |
| uint8_t leadCC, uint8_t trailCC, |
| UErrorCode &errorCode) { |
| if(length==0) { |
| return TRUE; |
| } |
| if(remainingCapacity<length && !resize(length, errorCode)) { |
| return FALSE; |
| } |
| remainingCapacity-=length; |
| if(lastCC<=leadCC || leadCC==0) { |
| if(trailCC<=1) { |
| reorderStart=limit+length; |
| } else if(leadCC<=1) { |
| reorderStart=limit+1; // Ok if not a code point boundary. |
| } |
| const UChar *sLimit=s+length; |
| do { *limit++=*s++; } while(s!=sLimit); |
| lastCC=trailCC; |
| } else { |
| int32_t i=0; |
| UChar32 c; |
| U16_NEXT(s, i, length, c); |
| insert(c, leadCC); // insert first code point |
| while(i<length) { |
| U16_NEXT(s, i, length, c); |
| if(i<length) { |
| // s must be in NFD, otherwise we need to use getCC(). |
| leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
| } else { |
| leadCC=trailCC; |
| } |
| append(c, leadCC, errorCode); |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
| int32_t cpLength=U16_LENGTH(c); |
| if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
| return FALSE; |
| } |
| remainingCapacity-=cpLength; |
| if(cpLength==1) { |
| *limit++=(UChar)c; |
| } else { |
| limit[0]=U16_LEAD(c); |
| limit[1]=U16_TRAIL(c); |
| limit+=2; |
| } |
| lastCC=0; |
| reorderStart=limit; |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
| if(s==sLimit) { |
| return TRUE; |
| } |
| int32_t length=(int32_t)(sLimit-s); |
| if(remainingCapacity<length && !resize(length, errorCode)) { |
| return FALSE; |
| } |
| u_memcpy(limit, s, length); |
| limit+=length; |
| remainingCapacity-=length; |
| lastCC=0; |
| reorderStart=limit; |
| return TRUE; |
| } |
| |
| void ReorderingBuffer::remove() { |
| reorderStart=limit=start; |
| remainingCapacity=str.getCapacity(); |
| lastCC=0; |
| } |
| |
| void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
| if(suffixLength<(limit-start)) { |
| limit-=suffixLength; |
| remainingCapacity+=suffixLength; |
| } else { |
| limit=start; |
| remainingCapacity=str.getCapacity(); |
| } |
| lastCC=0; |
| reorderStart=limit; |
| } |
| |
| UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
| int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
| int32_t length=(int32_t)(limit-start); |
| str.releaseBuffer(length); |
| int32_t newCapacity=length+appendLength; |
| int32_t doubleCapacity=2*str.getCapacity(); |
| if(newCapacity<doubleCapacity) { |
| newCapacity=doubleCapacity; |
| } |
| if(newCapacity<256) { |
| newCapacity=256; |
| } |
| start=str.getBuffer(newCapacity); |
| if(start==NULL) { |
| // getBuffer() already did str.setToBogus() |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| reorderStart=start+reorderStartIndex; |
| limit=start+length; |
| remainingCapacity=str.getCapacity()-length; |
| return TRUE; |
| } |
| |
| void ReorderingBuffer::skipPrevious() { |
| codePointLimit=codePointStart; |
| UChar c=*--codePointStart; |
| if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
| --codePointStart; |
| } |
| } |
| |
| uint8_t ReorderingBuffer::previousCC() { |
| codePointLimit=codePointStart; |
| if(reorderStart>=codePointStart) { |
| return 0; |
| } |
| UChar32 c=*--codePointStart; |
| if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { |
| return 0; |
| } |
| |
| UChar c2; |
| if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
| --codePointStart; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
| } |
| |
| // Inserts c somewhere before the last character. |
| // Requires 0<cc<lastCC which implies reorderStart<limit. |
| void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
| for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
| // insert c at codePointLimit, after the character with prevCC<=cc |
| UChar *q=limit; |
| UChar *r=limit+=U16_LENGTH(c); |
| do { |
| *--r=*--q; |
| } while(codePointLimit!=q); |
| writeCodePoint(q, c); |
| if(cc<=1) { |
| reorderStart=r; |
| } |
| } |
| |
| // Normalizer2Impl --------------------------------------------------------- *** |
| |
| struct CanonIterData : public UMemory { |
| CanonIterData(UErrorCode &errorCode); |
| ~CanonIterData(); |
| void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
| UTrie2 *trie; |
| UVector canonStartSets; // contains UnicodeSet * |
| }; |
| |
| Normalizer2Impl::~Normalizer2Impl() { |
| udata_close(memory); |
| utrie2_close(normTrie); |
| delete (CanonIterData *)canonIterDataSingleton.fInstance; |
| } |
| |
| UBool U_CALLCONV |
| Normalizer2Impl::isAcceptable(void *context, |
| const char * /* type */, const char * /*name*/, |
| const UDataInfo *pInfo) { |
| if( |
| pInfo->size>=20 && |
| pInfo->isBigEndian==U_IS_BIG_ENDIAN && |
| pInfo->charsetFamily==U_CHARSET_FAMILY && |
| pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
| pInfo->dataFormat[1]==0x72 && |
| pInfo->dataFormat[2]==0x6d && |
| pInfo->dataFormat[3]==0x32 && |
| pInfo->formatVersion[0]==2 |
| ) { |
| Normalizer2Impl *me=(Normalizer2Impl *)context; |
| uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4); |
| return TRUE; |
| } else { |
| return FALSE; |
| } |
| } |
| |
| void |
| Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory); |
| const int32_t *inIndexes=(const int32_t *)inBytes; |
| int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4; |
| if(indexesLength<=IX_MIN_MAYBE_YES) { |
| errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes. |
| return; |
| } |
| |
| minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; |
| minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; |
| |
| minYesNo=inIndexes[IX_MIN_YES_NO]; |
| minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; |
| minNoNo=inIndexes[IX_MIN_NO_NO]; |
| limitNoNo=inIndexes[IX_LIMIT_NO_NO]; |
| minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; |
| |
| int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET]; |
| int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET]; |
| normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
| inBytes+offset, nextOffset-offset, NULL, |
| &errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| |
| offset=nextOffset; |
| nextOffset=inIndexes[IX_SMALL_FCD_OFFSET]; |
| maybeYesCompositions=(const uint16_t *)(inBytes+offset); |
| extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); |
| |
| // smallFCD: new in formatVersion 2 |
| offset=nextOffset; |
| smallFCD=inBytes+offset; |
| |
| // Build tccc180[]. |
| // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300. |
| uint8_t bits=0; |
| for(UChar c=0; c<0x180; bits>>=1) { |
| if((c&0xff)==0) { |
| bits=smallFCD[c>>8]; // one byte per 0x100 code points |
| } |
| if(bits&1) { |
| for(int i=0; i<0x20; ++i, ++c) { |
| tccc180[c]=(uint8_t)getFCD16FromNormData(c); |
| } |
| } else { |
| uprv_memset(tccc180+c, 0, 0x20); |
| c+=0x20; |
| } |
| } |
| } |
| |
| uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { |
| UChar32 c; |
| if(cpStart==(cpLimit-1)) { |
| c=*cpStart; |
| } else { |
| c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); |
| } |
| uint16_t prevNorm16=getNorm16(c); |
| if(prevNorm16<=minYesNo) { |
| return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 |
| } else { |
| return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo |
| } |
| } |
| |
| U_CDECL_BEGIN |
| |
| static UBool U_CALLCONV |
| enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { |
| /* add the start code point to the USet */ |
| const USetAdder *sa=(const USetAdder *)context; |
| sa->add(sa->set, start); |
| return TRUE; |
| } |
| |
| static uint32_t U_CALLCONV |
| segmentStarterMapper(const void * /*context*/, uint32_t value) { |
| return value&CANON_NOT_SEGMENT_STARTER; |
| } |
| |
| U_CDECL_END |
| |
| void |
| Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
| /* add the start code point of each same-value range of each trie */ |
| utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa); |
| |
| /* add Hangul LV syllables and LV+1 because of skippables */ |
| for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
| sa->add(sa->set, c); |
| sa->add(sa->set, c+1); |
| } |
| sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
| } |
| |
| void |
| Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
| /* add the start code point of each same-value range of the canonical iterator data trie */ |
| if(ensureCanonIterData(errorCode)) { |
| // currently only used for the SEGMENT_STARTER property |
| utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, |
| segmentStarterMapper, enumPropertyStartsRange, sa); |
| } |
| } |
| |
| const UChar * |
| Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
| UChar32 minNeedDataCP, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| // Make some effort to support NUL-terminated strings reasonably. |
| // Take the part of the fast quick check loop that does not look up |
| // data and check the first part of the string. |
| // After this prefix, determine the string length to simplify the rest |
| // of the code. |
| const UChar *prevSrc=src; |
| UChar c; |
| while((c=*src++)<minNeedDataCP && c!=0) {} |
| // Back out the last character for full processing. |
| // Copy this prefix. |
| if(--src!=prevSrc) { |
| if(buffer!=NULL) { |
| buffer->appendZeroCC(prevSrc, src, errorCode); |
| } |
| } |
| return src; |
| } |
| |
| // Dual functionality: |
| // buffer!=NULL: normalize |
| // buffer==NULL: isNormalized/spanQuickCheckYes |
| const UChar * |
| Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| UChar32 minNoCP=minDecompNoCP; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return src; |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t norm16=0; |
| |
| // only for quick check |
| const UChar *prevBoundary=src; |
| uint8_t prevCC=0; |
| |
| for(;;) { |
| // count code units below the minimum or with irrelevant data for the quick check |
| for(prevSrc=src; src!=limit;) { |
| if( (c=*src)<minNoCP || |
| isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
| ) { |
| ++src; |
| } else if(!U16_IS_SURROGATE(c)) { |
| break; |
| } else { |
| UChar c2; |
| if(U16_IS_SURROGATE_LEAD(c)) { |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| } |
| } else /* trail surrogate */ { |
| if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| --src; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| } |
| if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { |
| src+=U16_LENGTH(c); |
| } else { |
| break; |
| } |
| } |
| } |
| // copy these code units all at once |
| if(src!=prevSrc) { |
| if(buffer!=NULL) { |
| if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| break; |
| } |
| } else { |
| prevCC=0; |
| prevBoundary=src; |
| } |
| } |
| if(src==limit) { |
| break; |
| } |
| |
| // Check one above-minimum, relevant code point. |
| src+=U16_LENGTH(c); |
| if(buffer!=NULL) { |
| if(!decompose(c, norm16, *buffer, errorCode)) { |
| break; |
| } |
| } else { |
| if(isDecompYes(norm16)) { |
| uint8_t cc=getCCFromYesOrMaybe(norm16); |
| if(prevCC<=cc || cc==0) { |
| prevCC=cc; |
| if(cc<=1) { |
| prevBoundary=src; |
| } |
| continue; |
| } |
| } |
| return prevBoundary; // "no" or cc out of order |
| } |
| } |
| return src; |
| } |
| |
| // Decompose a short piece of text which is likely to contain characters that |
| // fail the quick check loop and/or where the quick check loop's overhead |
| // is unlikely to be amortized. |
| // Called by the compose() and makeFCD() implementations. |
| UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| while(src<limit) { |
| UChar32 c; |
| uint16_t norm16; |
| UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
| if(!decompose(c, norm16, buffer, errorCode)) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| // Only loops for 1:1 algorithmic mappings. |
| for(;;) { |
| // get the decomposition and the lead and trail cc's |
| if(isDecompYes(norm16)) { |
| // c does not decompose |
| return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
| } else if(isHangul(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| UChar jamos[3]; |
| return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| norm16=getNorm16(c); |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| uint8_t leadCC, trailCC; |
| trailCC=(uint8_t)(firstUnit>>8); |
| if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| leadCC=(uint8_t)(*(mapping-1)>>8); |
| } else { |
| leadCC=0; |
| } |
| return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); |
| } |
| } |
| } |
| |
| const UChar * |
| Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
| const UChar *decomp=NULL; |
| uint16_t norm16; |
| for(;;) { |
| if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
| // c does not decompose |
| return decomp; |
| } else if(isHangul(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| length=Hangul::decompose(c, buffer); |
| return buffer; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| decomp=buffer; |
| length=0; |
| U16_APPEND_UNSAFE(buffer, length, c); |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| length=*mapping&MAPPING_LENGTH_MASK; |
| return (const UChar *)mapping+1; |
| } |
| } |
| } |
| |
| // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 |
| // so that a raw mapping fits that consists of one unit ("rm0") |
| // plus all but the first two code units of the normal mapping. |
| // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. |
| const UChar * |
| Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { |
| // We do not loop in this method because an algorithmic mapping itself |
| // becomes a final result rather than having to be decomposed recursively. |
| uint16_t norm16; |
| if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
| // c does not decompose |
| return NULL; |
| } else if(isHangul(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| Hangul::getRawDecomposition(c, buffer); |
| length=2; |
| return buffer; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| length=0; |
| U16_APPEND_UNSAFE(buffer, length, c); |
| return buffer; |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping |
| if(firstUnit&MAPPING_HAS_RAW_MAPPING) { |
| // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. |
| // Bit 7=MAPPING_HAS_CCC_LCCC_WORD |
| const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; |
| uint16_t rm0=*rawMapping; |
| if(rm0<=MAPPING_LENGTH_MASK) { |
| length=rm0; |
| return (const UChar *)rawMapping-rm0; |
| } else { |
| // Copy the normal mapping and replace its first two code units with rm0. |
| buffer[0]=(UChar)rm0; |
| u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); |
| length=mLength-1; |
| return buffer; |
| } |
| } else { |
| length=mLength; |
| return (const UChar *)mapping+1; |
| } |
| } |
| } |
| |
| void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
| UBool doDecompose, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| buffer.copyReorderableSuffixTo(safeMiddle); |
| if(doDecompose) { |
| decompose(src, limit, &buffer, errorCode); |
| return; |
| } |
| // Just merge the strings at the boundary. |
| ForwardUTrie2StringIterator iter(normTrie, src, limit); |
| uint8_t firstCC, prevCC, cc; |
| firstCC=prevCC=cc=getCC(iter.next16()); |
| while(cc!=0) { |
| prevCC=cc; |
| cc=getCC(iter.next16()); |
| }; |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(iter.codePointStart, 0); |
| } |
| |
| if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) { |
| buffer.appendZeroCC(iter.codePointStart, limit, errorCode); |
| } |
| } |
| |
| // Note: hasDecompBoundary() could be implemented as aliases to |
| // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() |
| // at the cost of building the FCD trie for a decomposition normalizer. |
| UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { |
| for(;;) { |
| if(c<minDecompNoCP) { |
| return TRUE; |
| } |
| uint16_t norm16=getNorm16(c); |
| if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { |
| return TRUE; |
| } else if(norm16>MIN_NORMAL_MAYBE_YES) { |
| return FALSE; // ccc!=0 |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| return FALSE; |
| } |
| if(!before) { |
| // decomp after-boundary: same as hasFCDBoundaryAfter(), |
| // fcd16<=1 || trailCC==0 |
| if(firstUnit>0x1ff) { |
| return FALSE; // trailCC>1 |
| } |
| if(firstUnit<=0xff) { |
| return TRUE; // trailCC==0 |
| } |
| // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
| } |
| // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
| return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
| } |
| } |
| } |
| |
| /* |
| * Finds the recomposition result for |
| * a forward-combining "lead" character, |
| * specified with a pointer to its compositions list, |
| * and a backward-combining "trail" character. |
| * |
| * If the lead and trail characters combine, then this function returns |
| * the following "compositeAndFwd" value: |
| * Bits 21..1 composite character |
| * Bit 0 set if the composite is a forward-combining starter |
| * otherwise it returns -1. |
| * |
| * The compositions list has (trail, compositeAndFwd) pair entries, |
| * encoded as either pairs or triples of 16-bit units. |
| * The last entry has the high bit of its first unit set. |
| * |
| * The list is sorted by ascending trail characters (there are no duplicates). |
| * A linear search is used. |
| * |
| * See normalizer2impl.h for a more detailed description |
| * of the compositions list format. |
| */ |
| int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
| uint16_t key1, firstUnit; |
| if(trail<COMP_1_TRAIL_LIMIT) { |
| // trail character is 0..33FF |
| // result entry may have 2 or 3 units |
| key1=(uint16_t)(trail<<1); |
| while(key1>(firstUnit=*list)) { |
| list+=2+(firstUnit&COMP_1_TRIPLE); |
| } |
| if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| if(firstUnit&COMP_1_TRIPLE) { |
| return ((int32_t)list[1]<<16)|list[2]; |
| } else { |
| return list[1]; |
| } |
| } |
| } else { |
| // trail character is 3400..10FFFF |
| // result entry has 3 units |
| key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
| (((trail>>COMP_1_TRAIL_SHIFT))& |
| ~COMP_1_TRIPLE)); |
| uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
| uint16_t secondUnit; |
| for(;;) { |
| if(key1>(firstUnit=*list)) { |
| list+=2+(firstUnit&COMP_1_TRIPLE); |
| } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| if(key2>(secondUnit=list[1])) { |
| if(firstUnit&COMP_1_LAST_TUPLE) { |
| break; |
| } else { |
| list+=3; |
| } |
| } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
| return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
| } else { |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * @param list some character's compositions list |
| * @param set recursively receives the composites from these compositions |
| */ |
| void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
| uint16_t firstUnit; |
| int32_t compositeAndFwd; |
| do { |
| firstUnit=*list; |
| if((firstUnit&COMP_1_TRIPLE)==0) { |
| compositeAndFwd=list[1]; |
| list+=2; |
| } else { |
| compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
| list+=3; |
| } |
| UChar32 composite=compositeAndFwd>>1; |
| if((compositeAndFwd&1)!=0) { |
| addComposites(getCompositionsListForComposite(getNorm16(composite)), set); |
| } |
| set.add(composite); |
| } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
| } |
| |
| /* |
| * Recomposes the buffer text starting at recomposeStartIndex |
| * (which is in NFD - decomposed and canonically ordered), |
| * and truncates the buffer contents. |
| * |
| * Note that recomposition never lengthens the text: |
| * Any character consists of either one or two code units; |
| * a composition may contain at most one more code unit than the original starter, |
| * while the combining mark that is removed has at least one code unit. |
| */ |
| void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
| UBool onlyContiguous) const { |
| UChar *p=buffer.getStart()+recomposeStartIndex; |
| UChar *limit=buffer.getLimit(); |
| if(p==limit) { |
| return; |
| } |
| |
| UChar *starter, *pRemove, *q, *r; |
| const uint16_t *compositionsList; |
| UChar32 c, compositeAndFwd; |
| uint16_t norm16; |
| uint8_t cc, prevCC; |
| UBool starterIsSupplementary; |
| |
| // Some of the following variables are not used until we have a forward-combining starter |
| // and are only initialized now to avoid compiler warnings. |
| compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
| starter=NULL; |
| starterIsSupplementary=FALSE; |
| prevCC=0; |
| |
| for(;;) { |
| UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
| cc=getCCFromYesOrMaybe(norm16); |
| if( // this character combines backward and |
| isMaybe(norm16) && |
| // we have seen a starter that combines forward and |
| compositionsList!=NULL && |
| // the backward-combining character is not blocked |
| (prevCC<cc || prevCC==0) |
| ) { |
| if(isJamoVT(norm16)) { |
| // c is a Jamo V/T, see if we can compose it with the previous character. |
| if(c<Hangul::JAMO_T_BASE) { |
| // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
| UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
| if(prev<Hangul::JAMO_L_COUNT) { |
| pRemove=p-1; |
| UChar syllable=(UChar) |
| (Hangul::HANGUL_BASE+ |
| (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
| Hangul::JAMO_T_COUNT); |
| UChar t; |
| if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
| ++p; |
| syllable+=t; // The next character was a Jamo T. |
| } |
| *starter=syllable; |
| // remove the Jamo V/T |
| q=pRemove; |
| r=p; |
| while(r<limit) { |
| *q++=*r++; |
| } |
| limit=q; |
| p=pRemove; |
| } |
| } |
| /* |
| * No "else" for Jamo T: |
| * Since the input is in NFD, there are no Hangul LV syllables that |
| * a Jamo T could combine with. |
| * All Jamo Ts are combined above when handling Jamo Vs. |
| */ |
| if(p==limit) { |
| break; |
| } |
| compositionsList=NULL; |
| continue; |
| } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
| // The starter and the combining mark (c) do combine. |
| UChar32 composite=compositeAndFwd>>1; |
| |
| // Replace the starter with the composite, remove the combining mark. |
| pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
| if(starterIsSupplementary) { |
| if(U_IS_SUPPLEMENTARY(composite)) { |
| // both are supplementary |
| starter[0]=U16_LEAD(composite); |
| starter[1]=U16_TRAIL(composite); |
| } else { |
| *starter=(UChar)composite; |
| // The composite is shorter than the starter, |
| // move the intermediate characters forward one. |
| starterIsSupplementary=FALSE; |
| q=starter+1; |
| r=q+1; |
| while(r<pRemove) { |
| *q++=*r++; |
| } |
| --pRemove; |
| } |
| } else if(U_IS_SUPPLEMENTARY(composite)) { |
| // The composite is longer than the starter, |
| // move the intermediate characters back one. |
| starterIsSupplementary=TRUE; |
| ++starter; // temporarily increment for the loop boundary |
| q=pRemove; |
| r=++pRemove; |
| while(starter<q) { |
| *--r=*--q; |
| } |
| *starter=U16_TRAIL(composite); |
| *--starter=U16_LEAD(composite); // undo the temporary increment |
| } else { |
| // both are on the BMP |
| *starter=(UChar)composite; |
| } |
| |
| /* remove the combining mark by moving the following text over it */ |
| if(pRemove<p) { |
| q=pRemove; |
| r=p; |
| while(r<limit) { |
| *q++=*r++; |
| } |
| limit=q; |
| p=pRemove; |
| } |
| // Keep prevCC because we removed the combining mark. |
| |
| if(p==limit) { |
| break; |
| } |
| // Is the composite a starter that combines forward? |
| if(compositeAndFwd&1) { |
| compositionsList= |
| getCompositionsListForComposite(getNorm16(composite)); |
| } else { |
| compositionsList=NULL; |
| } |
| |
| // We combined; continue with looking for compositions. |
| continue; |
| } |
| } |
| |
| // no combination this time |
| prevCC=cc; |
| if(p==limit) { |
| break; |
| } |
| |
| // If c did not combine, then check if it is a starter. |
| if(cc==0) { |
| // Found a new starter. |
| if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
| // It may combine with something, prepare for it. |
| if(U_IS_BMP(c)) { |
| starterIsSupplementary=FALSE; |
| starter=p-1; |
| } else { |
| starterIsSupplementary=TRUE; |
| starter=p-2; |
| } |
| } |
| } else if(onlyContiguous) { |
| // FCC: no discontiguous compositions; any intervening character blocks. |
| compositionsList=NULL; |
| } |
| } |
| buffer.setReorderingLimit(limit); |
| } |
| |
| UChar32 |
| Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { |
| uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 |
| const uint16_t *list; |
| if(isInert(norm16)) { |
| return U_SENTINEL; |
| } else if(norm16<minYesNoMappingsOnly) { |
| if(isJamoL(norm16)) { |
| b-=Hangul::JAMO_V_BASE; |
| if(0<=b && b<Hangul::JAMO_V_COUNT) { |
| return |
| (Hangul::HANGUL_BASE+ |
| ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* |
| Hangul::JAMO_T_COUNT); |
| } else { |
| return U_SENTINEL; |
| } |
| } else if(isHangul(norm16)) { |
| b-=Hangul::JAMO_T_BASE; |
| if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! |
| return a+b; |
| } else { |
| return U_SENTINEL; |
| } |
| } else { |
| // 'a' has a compositions list in extraData |
| list=extraData+norm16; |
| if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list |
| list+= // mapping pointer |
| 1+ // +1 to skip the first unit with the mapping lenth |
| (*list&MAPPING_LENGTH_MASK); // + mapping length |
| } |
| } |
| } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { |
| return U_SENTINEL; |
| } else { |
| list=maybeYesCompositions+norm16-minMaybeYes; |
| } |
| if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b |
| return U_SENTINEL; |
| } |
| #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC |
| return combine(list, b)>>1; |
| #else |
| int32_t compositeAndFwd=combine(list, b); |
| return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; |
| #endif |
| } |
| |
| // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
| // doCompose: normalize |
| // !doCompose: isNormalized (buffer must be empty and initialized) |
| UBool |
| Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
| UBool onlyContiguous, |
| UBool doCompose, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| /* |
| * prevBoundary points to the last character before the current one |
| * that has a composition boundary before it with ccc==0 and quick check "yes". |
| * Keeping track of prevBoundary saves us looking for a composition boundary |
| * when we find a "no" or "maybe". |
| * |
| * When we back out from prevSrc back to prevBoundary, |
| * then we also remove those same characters (which had been simply copied |
| * or canonically-order-inserted) from the ReorderingBuffer. |
| * Therefore, at all times, the [prevBoundary..prevSrc[ source units |
| * must correspond 1:1 to destination units at the end of the destination buffer. |
| */ |
| const UChar *prevBoundary=src; |
| UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
| doCompose ? &buffer : NULL, |
| errorCode); |
| if(U_FAILURE(errorCode)) { |
| return FALSE; |
| } |
| if(prevBoundary<src) { |
| // Set prevBoundary to the last character in the prefix. |
| prevBoundary=src-1; |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t norm16=0; |
| |
| // only for isNormalized |
| uint8_t prevCC=0; |
| |
| for(;;) { |
| // count code units below the minimum or with irrelevant data for the quick check |
| for(prevSrc=src; src!=limit;) { |
| if( (c=*src)<minNoMaybeCP || |
| isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
| ) { |
| ++src; |
| } else if(!U16_IS_SURROGATE(c)) { |
| break; |
| } else { |
| UChar c2; |
| if(U16_IS_SURROGATE_LEAD(c)) { |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| } |
| } else /* trail surrogate */ { |
| if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| --src; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| } |
| if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
| src+=U16_LENGTH(c); |
| } else { |
| break; |
| } |
| } |
| } |
| // copy these code units all at once |
| if(src!=prevSrc) { |
| if(doCompose) { |
| if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { |
| break; |
| } |
| } else { |
| prevCC=0; |
| } |
| if(src==limit) { |
| break; |
| } |
| // Set prevBoundary to the last character in the quick check loop. |
| prevBoundary=src-1; |
| if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
| U16_IS_LEAD(*(prevBoundary-1)) |
| ) { |
| --prevBoundary; |
| } |
| // The start of the current character (c). |
| prevSrc=src; |
| } else if(src==limit) { |
| break; |
| } |
| |
| src+=U16_LENGTH(c); |
| /* |
| * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
| * or has ccc!=0. |
| * Check for Jamo V/T, then for regular characters. |
| * c is not a Hangul syllable or Jamo L because those have "yes" properties. |
| */ |
| if(isJamoVT(norm16) && prevBoundary!=prevSrc) { |
| UChar prev=*(prevSrc-1); |
| UBool needToDecompose=FALSE; |
| if(c<Hangul::JAMO_T_BASE) { |
| // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
| prev=(UChar)(prev-Hangul::JAMO_L_BASE); |
| if(prev<Hangul::JAMO_L_COUNT) { |
| if(!doCompose) { |
| return FALSE; |
| } |
| UChar syllable=(UChar) |
| (Hangul::HANGUL_BASE+ |
| (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
| Hangul::JAMO_T_COUNT); |
| UChar t; |
| if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
| ++src; |
| syllable+=t; // The next character was a Jamo T. |
| prevBoundary=src; |
| buffer.setLastChar(syllable); |
| continue; |
| } |
| // If we see L+V+x where x!=T then we drop to the slow path, |
| // decompose and recompose. |
| // This is to deal with NFKC finding normal L and V but a |
| // compatibility variant of a T. We need to either fully compose that |
| // combination here (which would complicate the code and may not work |
| // with strange custom data) or use the slow path -- or else our replacing |
| // two input characters (L+V) with one output character (LV syllable) |
| // would violate the invariant that [prevBoundary..prevSrc[ has the same |
| // length as what we appended to the buffer since prevBoundary. |
| needToDecompose=TRUE; |
| } |
| } else if(Hangul::isHangulWithoutJamoT(prev)) { |
| // c is a Jamo Trailing consonant, |
| // compose with previous Hangul LV that does not contain a Jamo T. |
| if(!doCompose) { |
| return FALSE; |
| } |
| buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); |
| prevBoundary=src; |
| continue; |
| } |
| if(!needToDecompose) { |
| // The Jamo V/T did not compose into a Hangul syllable. |
| if(doCompose) { |
| if(!buffer.appendBMP((UChar)c, 0, errorCode)) { |
| break; |
| } |
| } else { |
| prevCC=0; |
| } |
| continue; |
| } |
| } |
| /* |
| * Source buffer pointers: |
| * |
| * all done quick check current char not yet |
| * "yes" but (c) processed |
| * may combine |
| * forward |
| * [-------------[-------------[-------------[-------------[ |
| * | | | | | |
| * orig. src prevBoundary prevSrc src limit |
| * |
| * |
| * Destination buffer pointers inside the ReorderingBuffer: |
| * |
| * all done might take not filled yet |
| * characters for |
| * reordering |
| * [-------------[-------------[-------------[ |
| * | | | | |
| * start reorderStart limit | |
| * +remainingCap.+ |
| */ |
| if(norm16>=MIN_YES_YES_WITH_CC) { |
| uint8_t cc=(uint8_t)norm16; // cc!=0 |
| if( onlyContiguous && // FCC |
| (doCompose ? buffer.getLastCC() : prevCC)==0 && |
| prevBoundary<prevSrc && |
| // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that |
| // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
| // passed the quick check "yes && ccc==0" test. |
| // Check whether the last character was a "yesYes" or a "yesNo". |
| // If a "yesNo", then we get its trailing ccc from its |
| // mapping and check for canonical order. |
| // All other cases are ok. |
| getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
| ) { |
| // Fails FCD test, need to decompose and contiguously recompose. |
| if(!doCompose) { |
| return FALSE; |
| } |
| } else if(doCompose) { |
| if(!buffer.append(c, cc, errorCode)) { |
| break; |
| } |
| continue; |
| } else if(prevCC<=cc) { |
| prevCC=cc; |
| continue; |
| } else { |
| return FALSE; |
| } |
| } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { |
| return FALSE; |
| } |
| |
| /* |
| * Find appropriate boundaries around this character, |
| * decompose the source text from between the boundaries, |
| * and recompose it. |
| * |
| * We may need to remove the last few characters from the ReorderingBuffer |
| * to account for source text that was copied or appended |
| * but needs to take part in the recomposition. |
| */ |
| |
| /* |
| * Find the last composition boundary in [prevBoundary..src[. |
| * It is either the decomposition of the current character (at prevSrc), |
| * or prevBoundary. |
| */ |
| if(hasCompBoundaryBefore(c, norm16)) { |
| prevBoundary=prevSrc; |
| } else if(doCompose) { |
| buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); |
| } |
| |
| // Find the next composition boundary in [src..limit[ - |
| // modifies src to point to the next starter. |
| src=(UChar *)findNextCompBoundary(src, limit); |
| |
| // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. |
| int32_t recomposeStartIndex=buffer.length(); |
| if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { |
| break; |
| } |
| recompose(buffer, recomposeStartIndex, onlyContiguous); |
| if(!doCompose) { |
| if(!buffer.equals(prevBoundary, src)) { |
| return FALSE; |
| } |
| buffer.remove(); |
| prevCC=0; |
| } |
| |
| // Move to the next starter. We never need to look back before this point again. |
| prevBoundary=src; |
| } |
| return TRUE; |
| } |
| |
| // Very similar to compose(): Make the same changes in both places if relevant. |
| // pQCResult==NULL: spanQuickCheckYes |
| // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
| const UChar * |
| Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
| UBool onlyContiguous, |
| UNormalizationCheckResult *pQCResult) const { |
| /* |
| * prevBoundary points to the last character before the current one |
| * that has a composition boundary before it with ccc==0 and quick check "yes". |
| */ |
| const UChar *prevBoundary=src; |
| UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| if(limit==NULL) { |
| UErrorCode errorCode=U_ZERO_ERROR; |
| src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
| if(prevBoundary<src) { |
| // Set prevBoundary to the last character in the prefix. |
| prevBoundary=src-1; |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t norm16=0; |
| uint8_t prevCC=0; |
| |
| for(;;) { |
| // count code units below the minimum or with irrelevant data for the quick check |
| for(prevSrc=src;;) { |
| if(src==limit) { |
| return src; |
| } |
| if( (c=*src)<minNoMaybeCP || |
| isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
| ) { |
| ++src; |
| } else if(!U16_IS_SURROGATE(c)) { |
| break; |
| } else { |
| UChar c2; |
| if(U16_IS_SURROGATE_LEAD(c)) { |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| } |
| } else /* trail surrogate */ { |
| if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| --src; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| } |
| if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
| src+=U16_LENGTH(c); |
| } else { |
| break; |
| } |
| } |
| } |
| if(src!=prevSrc) { |
| // Set prevBoundary to the last character in the quick check loop. |
| prevBoundary=src-1; |
| if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
| U16_IS_LEAD(*(prevBoundary-1)) |
| ) { |
| --prevBoundary; |
| } |
| prevCC=0; |
| // The start of the current character (c). |
| prevSrc=src; |
| } |
| |
| src+=U16_LENGTH(c); |
| /* |
| * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
| * or has ccc!=0. |
| */ |
| if(isMaybeOrNonZeroCC(norm16)) { |
| uint8_t cc=getCCFromYesOrMaybe(norm16); |
| if( onlyContiguous && // FCC |
| cc!=0 && |
| prevCC==0 && |
| prevBoundary<prevSrc && |
| // prevCC==0 && prevBoundary<prevSrc tell us that |
| // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
| // passed the quick check "yes && ccc==0" test. |
| // Check whether the last character was a "yesYes" or a "yesNo". |
| // If a "yesNo", then we get its trailing ccc from its |
| // mapping and check for canonical order. |
| // All other cases are ok. |
| getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
| ) { |
| // Fails FCD test. |
| } else if(prevCC<=cc || cc==0) { |
| prevCC=cc; |
| if(norm16<MIN_YES_YES_WITH_CC) { |
| if(pQCResult!=NULL) { |
| *pQCResult=UNORM_MAYBE; |
| } else { |
| return prevBoundary; |
| } |
| } |
| continue; |
| } |
| } |
| if(pQCResult!=NULL) { |
| *pQCResult=UNORM_NO; |
| } |
| return prevBoundary; |
| } |
| } |
| |
| void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
| UBool doCompose, |
| UBool onlyContiguous, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| if(!buffer.isEmpty()) { |
| const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); |
| if(src!=firstStarterInSrc) { |
| const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
| buffer.getLimit()); |
| int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
| UnicodeString middle(lastStarterInDest, destSuffixLength); |
| buffer.removeSuffix(destSuffixLength); |
| safeMiddle=middle; |
| middle.append(src, (int32_t)(firstStarterInSrc-src)); |
| const UChar *middleStart=middle.getBuffer(); |
| compose(middleStart, middleStart+middle.length(), onlyContiguous, |
| TRUE, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| src=firstStarterInSrc; |
| } |
| } |
| if(doCompose) { |
| compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
| } else { |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(src, 0); |
| } |
| buffer.appendZeroCC(src, limit, errorCode); |
| } |
| } |
| |
| /** |
| * Does c have a composition boundary before it? |
| * True if its decomposition begins with a character that has |
| * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). |
| * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes |
| * (isCompYesAndZeroCC()) so we need not decompose. |
| */ |
| UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { |
| for(;;) { |
| if(isCompYesAndZeroCC(norm16)) { |
| return TRUE; |
| } else if(isMaybeOrNonZeroCC(norm16)) { |
| return FALSE; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| norm16=getNorm16(c); |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| return FALSE; |
| } |
| if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) { |
| return FALSE; // non-zero leadCC |
| } |
| int32_t i=1; // skip over the firstUnit |
| UChar32 c; |
| U16_NEXT_UNSAFE(mapping, i, c); |
| return isCompYesAndZeroCC(getNorm16(c)); |
| } |
| } |
| } |
| |
| UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { |
| for(;;) { |
| uint16_t norm16=getNorm16(c); |
| if(isInert(norm16)) { |
| return TRUE; |
| } else if(norm16<=minYesNo) { |
| // Hangul: norm16==minYesNo |
| // Hangul LVT has a boundary after it. |
| // Hangul LV and non-inert yesYes characters combine forward. |
| return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); |
| } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { |
| return FALSE; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| } else { |
| // c decomposes, get everything from the variable-length extra data. |
| // If testInert, then c must be a yesNo character which has lccc=0, |
| // otherwise it could be a noNo. |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| // TRUE if |
| // not MAPPING_NO_COMP_BOUNDARY_AFTER |
| // (which is set if |
| // c is not deleted, and |
| // it and its decomposition do not combine forward, and it has a starter) |
| // and if FCC then trailCC<=1 |
| return |
| (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 && |
| (!onlyContiguous || firstUnit<=0x1ff); |
| } |
| } |
| } |
| |
| const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { |
| BackwardUTrie2StringIterator iter(normTrie, start, p); |
| uint16_t norm16; |
| do { |
| norm16=iter.previous16(); |
| } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
| // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, |
| // but that's probably not worth the extra cost. |
| return iter.codePointStart; |
| } |
| |
| const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { |
| ForwardUTrie2StringIterator iter(normTrie, p, limit); |
| uint16_t norm16; |
| do { |
| norm16=iter.next16(); |
| } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
| return iter.codePointStart; |
| } |
| |
| // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
| // still had getFCDTrie() which built and cached an FCD trie. |
| // That provided faster access to FCD data than getFCD16FromNormData() |
| // but required synchronization and consumed some 10kB of heap memory |
| // in any process that uses FCD (e.g., via collation). |
| // tccc180[] and smallFCD[] are intended to help with any loss of performance, |
| // at least for Latin & CJK. |
| |
| // Gets the FCD value from the regular normalization data. |
| uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { |
| // Only loops for 1:1 algorithmic mappings. |
| for(;;) { |
| uint16_t norm16=getNorm16(c); |
| if(norm16<=minYesNo) { |
| // no decomposition or Hangul syllable, all zeros |
| return 0; |
| } else if(norm16>=MIN_NORMAL_MAYBE_YES) { |
| // combining mark |
| norm16&=0xff; |
| return norm16|(norm16<<8); |
| } else if(norm16>=minMaybeYes) { |
| return 0; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| } else { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| // A character that is deleted (maps to an empty string) must |
| // get the worst-case lccc and tccc values because arbitrary |
| // characters on both sides will become adjacent. |
| return 0x1ff; |
| } else { |
| norm16=firstUnit>>8; // tccc |
| if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| norm16|=*(mapping-1)&0xff00; // lccc |
| } |
| return norm16; |
| } |
| } |
| } |
| } |
| |
| // Dual functionality: |
| // buffer!=NULL: normalize |
| // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
| const UChar * |
| Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
| // Similar to the prevBoundary in the compose() implementation. |
| const UChar *prevBoundary=src; |
| int32_t prevFCD16=0; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return src; |
| } |
| if(prevBoundary<src) { |
| prevBoundary=src; |
| // We know that the previous character's lccc==0. |
| // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
| prevFCD16=getFCD16(*(src-1)); |
| if(prevFCD16>1) { |
| --prevBoundary; |
| } |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| // Note: In this function we use buffer->appendZeroCC() because we track |
| // the lead and trail combining classes here, rather than leaving it to |
| // the ReorderingBuffer. |
| // The exception is the call to decomposeShort() which uses the buffer |
| // in the normal way. |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t fcd16=0; |
| |
| for(;;) { |
| // count code units with lccc==0 |
| for(prevSrc=src; src!=limit;) { |
| if((c=*src)<MIN_CCC_LCCC_CP) { |
| prevFCD16=~c; |
| ++src; |
| } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
| prevFCD16=0; |
| ++src; |
| } else { |
| if(U16_IS_SURROGATE(c)) { |
| UChar c2; |
| if(U16_IS_SURROGATE_LEAD(c)) { |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| } |
| } else /* trail surrogate */ { |
| if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| --src; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| } |
| } |
| if((fcd16=getFCD16FromNormData(c))<=0xff) { |
| prevFCD16=fcd16; |
| src+=U16_LENGTH(c); |
| } else { |
| break; |
| } |
| } |
| } |
| // copy these code units all at once |
| if(src!=prevSrc) { |
| if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| break; |
| } |
| if(src==limit) { |
| break; |
| } |
| prevBoundary=src; |
| // We know that the previous character's lccc==0. |
| if(prevFCD16<0) { |
| // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
| UChar32 prev=~prevFCD16; |
| prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev); |
| if(prevFCD16>1) { |
| --prevBoundary; |
| } |
| } else { |
| const UChar *p=src-1; |
| if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
| --p; |
| // Need to fetch the previous character's FCD value because |
| // prevFCD16 was just for the trail surrogate code point. |
| prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
| // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
| } |
| if(prevFCD16>1) { |
| prevBoundary=p; |
| } |
| } |
| // The start of the current character (c). |
| prevSrc=src; |
| } else if(src==limit) { |
| break; |
| } |
| |
| src+=U16_LENGTH(c); |
| // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
| // Check for proper order, and decompose locally if necessary. |
| if((prevFCD16&0xff)<=(fcd16>>8)) { |
| // proper order: prev tccc <= current lccc |
| if((fcd16&0xff)<=1) { |
| prevBoundary=src; |
| } |
| if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
| break; |
| } |
| prevFCD16=fcd16; |
| continue; |
| } else if(buffer==NULL) { |
| return prevBoundary; // quick check "no" |
| } else { |
| /* |
| * Back out the part of the source that we copied or appended |
| * already but is now going to be decomposed. |
| * prevSrc is set to after what was copied/appended. |
| */ |
| buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
| /* |
| * Find the part of the source that needs to be decomposed, |
| * up to the next safe boundary. |
| */ |
| src=findNextFCDBoundary(src, limit); |
| /* |
| * The source text does not fulfill the conditions for FCD. |
| * Decompose and reorder a limited piece of the text. |
| */ |
| if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { |
| break; |
| } |
| prevBoundary=src; |
| prevFCD16=0; |
| } |
| } |
| return src; |
| } |
| |
| void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
| UBool doMakeFCD, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| if(!buffer.isEmpty()) { |
| const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
| if(src!=firstBoundaryInSrc) { |
| const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
| buffer.getLimit()); |
| int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
| UnicodeString middle(lastBoundaryInDest, destSuffixLength); |
| buffer.removeSuffix(destSuffixLength); |
| safeMiddle=middle; |
| middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
| const UChar *middleStart=middle.getBuffer(); |
| makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| src=firstBoundaryInSrc; |
| } |
| } |
| if(doMakeFCD) { |
| makeFCD(src, limit, &buffer, errorCode); |
| } else { |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(src, 0); |
| } |
| buffer.appendZeroCC(src, limit, errorCode); |
| } |
| } |
| |
| const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
| while(start<p && previousFCD16(start, p)>0xff) {} |
| return p; |
| } |
| |
| const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
| while(p<limit) { |
| const UChar *codePointStart=p; |
| if(nextFCD16(p, limit)<=0xff) { |
| return codePointStart; |
| } |
| } |
| return p; |
| } |
| |
| // CanonicalIterator data -------------------------------------------------- *** |
| |
| CanonIterData::CanonIterData(UErrorCode &errorCode) : |
| trie(utrie2_open(0, 0, &errorCode)), |
| canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
| |
| CanonIterData::~CanonIterData() { |
| utrie2_close(trie); |
| } |
| |
| void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
| uint32_t canonValue=utrie2_get32(trie, decompLead); |
| if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
| // origin is the first character whose decomposition starts with |
| // the character for which we are setting the value. |
| utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); |
| } else { |
| // origin is not the first character, or it is U+0000. |
| UnicodeSet *set; |
| if((canonValue&CANON_HAS_SET)==0) { |
| set=new UnicodeSet; |
| if(set==NULL) { |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
| canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
| utrie2_set32(trie, decompLead, canonValue, &errorCode); |
| canonStartSets.addElement(set, errorCode); |
| if(firstOrigin!=0) { |
| set->add(firstOrigin); |
| } |
| } else { |
| set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
| } |
| set->add(origin); |
| } |
| } |
| |
| class CanonIterDataSingleton { |
| public: |
| CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : |
| singleton(s), impl(ni), errorCode(ec) {} |
| CanonIterData *getInstance(UErrorCode &errorCode) { |
| void *duplicate; |
| CanonIterData *instance= |
| (CanonIterData *)singleton.getInstance(createInstance, this, duplicate, errorCode); |
| delete (CanonIterData *)duplicate; |
| return instance; |
| } |
| static void *createInstance(const void *context, UErrorCode &errorCode); |
| UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { |
| if(value!=0) { |
| impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newData, errorCode); |
| } |
| return U_SUCCESS(errorCode); |
| } |
| |
| private: |
| SimpleSingleton &singleton; |
| Normalizer2Impl &impl; |
| CanonIterData *newData; |
| UErrorCode &errorCode; |
| }; |
| |
| U_CDECL_BEGIN |
| |
| // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
| static UBool U_CALLCONV |
| enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
| return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value); |
| } |
| |
| U_CDECL_END |
| |
| void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &errorCode) { |
| CanonIterDataSingleton *me=(CanonIterDataSingleton *)context; |
| me->newData=new CanonIterData(errorCode); |
| if(me->newData==NULL) { |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| if(U_SUCCESS(errorCode)) { |
| utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me); |
| utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode); |
| if(U_SUCCESS(errorCode)) { |
| return me->newData; |
| } |
| } |
| delete me->newData; |
| return NULL; |
| } |
| |
| void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, |
| CanonIterData &newData, |
| UErrorCode &errorCode) const { |
| if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { |
| // Inert, or 2-way mapping (including Hangul syllable). |
| // We do not write a canonStartSet for any yesNo character. |
| // Composites from 2-way mappings are added at runtime from the |
| // starter's compositions list, and the other characters in |
| // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
| // "maybe" characters. |
| return; |
| } |
| for(UChar32 c=start; c<=end; ++c) { |
| uint32_t oldValue=utrie2_get32(newData.trie, c); |
| uint32_t newValue=oldValue; |
| if(norm16>=minMaybeYes) { |
| // not a segment starter if it occurs in a decomposition or has cc!=0 |
| newValue|=CANON_NOT_SEGMENT_STARTER; |
| if(norm16<MIN_NORMAL_MAYBE_YES) { |
| newValue|=CANON_HAS_COMPOSITIONS; |
| } |
| } else if(norm16<minYesNo) { |
| newValue|=CANON_HAS_COMPOSITIONS; |
| } else { |
| // c has a one-way decomposition |
| UChar32 c2=c; |
| uint16_t norm16_2=norm16; |
| while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { |
| c2=mapAlgorithmic(c2, norm16_2); |
| norm16_2=getNorm16(c2); |
| } |
| if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16_2); |
| uint16_t firstUnit=*mapping; |
| int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
| if(c==c2 && (*(mapping-1)&0xff)!=0) { |
| newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
| } |
| } |
| // Skip empty mappings (no characters in the decomposition). |
| if(length!=0) { |
| ++mapping; // skip over the firstUnit |
| // add c to first code point's start set |
| int32_t i=0; |
| U16_NEXT_UNSAFE(mapping, i, c2); |
| newData.addToStartSet(c, c2, errorCode); |
| // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
| // one-way mapping. A 2-way mapping is possible here after |
| // intermediate algorithmic mapping. |
| if(norm16_2>=minNoNo) { |
| while(i<length) { |
| U16_NEXT_UNSAFE(mapping, i, c2); |
| uint32_t c2Value=utrie2_get32(newData.trie, c2); |
| if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
| utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, |
| &errorCode); |
| } |
| } |
| } |
| } |
| } else { |
| // c decomposed to c2 algorithmically; c has cc==0 |
| newData.addToStartSet(c, c2, errorCode); |
| } |
| } |
| if(newValue!=oldValue) { |
| utrie2_set32(newData.trie, c, newValue, &errorCode); |
| } |
| } |
| } |
| |
| UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
| // Logically const: Synchronized instantiation. |
| Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
| CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstance(errorCode); |
| return U_SUCCESS(errorCode); |
| } |
| |
| int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
| return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, c); |
| } |
| |
| const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
| return *(const UnicodeSet *)( |
| ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]); |
| } |
| |
| UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
| return getCanonValue(c)>=0; |
| } |
| |
| UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
| int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
| if(canonValue==0) { |
| return FALSE; |
| } |
| set.clear(); |
| int32_t value=canonValue&CANON_VALUE_MASK; |
| if((canonValue&CANON_HAS_SET)!=0) { |
| set.addAll(getCanonStartSet(value)); |
| } else if(value!=0) { |
| set.add(value); |
| } |
| if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
| uint16_t norm16=getNorm16(c); |
| if(norm16==JAMO_L) { |
| UChar32 syllable= |
| (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
| set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
| } else { |
| addComposites(getCompositionsList(norm16), set); |
| } |
| } |
| return TRUE; |
| } |
| |
| U_NAMESPACE_END |
| |
| // Normalizer2 data swapping ----------------------------------------------- *** |
| |
| U_NAMESPACE_USE |
| |
| U_CAPI int32_t U_EXPORT2 |
| unorm2_swap(const UDataSwapper *ds, |
| const void *inData, int32_t length, void *outData, |
| UErrorCode *pErrorCode) { |
| const UDataInfo *pInfo; |
| int32_t headerSize; |
| |
| const uint8_t *inBytes; |
| uint8_t *outBytes; |
| |
| const int32_t *inIndexes; |
| int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; |
| |
| int32_t i, offset, nextOffset, size; |
| |
| /* udata_swapDataHeader checks the arguments */ |
| headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| |
| /* check data format and format version */ |
| pInfo=(const UDataInfo *)((const char *)inData+4); |
| if(!( |
| pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
| pInfo->dataFormat[1]==0x72 && |
| pInfo->dataFormat[2]==0x6d && |
| pInfo->dataFormat[3]==0x32 && |
| (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2) |
| )) { |
| udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", |
| pInfo->dataFormat[0], pInfo->dataFormat[1], |
| pInfo->dataFormat[2], pInfo->dataFormat[3], |
| pInfo->formatVersion[0]); |
| *pErrorCode=U_UNSUPPORTED_ERROR; |
| return 0; |
| } |
| |
| inBytes=(const uint8_t *)inData+headerSize; |
| outBytes=(uint8_t *)outData+headerSize; |
| |
| inIndexes=(const int32_t *)inBytes; |
| |
| if(length>=0) { |
| length-=headerSize; |
| if(length<(int32_t)sizeof(indexes)) { |
| udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", |
| length); |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| } |
| |
| /* read the first few indexes */ |
| for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { |
| indexes[i]=udata_readInt32(ds, inIndexes[i]); |
| } |
| |
| /* get the total length of the data */ |
| size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
| |
| if(length>=0) { |
| if(length<size) { |
| udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", |
| length); |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| /* copy the data for inaccessible bytes */ |
| if(inBytes!=outBytes) { |
| uprv_memcpy(outBytes, inBytes, size); |
| } |
| |
| offset=0; |
| |
| /* swap the int32_t indexes[] */ |
| nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
| ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
| offset=nextOffset; |
| |
| /* swap the UTrie2 */ |
| nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
| utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
| offset=nextOffset; |
| |
| /* swap the uint16_t extraData[] */ |
| nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; |
| ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
| offset=nextOffset; |
| |
| /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ |
| nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; |
| offset=nextOffset; |
| |
| U_ASSERT(offset==size); |
| } |
| |
| return headerSize+size; |
| } |
| |
| #endif // !UCONFIG_NO_NORMALIZATION |