| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2001-2012, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: ucol_bld.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created 02/22/2001 |
| * created by: Vladimir Weinstein |
| * |
| * This module builds a collator based on the rule set. |
| * |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_COLLATION |
| |
| #include "unicode/ucoleitr.h" |
| #include "unicode/udata.h" |
| #include "unicode/uchar.h" |
| #include "unicode/uniset.h" |
| #include "unicode/uscript.h" |
| #include "unicode/ustring.h" |
| #include "unicode/utf16.h" |
| #include "normalizer2impl.h" |
| #include "ucol_bld.h" |
| #include "ucol_elm.h" |
| #include "ucol_cnt.h" |
| #include "ucln_in.h" |
| #include "umutex.h" |
| #include "cmemory.h" |
| #include "cstring.h" |
| |
| #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
| |
| static const InverseUCATableHeader* _staticInvUCA = NULL; |
| static UDataMemory* invUCA_DATA_MEM = NULL; |
| |
| U_CDECL_BEGIN |
| static UBool U_CALLCONV |
| isAcceptableInvUCA(void * /*context*/, |
| const char * /*type*/, const char * /*name*/, |
| const UDataInfo *pInfo) |
| { |
| /* context, type & name are intentionally not used */ |
| if( pInfo->size>=20 && |
| pInfo->isBigEndian==U_IS_BIG_ENDIAN && |
| pInfo->charsetFamily==U_CHARSET_FAMILY && |
| pInfo->dataFormat[0]==INVUCA_DATA_FORMAT_0 && /* dataFormat="InvC" */ |
| pInfo->dataFormat[1]==INVUCA_DATA_FORMAT_1 && |
| pInfo->dataFormat[2]==INVUCA_DATA_FORMAT_2 && |
| pInfo->dataFormat[3]==INVUCA_DATA_FORMAT_3 && |
| pInfo->formatVersion[0]==INVUCA_FORMAT_VERSION_0 && |
| pInfo->formatVersion[1]>=INVUCA_FORMAT_VERSION_1 //&& |
| //pInfo->formatVersion[1]==INVUCA_FORMAT_VERSION_1 && |
| //pInfo->formatVersion[2]==INVUCA_FORMAT_VERSION_2 && |
| //pInfo->formatVersion[3]==INVUCA_FORMAT_VERSION_3 && |
| ) |
| { |
| UVersionInfo UCDVersion; |
| u_getUnicodeVersion(UCDVersion); |
| return (pInfo->dataVersion[0]==UCDVersion[0] && |
| pInfo->dataVersion[1]==UCDVersion[1]); |
| //pInfo->dataVersion[1]==invUcaDataInfo.dataVersion[1] && |
| //pInfo->dataVersion[2]==invUcaDataInfo.dataVersion[2] && |
| //pInfo->dataVersion[3]==invUcaDataInfo.dataVersion[3]) { |
| } else { |
| return FALSE; |
| } |
| } |
| U_CDECL_END |
| |
| /* |
| * Takes two CEs (lead and continuation) and |
| * compares them as CEs should be compared: |
| * primary vs. primary, secondary vs. secondary |
| * tertiary vs. tertiary |
| */ |
| static int32_t compareCEs(uint32_t source0, uint32_t source1, uint32_t target0, uint32_t target1) { |
| uint32_t s1 = source0, s2, t1 = target0, t2; |
| if(isContinuation(source1)) { |
| s2 = source1; |
| } else { |
| s2 = 0; |
| } |
| if(isContinuation(target1)) { |
| t2 = target1; |
| } else { |
| t2 = 0; |
| } |
| |
| uint32_t s = 0, t = 0; |
| if(s1 == t1 && s2 == t2) { |
| return 0; |
| } |
| s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16); |
| t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16); |
| if(s < t) { |
| return -1; |
| } else if(s > t) { |
| return 1; |
| } else { |
| s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8; |
| t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8; |
| if(s < t) { |
| return -1; |
| } else if(s > t) { |
| return 1; |
| } else { |
| s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF); |
| t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF); |
| if(s < t) { |
| return -1; |
| } else { |
| return 1; |
| } |
| } |
| } |
| } |
| |
| static |
| int32_t ucol_inv_findCE(const UColTokenParser *src, uint32_t CE, uint32_t SecondCE) { |
| uint32_t bottom = 0, top = src->invUCA->tableSize; |
| uint32_t i = 0; |
| uint32_t first = 0, second = 0; |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| int32_t res = 0; |
| |
| while(bottom < top-1) { |
| i = (top+bottom)/2; |
| first = *(CETable+3*i); |
| second = *(CETable+3*i+1); |
| res = compareCEs(first, second, CE, SecondCE); |
| if(res > 0) { |
| top = i; |
| } else if(res < 0) { |
| bottom = i; |
| } else { |
| break; |
| } |
| } |
| |
| /* weiv: */ |
| /* in searching for elements, I have removed the failure */ |
| /* The reason for this is that the builder does not rely */ |
| /* on search mechanism telling it that it didn't find an */ |
| /* element. However, indirect positioning relies on being */ |
| /* able to find the elements around any CE, even if it is */ |
| /* not defined in the UCA. */ |
| return i; |
| /* |
| if((first == CE && second == SecondCE)) { |
| return i; |
| } else { |
| return -1; |
| } |
| */ |
| } |
| |
| static const uint32_t strengthMask[UCOL_CE_STRENGTH_LIMIT] = { |
| 0xFFFF0000, |
| 0xFFFFFF00, |
| 0xFFFFFFFF |
| }; |
| |
| U_CAPI int32_t U_EXPORT2 ucol_inv_getNextCE(const UColTokenParser *src, |
| uint32_t CE, uint32_t contCE, |
| uint32_t *nextCE, uint32_t *nextContCE, |
| uint32_t strength) |
| { |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| int32_t iCE; |
| |
| iCE = ucol_inv_findCE(src, CE, contCE); |
| |
| if(iCE<0) { |
| *nextCE = UCOL_NOT_FOUND; |
| return -1; |
| } |
| |
| CE &= strengthMask[strength]; |
| contCE &= strengthMask[strength]; |
| |
| *nextCE = CE; |
| *nextContCE = contCE; |
| |
| while((*nextCE & strengthMask[strength]) == CE |
| && (*nextContCE & strengthMask[strength]) == contCE) |
| { |
| *nextCE = (*(CETable+3*(++iCE))); |
| *nextContCE = (*(CETable+3*(iCE)+1)); |
| } |
| |
| return iCE; |
| } |
| |
| U_CFUNC int32_t U_EXPORT2 ucol_inv_getPrevCE(const UColTokenParser *src, |
| uint32_t CE, uint32_t contCE, |
| uint32_t *prevCE, uint32_t *prevContCE, |
| uint32_t strength) |
| { |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| int32_t iCE; |
| |
| iCE = ucol_inv_findCE(src, CE, contCE); |
| |
| if(iCE<0) { |
| *prevCE = UCOL_NOT_FOUND; |
| return -1; |
| } |
| |
| CE &= strengthMask[strength]; |
| contCE &= strengthMask[strength]; |
| |
| *prevCE = CE; |
| *prevContCE = contCE; |
| |
| while((*prevCE & strengthMask[strength]) == CE |
| && (*prevContCE & strengthMask[strength])== contCE |
| && iCE > 0) /* this condition should prevent falling off the edge of the world */ |
| { |
| /* here, we end up in a singularity - zero */ |
| *prevCE = (*(CETable+3*(--iCE))); |
| *prevContCE = (*(CETable+3*(iCE)+1)); |
| } |
| |
| return iCE; |
| } |
| |
| U_CFUNC uint32_t U_EXPORT2 ucol_getCEStrengthDifference(uint32_t CE, uint32_t contCE, |
| uint32_t prevCE, uint32_t prevContCE) |
| { |
| if(prevCE == CE && prevContCE == contCE) { |
| return UCOL_IDENTICAL; |
| } |
| if((prevCE & strengthMask[UCOL_PRIMARY]) != (CE & strengthMask[UCOL_PRIMARY]) |
| || (prevContCE & strengthMask[UCOL_PRIMARY]) != (contCE & strengthMask[UCOL_PRIMARY])) |
| { |
| return UCOL_PRIMARY; |
| } |
| if((prevCE & strengthMask[UCOL_SECONDARY]) != (CE & strengthMask[UCOL_SECONDARY]) |
| || (prevContCE & strengthMask[UCOL_SECONDARY]) != (contCE & strengthMask[UCOL_SECONDARY])) |
| { |
| return UCOL_SECONDARY; |
| } |
| return UCOL_TERTIARY; |
| } |
| |
| |
| /*static |
| inline int32_t ucol_inv_getPrevious(UColTokenParser *src, UColTokListHeader *lh, uint32_t strength) { |
| |
| uint32_t CE = lh->baseCE; |
| uint32_t SecondCE = lh->baseContCE; |
| |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| uint32_t previousCE, previousContCE; |
| int32_t iCE; |
| |
| iCE = ucol_inv_findCE(src, CE, SecondCE); |
| |
| if(iCE<0) { |
| return -1; |
| } |
| |
| CE &= strengthMask[strength]; |
| SecondCE &= strengthMask[strength]; |
| |
| previousCE = CE; |
| previousContCE = SecondCE; |
| |
| while((previousCE & strengthMask[strength]) == CE && (previousContCE & strengthMask[strength])== SecondCE) { |
| previousCE = (*(CETable+3*(--iCE))); |
| previousContCE = (*(CETable+3*(iCE)+1)); |
| } |
| lh->previousCE = previousCE; |
| lh->previousContCE = previousContCE; |
| |
| return iCE; |
| }*/ |
| |
| static |
| inline int32_t ucol_inv_getNext(UColTokenParser *src, UColTokListHeader *lh, uint32_t strength) { |
| uint32_t CE = lh->baseCE; |
| uint32_t SecondCE = lh->baseContCE; |
| |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| uint32_t nextCE, nextContCE; |
| int32_t iCE; |
| |
| iCE = ucol_inv_findCE(src, CE, SecondCE); |
| |
| if(iCE<0) { |
| return -1; |
| } |
| |
| CE &= strengthMask[strength]; |
| SecondCE &= strengthMask[strength]; |
| |
| nextCE = CE; |
| nextContCE = SecondCE; |
| |
| while((nextCE & strengthMask[strength]) == CE |
| && (nextContCE & strengthMask[strength]) == SecondCE) |
| { |
| nextCE = (*(CETable+3*(++iCE))); |
| nextContCE = (*(CETable+3*(iCE)+1)); |
| } |
| |
| lh->nextCE = nextCE; |
| lh->nextContCE = nextContCE; |
| |
| return iCE; |
| } |
| |
| static void ucol_inv_getGapPositions(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { |
| /* reset all the gaps */ |
| int32_t i = 0; |
| uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); |
| uint32_t st = 0; |
| uint32_t t1, t2; |
| int32_t pos; |
| |
| UColToken *tok = lh->first; |
| uint32_t tokStrength = tok->strength; |
| |
| for(i = 0; i<3; i++) { |
| lh->gapsHi[3*i] = 0; |
| lh->gapsHi[3*i+1] = 0; |
| lh->gapsHi[3*i+2] = 0; |
| lh->gapsLo[3*i] = 0; |
| lh->gapsLo[3*i+1] = 0; |
| lh->gapsLo[3*i+2] = 0; |
| lh->numStr[i] = 0; |
| lh->fStrToken[i] = NULL; |
| lh->lStrToken[i] = NULL; |
| lh->pos[i] = -1; |
| } |
| |
| UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); |
| |
| if((lh->baseCE & 0xFF000000)>= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && (lh->baseCE & 0xFF000000) <= (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicits - */ |
| //if(lh->baseCE >= PRIMARY_IMPLICIT_MIN && lh->baseCE < PRIMARY_IMPLICIT_MAX ) { /* implicits - */ |
| lh->pos[0] = 0; |
| t1 = lh->baseCE; |
| t2 = lh->baseContCE & UCOL_REMOVE_CONTINUATION; |
| lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; |
| uint32_t primaryCE = (t1 & UCOL_PRIMARYMASK) | ((t2 & UCOL_PRIMARYMASK) >> 16); |
| primaryCE = uprv_uca_getImplicitFromRaw(uprv_uca_getRawFromImplicit(primaryCE)+1); |
| |
| t1 = (primaryCE & UCOL_PRIMARYMASK) | 0x0505; |
| t2 = (primaryCE << 16) & UCOL_PRIMARYMASK; // | UCOL_CONTINUATION_MARKER; |
| |
| lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; |
| } else if(lh->indirect == TRUE && lh->nextCE != 0) { |
| //} else if(lh->baseCE == UCOL_RESET_TOP_VALUE && lh->baseContCE == 0) { |
| lh->pos[0] = 0; |
| t1 = lh->baseCE; |
| t2 = lh->baseContCE&UCOL_REMOVE_CONTINUATION; |
| lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; |
| t1 = lh->nextCE; |
| t2 = lh->nextContCE&UCOL_REMOVE_CONTINUATION; |
| lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; |
| } else { |
| for(;;) { |
| if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { |
| if((lh->pos[tokStrength] = ucol_inv_getNext(src, lh, tokStrength)) >= 0) { |
| lh->fStrToken[tokStrength] = tok; |
| } else { /* The CE must be implicit, since it's not in the table */ |
| /* Error */ |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| } |
| } |
| |
| while(tok != NULL && tok->strength >= tokStrength) { |
| if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { |
| lh->lStrToken[tokStrength] = tok; |
| } |
| tok = tok->next; |
| } |
| if(tokStrength < UCOL_CE_STRENGTH_LIMIT-1) { |
| /* check if previous interval is the same and merge the intervals if it is so */ |
| if(lh->pos[tokStrength] == lh->pos[tokStrength+1]) { |
| lh->fStrToken[tokStrength] = lh->fStrToken[tokStrength+1]; |
| lh->fStrToken[tokStrength+1] = NULL; |
| lh->lStrToken[tokStrength+1] = NULL; |
| lh->pos[tokStrength+1] = -1; |
| } |
| } |
| if(tok != NULL) { |
| tokStrength = tok->strength; |
| } else { |
| break; |
| } |
| } |
| for(st = 0; st < 3; st++) { |
| if((pos = lh->pos[st]) >= 0) { |
| t1 = *(CETable+3*(pos)); |
| t2 = *(CETable+3*(pos)+1); |
| lh->gapsHi[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsHi[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| //lh->gapsHi[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; |
| lh->gapsHi[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; |
| //pos--; |
| //t1 = *(CETable+3*(pos)); |
| //t2 = *(CETable+3*(pos)+1); |
| t1 = lh->baseCE; |
| t2 = lh->baseContCE; |
| lh->gapsLo[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; |
| lh->gapsLo[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; |
| lh->gapsLo[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; |
| } |
| } |
| } |
| } |
| |
| |
| #define ucol_countBytes(value, noOfBytes) \ |
| { \ |
| uint32_t mask = 0xFFFFFFFF; \ |
| (noOfBytes) = 0; \ |
| while(mask != 0) { \ |
| if(((value) & mask) != 0) { \ |
| (noOfBytes)++; \ |
| } \ |
| mask >>= 8; \ |
| } \ |
| } |
| |
| static uint32_t ucol_getNextGenerated(ucolCEGenerator *g, UErrorCode *status) { |
| if(U_SUCCESS(*status)) { |
| g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); |
| } |
| return g->current; |
| } |
| |
| static uint32_t ucol_getSimpleCEGenerator(ucolCEGenerator *g, UColToken *tok, uint32_t strength, UErrorCode *status) { |
| /* TODO: rename to enum names */ |
| uint32_t high, low, count=1; |
| uint32_t maxByte = (strength == UCOL_TERTIARY)?0x3F:0xFF; |
| |
| if(strength == UCOL_SECONDARY) { |
| low = UCOL_COMMON_TOP2<<24; |
| high = 0xFFFFFFFF; |
| count = 0xFF - UCOL_COMMON_TOP2; |
| } else { |
| low = UCOL_BYTE_COMMON << 24; //0x05000000; |
| high = 0x40000000; |
| count = 0x40 - UCOL_BYTE_COMMON; |
| } |
| |
| if(tok->next != NULL && tok->next->strength == strength) { |
| count = tok->next->toInsert; |
| } |
| |
| g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); |
| g->current = UCOL_BYTE_COMMON<<24; |
| |
| if(g->noOfRanges == 0) { |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| } |
| return g->current; |
| } |
| |
| static uint32_t ucol_getCEGenerator(ucolCEGenerator *g, uint32_t* lows, uint32_t* highs, UColToken *tok, uint32_t fStrength, UErrorCode *status) { |
| uint32_t strength = tok->strength; |
| uint32_t low = lows[fStrength*3+strength]; |
| uint32_t high = highs[fStrength*3+strength]; |
| uint32_t maxByte = 0; |
| if(strength == UCOL_TERTIARY) { |
| maxByte = 0x3F; |
| } else if(strength == UCOL_PRIMARY) { |
| maxByte = 0xFE; |
| } else { |
| maxByte = 0xFF; |
| } |
| |
| uint32_t count = tok->toInsert; |
| |
| if(low >= high && strength > UCOL_PRIMARY) { |
| int32_t s = strength; |
| for(;;) { |
| s--; |
| if(lows[fStrength*3+s] != highs[fStrength*3+s]) { |
| if(strength == UCOL_SECONDARY) { |
| if (low < UCOL_COMMON_TOP2<<24 ) { |
| // Override if low range is less than UCOL_COMMON_TOP2. |
| low = UCOL_COMMON_TOP2<<24; |
| } |
| high = 0xFFFFFFFF; |
| } else { |
| // Override if low range is less than UCOL_COMMON_BOT3. |
| if ( low < UCOL_COMMON_BOT3<<24 ) { |
| low = UCOL_COMMON_BOT3<<24; |
| } |
| high = 0x40000000; |
| } |
| break; |
| } |
| if(s<0) { |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| return 0; |
| } |
| } |
| } |
| |
| if(low < 0x02000000) { |
| // We must not use CE weight byte 02, so we set it as the minimum lower bound. |
| // See http://site.icu-project.org/design/collation/bytes |
| low = 0x02000000; |
| } |
| |
| if(strength == UCOL_SECONDARY) { /* similar as simple */ |
| if(low >= (UCOL_COMMON_BOT2<<24) && low < (uint32_t)(UCOL_COMMON_TOP2<<24)) { |
| low = UCOL_COMMON_TOP2<<24; |
| } |
| if(high > (UCOL_COMMON_BOT2<<24) && high < (uint32_t)(UCOL_COMMON_TOP2<<24)) { |
| high = UCOL_COMMON_TOP2<<24; |
| } |
| if(low < (UCOL_COMMON_BOT2<<24)) { |
| g->noOfRanges = ucol_allocWeights(UCOL_BYTE_UNSHIFTED_MIN<<24, high, count, maxByte, g->ranges); |
| g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); |
| //g->current = UCOL_COMMON_BOT2<<24; |
| return g->current; |
| } |
| } |
| |
| g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); |
| if(g->noOfRanges == 0) { |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| } |
| g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); |
| return g->current; |
| } |
| |
| static |
| uint32_t u_toLargeKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { |
| uint32_t i = 0; |
| UChar c; |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| if(sourceLen > resLen) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| |
| for(i = 0; i < sourceLen; i++) { |
| c = source[i]; |
| if(0x3041 <= c && c <= 0x30FA) { /* Kana range */ |
| switch(c - 0x3000) { |
| case 0x41: case 0x43: case 0x45: case 0x47: case 0x49: case 0x63: case 0x83: case 0x85: case 0x8E: |
| case 0xA1: case 0xA3: case 0xA5: case 0xA7: case 0xA9: case 0xC3: case 0xE3: case 0xE5: case 0xEE: |
| c++; |
| break; |
| case 0xF5: |
| c = 0x30AB; |
| break; |
| case 0xF6: |
| c = 0x30B1; |
| break; |
| } |
| } |
| resBuf[i] = c; |
| } |
| return sourceLen; |
| } |
| |
| static |
| uint32_t u_toSmallKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { |
| uint32_t i = 0; |
| UChar c; |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| |
| if(sourceLen > resLen) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| |
| for(i = 0; i < sourceLen; i++) { |
| c = source[i]; |
| if(0x3041 <= c && c <= 0x30FA) { /* Kana range */ |
| switch(c - 0x3000) { |
| case 0x42: case 0x44: case 0x46: case 0x48: case 0x4A: case 0x64: case 0x84: case 0x86: case 0x8F: |
| case 0xA2: case 0xA4: case 0xA6: case 0xA8: case 0xAA: case 0xC4: case 0xE4: case 0xE6: case 0xEF: |
| c--; |
| break; |
| case 0xAB: |
| c = 0x30F5; |
| break; |
| case 0xB1: |
| c = 0x30F6; |
| break; |
| } |
| } |
| resBuf[i] = c; |
| } |
| return sourceLen; |
| } |
| |
| U_NAMESPACE_BEGIN |
| |
| static |
| uint8_t ucol_uprv_getCaseBits(const UCollator *UCA, const UChar *src, uint32_t len, UErrorCode *status) { |
| uint32_t i = 0; |
| UChar n[128]; |
| uint32_t nLen = 0; |
| uint32_t uCount = 0, lCount = 0; |
| |
| collIterate s; |
| uint32_t order = 0; |
| |
| if(U_FAILURE(*status)) { |
| return UCOL_LOWER_CASE; |
| } |
| |
| nLen = unorm_normalize(src, len, UNORM_NFKD, 0, n, 128, status); |
| if(U_SUCCESS(*status)) { |
| for(i = 0; i < nLen; i++) { |
| uprv_init_collIterate(UCA, &n[i], 1, &s, status); |
| order = ucol_getNextCE(UCA, &s, status); |
| if(isContinuation(order)) { |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| return UCOL_LOWER_CASE; |
| } |
| if((order&UCOL_CASE_BIT_MASK)== UCOL_UPPER_CASE) { |
| uCount++; |
| } else { |
| if(u_islower(n[i])) { |
| lCount++; |
| } else if(U_SUCCESS(*status)) { |
| UChar sk[1], lk[1]; |
| u_toSmallKana(&n[i], 1, sk, 1, status); |
| u_toLargeKana(&n[i], 1, lk, 1, status); |
| if(sk[0] == n[i] && lk[0] != n[i]) { |
| lCount++; |
| } |
| } |
| } |
| } |
| } |
| |
| if(uCount != 0 && lCount != 0) { |
| return UCOL_MIXED_CASE; |
| } else if(uCount != 0) { |
| return UCOL_UPPER_CASE; |
| } else { |
| return UCOL_LOWER_CASE; |
| } |
| } |
| |
| |
| U_CFUNC void ucol_doCE(UColTokenParser *src, uint32_t *CEparts, UColToken *tok, UErrorCode *status) { |
| /* this one makes the table and stuff */ |
| uint32_t noOfBytes[3]; |
| uint32_t i; |
| |
| for(i = 0; i<3; i++) { |
| ucol_countBytes(CEparts[i], noOfBytes[i]); |
| } |
| |
| /* Here we have to pack CEs from parts */ |
| |
| uint32_t CEi = 0; |
| uint32_t value = 0; |
| |
| while(2*CEi<noOfBytes[0] || CEi<noOfBytes[1] || CEi<noOfBytes[2]) { |
| if(CEi > 0) { |
| value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ |
| } else { |
| value = 0; |
| } |
| |
| if(2*CEi<noOfBytes[0]) { |
| value |= ((CEparts[0]>>(32-16*(CEi+1))) & 0xFFFF) << 16; |
| } |
| if(CEi<noOfBytes[1]) { |
| value |= ((CEparts[1]>>(32-8*(CEi+1))) & 0xFF) << 8; |
| } |
| if(CEi<noOfBytes[2]) { |
| value |= ((CEparts[2]>>(32-8*(CEi+1))) & 0x3F); |
| } |
| tok->CEs[CEi] = value; |
| CEi++; |
| } |
| if(CEi == 0) { /* totally ignorable */ |
| tok->noOfCEs = 1; |
| tok->CEs[0] = 0; |
| } else { /* there is at least something */ |
| tok->noOfCEs = CEi; |
| } |
| |
| |
| // we want to set case bits here and now, not later. |
| // Case bits handling |
| if(tok->CEs[0] != 0) { // case bits should be set only for non-ignorables |
| tok->CEs[0] &= 0xFFFFFF3F; // Clean the case bits field |
| int32_t cSize = (tok->source & 0xFF000000) >> 24; |
| UChar *cPoints = (tok->source & 0x00FFFFFF) + src->source; |
| |
| if(cSize > 1) { |
| // Do it manually |
| tok->CEs[0] |= ucol_uprv_getCaseBits(src->UCA, cPoints, cSize, status); |
| } else { |
| // Copy it from the UCA |
| uint32_t caseCE = ucol_getFirstCE(src->UCA, cPoints[0], status); |
| tok->CEs[0] |= (caseCE & 0xC0); |
| } |
| } |
| |
| #if UCOL_DEBUG==2 |
| fprintf(stderr, "%04X str: %i, [%08X, %08X, %08X]: tok: ", tok->debugSource, tok->strength, CEparts[0] >> (32-8*noOfBytes[0]), CEparts[1] >> (32-8*noOfBytes[1]), CEparts[2]>> (32-8*noOfBytes[2])); |
| for(i = 0; i<tok->noOfCEs; i++) { |
| fprintf(stderr, "%08X ", tok->CEs[i]); |
| } |
| fprintf(stderr, "\n"); |
| #endif |
| } |
| |
| U_CFUNC void ucol_initBuffers(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { |
| ucolCEGenerator Gens[UCOL_CE_STRENGTH_LIMIT]; |
| uint32_t CEparts[UCOL_CE_STRENGTH_LIMIT]; |
| |
| UColToken *tok = lh->last; |
| uint32_t t[UCOL_STRENGTH_LIMIT]; |
| |
| uprv_memset(t, 0, UCOL_STRENGTH_LIMIT*sizeof(uint32_t)); |
| |
| /* must initialize ranges to avoid memory check warnings */ |
| for (int i = 0; i < UCOL_CE_STRENGTH_LIMIT; i++) { |
| uprv_memset(Gens[i].ranges, 0, sizeof(Gens[i].ranges)); |
| } |
| |
| tok->toInsert = 1; |
| t[tok->strength] = 1; |
| |
| while(tok->previous != NULL) { |
| if(tok->previous->strength < tok->strength) { /* going up */ |
| t[tok->strength] = 0; |
| t[tok->previous->strength]++; |
| } else if(tok->previous->strength > tok->strength) { /* going down */ |
| t[tok->previous->strength] = 1; |
| } else { |
| t[tok->strength]++; |
| } |
| tok=tok->previous; |
| tok->toInsert = t[tok->strength]; |
| } |
| |
| tok->toInsert = t[tok->strength]; |
| ucol_inv_getGapPositions(src, lh, status); |
| |
| #if UCOL_DEBUG |
| fprintf(stderr, "BaseCE: %08X %08X\n", lh->baseCE, lh->baseContCE); |
| int32_t j = 2; |
| for(j = 2; j >= 0; j--) { |
| fprintf(stderr, "gapsLo[%i] [%08X %08X %08X]\n", j, lh->gapsLo[j*3], lh->gapsLo[j*3+1], lh->gapsLo[j*3+2]); |
| fprintf(stderr, "gapsHi[%i] [%08X %08X %08X]\n", j, lh->gapsHi[j*3], lh->gapsHi[j*3+1], lh->gapsHi[j*3+2]); |
| } |
| tok=&lh->first[UCOL_TOK_POLARITY_POSITIVE]; |
| |
| do { |
| fprintf(stderr,"%i", tok->strength); |
| tok = tok->next; |
| } while(tok != NULL); |
| fprintf(stderr, "\n"); |
| |
| tok=&lh->first[UCOL_TOK_POLARITY_POSITIVE]; |
| |
| do { |
| fprintf(stderr,"%i", tok->toInsert); |
| tok = tok->next; |
| } while(tok != NULL); |
| #endif |
| |
| tok = lh->first; |
| uint32_t fStrength = UCOL_IDENTICAL; |
| uint32_t initStrength = UCOL_IDENTICAL; |
| |
| |
| CEparts[UCOL_PRIMARY] = (lh->baseCE & UCOL_PRIMARYMASK) | (lh->baseContCE & UCOL_PRIMARYMASK) >> 16; |
| CEparts[UCOL_SECONDARY] = (lh->baseCE & UCOL_SECONDARYMASK) << 16 | (lh->baseContCE & UCOL_SECONDARYMASK) << 8; |
| CEparts[UCOL_TERTIARY] = (UCOL_TERTIARYORDER(lh->baseCE)) << 24 | (UCOL_TERTIARYORDER(lh->baseContCE)) << 16; |
| |
| while (tok != NULL && U_SUCCESS(*status)) { |
| fStrength = tok->strength; |
| if(fStrength < initStrength) { |
| initStrength = fStrength; |
| if(lh->pos[fStrength] == -1) { |
| while(lh->pos[fStrength] == -1 && fStrength > 0) { |
| fStrength--; |
| } |
| if(lh->pos[fStrength] == -1) { |
| *status = U_INTERNAL_PROGRAM_ERROR; |
| return; |
| } |
| } |
| if(initStrength == UCOL_TERTIARY) { /* starting with tertiary */ |
| CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; |
| CEparts[UCOL_SECONDARY] = lh->gapsLo[fStrength*3+1]; |
| /*CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], lh->gapsLo[fStrength*3+2], lh->gapsHi[fStrength*3+2], tok, UCOL_TERTIARY); */ |
| CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[UCOL_TERTIARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); |
| } else if(initStrength == UCOL_SECONDARY) { /* secondaries */ |
| CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; |
| /*CEparts[1] = ucol_getCEGenerator(&Gens[1], lh->gapsLo[fStrength*3+1], lh->gapsHi[fStrength*3+1], tok, 1);*/ |
| CEparts[UCOL_SECONDARY] = ucol_getCEGenerator(&Gens[UCOL_SECONDARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); |
| CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); |
| } else { /* primaries */ |
| /*CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[0], lh->gapsLo[0], lh->gapsHi[0], tok, UCOL_PRIMARY);*/ |
| CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[UCOL_PRIMARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); |
| CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); |
| CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); |
| } |
| } else { |
| if(tok->strength == UCOL_TERTIARY) { |
| CEparts[UCOL_TERTIARY] = ucol_getNextGenerated(&Gens[UCOL_TERTIARY], status); |
| } else if(tok->strength == UCOL_SECONDARY) { |
| CEparts[UCOL_SECONDARY] = ucol_getNextGenerated(&Gens[UCOL_SECONDARY], status); |
| CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); |
| } else if(tok->strength == UCOL_PRIMARY) { |
| CEparts[UCOL_PRIMARY] = ucol_getNextGenerated(&Gens[UCOL_PRIMARY], status); |
| CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); |
| CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); |
| } |
| } |
| ucol_doCE(src, CEparts, tok, status); |
| tok = tok->next; |
| } |
| } |
| |
| U_CFUNC void ucol_createElements(UColTokenParser *src, tempUCATable *t, UColTokListHeader *lh, UErrorCode *status) { |
| UCAElements el; |
| UColToken *tok = lh->first; |
| UColToken *expt = NULL; |
| uint32_t i = 0, j = 0; |
| const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status); |
| |
| while(tok != NULL && U_SUCCESS(*status)) { |
| /* first, check if there are any expansions */ |
| /* if there are expansions, we need to do a little bit more processing */ |
| /* since parts of expansion can be tailored, while others are not */ |
| if(tok->expansion != 0) { |
| uint32_t len = tok->expansion >> 24; |
| uint32_t currentSequenceLen = len; |
| uint32_t expOffset = tok->expansion & 0x00FFFFFF; |
| //uint32_t exp = currentSequenceLen | expOffset; |
| UColToken exp; |
| exp.source = currentSequenceLen | expOffset; |
| exp.rulesToParseHdl = &(src->source); |
| |
| while(len > 0) { |
| currentSequenceLen = len; |
| while(currentSequenceLen > 0) { |
| exp.source = (currentSequenceLen << 24) | expOffset; |
| if((expt = (UColToken *)uhash_get(src->tailored, &exp)) != NULL && expt->strength != UCOL_TOK_RESET) { /* expansion is tailored */ |
| uint32_t noOfCEsToCopy = expt->noOfCEs; |
| for(j = 0; j<noOfCEsToCopy; j++) { |
| tok->expCEs[tok->noOfExpCEs + j] = expt->CEs[j]; |
| } |
| tok->noOfExpCEs += noOfCEsToCopy; |
| // Smart people never try to add codepoints and CEs. |
| // For some odd reason, it won't work. |
| expOffset += currentSequenceLen; //noOfCEsToCopy; |
| len -= currentSequenceLen; //noOfCEsToCopy; |
| break; |
| } else { |
| currentSequenceLen--; |
| } |
| } |
| if(currentSequenceLen == 0) { /* couldn't find any tailored subsequence */ |
| /* will have to get one from UCA */ |
| /* first, get the UChars from the rules */ |
| /* then pick CEs out until there is no more and stuff them into expansion */ |
| collIterate s; |
| uint32_t order = 0; |
| uprv_init_collIterate(src->UCA, expOffset + src->source, 1, &s, status); |
| |
| for(;;) { |
| order = ucol_getNextCE(src->UCA, &s, status); |
| if(order == UCOL_NO_MORE_CES) { |
| break; |
| } |
| tok->expCEs[tok->noOfExpCEs++] = order; |
| } |
| expOffset++; |
| len--; |
| } |
| } |
| } else { |
| tok->noOfExpCEs = 0; |
| } |
| |
| /* set the ucaelement with obtained values */ |
| el.noOfCEs = tok->noOfCEs + tok->noOfExpCEs; |
| /* copy CEs */ |
| for(i = 0; i<tok->noOfCEs; i++) { |
| el.CEs[i] = tok->CEs[i]; |
| } |
| for(i = 0; i<tok->noOfExpCEs; i++) { |
| el.CEs[i+tok->noOfCEs] = tok->expCEs[i]; |
| } |
| |
| /* copy UChars */ |
| // We kept prefix and source kind of together, as it is a kind of a contraction. |
| // However, now we have to slice the prefix off the main thing - |
| el.prefix = el.prefixChars; |
| el.cPoints = el.uchars; |
| if(tok->prefix != 0) { // we will just copy the prefix here, and adjust accordingly in the |
| // addPrefix function in ucol_elm. The reason is that we need to add both composed AND |
| // decomposed elements to the unsaf table. |
| el.prefixSize = tok->prefix>>24; |
| uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.prefixSize*sizeof(UChar)); |
| |
| el.cSize = (tok->source >> 24)-(tok->prefix>>24); |
| uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24) + src->source, el.cSize*sizeof(UChar)); |
| } else { |
| el.prefixSize = 0; |
| *el.prefix = 0; |
| |
| el.cSize = (tok->source >> 24); |
| uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.cSize*sizeof(UChar)); |
| } |
| if(src->UCA != NULL) { |
| for(i = 0; i<el.cSize; i++) { |
| if(UCOL_ISJAMO(el.cPoints[i])) { |
| t->image->jamoSpecial = TRUE; |
| } |
| } |
| if (!src->buildCCTabFlag && el.cSize > 0) { |
| // Check the trailing canonical combining class (tccc) of the last character. |
| const UChar *s = el.cPoints + el.cSize; |
| uint16_t fcd = nfcImpl->previousFCD16(el.cPoints, s); |
| if ((fcd & 0xff) != 0) { |
| src->buildCCTabFlag = TRUE; |
| } |
| } |
| } |
| |
| /* and then, add it */ |
| #if UCOL_DEBUG==2 |
| fprintf(stderr, "Adding: %04X with %08X\n", el.cPoints[0], el.CEs[0]); |
| #endif |
| uprv_uca_addAnElement(t, &el, status); |
| |
| #if UCOL_DEBUG_DUPLICATES |
| if(*status != U_ZERO_ERROR) { |
| fprintf(stderr, "replaced CE for %04X with CE for %04X\n", el.cPoints[0], tok->debugSource); |
| *status = U_ZERO_ERROR; |
| } |
| #endif |
| |
| tok = tok->next; |
| } |
| } |
| |
| U_CDECL_BEGIN |
| static UBool U_CALLCONV |
| _processUCACompleteIgnorables(const void *context, UChar32 start, UChar32 limit, uint32_t value) { |
| UErrorCode status = U_ZERO_ERROR; |
| tempUCATable *t = (tempUCATable *)context; |
| if(value == 0) { |
| while(start < limit) { |
| uint32_t CE = utrie_get32(t->mapping, start, NULL); |
| if(CE == UCOL_NOT_FOUND) { |
| UCAElements el; |
| el.isThai = FALSE; |
| el.prefixSize = 0; |
| el.prefixChars[0] = 0; |
| el.prefix = el.prefixChars; |
| el.cPoints = el.uchars; |
| |
| el.cSize = 0; |
| U16_APPEND_UNSAFE(el.uchars, el.cSize, start); |
| |
| el.noOfCEs = 1; |
| el.CEs[0] = 0; |
| uprv_uca_addAnElement(t, &el, &status); |
| |
| } |
| start++; |
| } |
| } |
| if(U_FAILURE(status)) { |
| return FALSE; |
| } else { |
| return TRUE; |
| } |
| } |
| U_CDECL_END |
| |
| static void |
| ucol_uprv_bld_copyRangeFromUCA(UColTokenParser *src, tempUCATable *t, |
| UChar32 start, UChar32 end, |
| UErrorCode *status) |
| { |
| //UChar decomp[256]; |
| uint32_t CE = UCOL_NOT_FOUND; |
| UChar32 u = 0; |
| UCAElements el; |
| el.isThai = FALSE; |
| el.prefixSize = 0; |
| el.prefixChars[0] = 0; |
| collIterate colIt; |
| |
| if(U_SUCCESS(*status)) { |
| for(u = start; u<=end; u++) { |
| if((CE = utrie_get32(t->mapping, u, NULL)) == UCOL_NOT_FOUND |
| /* this test is for contractions that are missing the starting element. */ |
| || ((isCntTableElement(CE)) && |
| (uprv_cnttab_getCE(t->contractions, CE, 0, status) == UCOL_NOT_FOUND)) |
| ) |
| { |
| el.cSize = 0; |
| U16_APPEND_UNSAFE(el.uchars, el.cSize, u); |
| //decomp[0] = (UChar)u; |
| //el.uchars[0] = (UChar)u; |
| el.cPoints = el.uchars; |
| //el.cSize = 1; |
| el.noOfCEs = 0; |
| el.prefix = el.prefixChars; |
| el.prefixSize = 0; |
| //uprv_init_collIterate(src->UCA, decomp, 1, &colIt); |
| // We actually want to check whether this element is a special |
| // If it is an implicit element (hangul, CJK - we want to copy the |
| // special, not the resolved CEs) - for hangul, copying resolved |
| // would just make things the same (there is an expansion and it |
| // takes approximately the same amount of time to resolve as |
| // falling back to the UCA). |
| /* |
| UTRIE_GET32(src->UCA->mapping, u, CE); |
| tag = getCETag(CE); |
| if(tag == HANGUL_SYLLABLE_TAG || tag == CJK_IMPLICIT_TAG |
| || tag == IMPLICIT_TAG || tag == TRAIL_SURROGATE_TAG |
| || tag == LEAD_SURROGATE_TAG) { |
| el.CEs[el.noOfCEs++] = CE; |
| } else { |
| */ |
| // It turns out that it does not make sense to keep implicits |
| // unresolved. The cost of resolving them is big enough so that |
| // it doesn't make any difference whether we have to go to the UCA |
| // or not. |
| { |
| uprv_init_collIterate(src->UCA, el.uchars, el.cSize, &colIt, status); |
| while(CE != UCOL_NO_MORE_CES) { |
| CE = ucol_getNextCE(src->UCA, &colIt, status); |
| if(CE != UCOL_NO_MORE_CES) { |
| el.CEs[el.noOfCEs++] = CE; |
| } |
| } |
| } |
| uprv_uca_addAnElement(t, &el, status); |
| } |
| } |
| } |
| } |
| |
| U_NAMESPACE_END |
| |
| U_CFUNC UCATableHeader * |
| ucol_assembleTailoringTable(UColTokenParser *src, UErrorCode *status) { |
| U_NAMESPACE_USE |
| |
| uint32_t i = 0; |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| /* |
| 2. Eliminate the negative lists by doing the following for each non-null negative list: |
| o if previousCE(baseCE, strongestN) != some ListHeader X's baseCE, |
| create new ListHeader X |
| o reverse the list, add to the end of X's positive list. Reset the strength of the |
| first item you add, based on the stronger strength levels of the two lists. |
| */ |
| /* |
| 3. For each ListHeader with a non-null positive list: |
| */ |
| /* |
| o Find all character strings with CEs between the baseCE and the |
| next/previous CE, at the strength of the first token. Add these to the |
| tailoring. |
| ? That is, if UCA has ... x <<< X << x' <<< X' < y ..., and the |
| tailoring has & x < z... |
| ? Then we change the tailoring to & x <<< X << x' <<< X' < z ... |
| */ |
| /* It is possible that this part should be done even while constructing list */ |
| /* The problem is that it is unknown what is going to be the strongest weight */ |
| /* So we might as well do it here */ |
| |
| /* |
| o Allocate CEs for each token in the list, based on the total number N of the |
| largest level difference, and the gap G between baseCE and nextCE at that |
| level. The relation * between the last item and nextCE is the same as the |
| strongest strength. |
| o Example: baseCE < a << b <<< q << c < d < e * nextCE(X,1) |
| ? There are 3 primary items: a, d, e. Fit them into the primary gap. |
| Then fit b and c into the secondary gap between a and d, then fit q |
| into the tertiary gap between b and c. |
| |
| o Example: baseCE << b <<< q << c * nextCE(X,2) |
| ? There are 2 secondary items: b, c. Fit them into the secondary gap. |
| Then fit q into the tertiary gap between b and c. |
| o When incrementing primary values, we will not cross high byte |
| boundaries except where there is only a single-byte primary. That is to |
| ensure that the script reordering will continue to work. |
| */ |
| UCATableHeader *image = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)); |
| /* test for NULL */ |
| if (image == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| uprv_memcpy(image, src->UCA->image, sizeof(UCATableHeader)); |
| |
| for(i = 0; i<src->resultLen; i++) { |
| /* now we need to generate the CEs */ |
| /* We stuff the initial value in the buffers, and increase the appropriate buffer */ |
| /* According to strength */ |
| if(U_SUCCESS(*status)) { |
| if(src->lh[i].first) { // if there are any elements |
| // due to the way parser works, subsequent tailorings |
| // may remove all the elements from a sequence, therefore |
| // leaving an empty tailoring sequence. |
| ucol_initBuffers(src, &src->lh[i], status); |
| } |
| } |
| if(U_FAILURE(*status)) { |
| uprv_free(image); |
| return NULL; |
| } |
| } |
| |
| if(src->varTop != NULL) { /* stuff the variable top value */ |
| src->opts->variableTopValue = (*(src->varTop->CEs))>>16; |
| /* remove it from the list */ |
| if(src->varTop->listHeader->first == src->varTop) { /* first in list */ |
| src->varTop->listHeader->first = src->varTop->next; |
| } |
| if(src->varTop->listHeader->last == src->varTop) { /* first in list */ |
| src->varTop->listHeader->last = src->varTop->previous; |
| } |
| if(src->varTop->next != NULL) { |
| src->varTop->next->previous = src->varTop->previous; |
| } |
| if(src->varTop->previous != NULL) { |
| src->varTop->previous->next = src->varTop->next; |
| } |
| } |
| |
| |
| tempUCATable *t = uprv_uca_initTempTable(image, src->opts, src->UCA, NOT_FOUND_TAG, NOT_FOUND_TAG, status); |
| if(U_FAILURE(*status)) { |
| uprv_free(image); |
| return NULL; |
| } |
| |
| |
| /* After this, we have assigned CE values to all regular CEs */ |
| /* now we will go through list once more and resolve expansions, */ |
| /* make UCAElements structs and add them to table */ |
| for(i = 0; i<src->resultLen; i++) { |
| /* now we need to generate the CEs */ |
| /* We stuff the initial value in the buffers, and increase the appropriate buffer */ |
| /* According to strength */ |
| if(U_SUCCESS(*status)) { |
| ucol_createElements(src, t, &src->lh[i], status); |
| } |
| } |
| |
| UCAElements el; |
| el.isThai = FALSE; |
| el.prefixSize = 0; |
| el.prefixChars[0] = 0; |
| |
| /* add latin-1 stuff */ |
| ucol_uprv_bld_copyRangeFromUCA(src, t, 0, 0xFF, status); |
| |
| /* add stuff for copying */ |
| if(src->copySet != NULL) { |
| int32_t i = 0; |
| UnicodeSet *set = (UnicodeSet *)src->copySet; |
| for(i = 0; i < set->getRangeCount(); i++) { |
| ucol_uprv_bld_copyRangeFromUCA(src, t, set->getRangeStart(i), set->getRangeEnd(i), status); |
| } |
| } |
| |
| if(U_SUCCESS(*status)) { |
| /* copy contractions from the UCA - this is felt mostly for cyrillic*/ |
| |
| uint32_t tailoredCE = UCOL_NOT_FOUND; |
| UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->contractionUCACombos); |
| int32_t maxUCAContractionLength = src->UCA->image->contractionUCACombosWidth; |
| UCollationElements *ucaEl = ucol_openElements(src->UCA, NULL, 0, status); |
| // Check for null pointer |
| if (ucaEl == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| while(*conts != 0) { |
| // A continuation is NUL-terminated and NUL-padded |
| // except if it has the maximum length. |
| int32_t contractionLength = maxUCAContractionLength; |
| while(contractionLength > 0 && conts[contractionLength - 1] == 0) { |
| --contractionLength; |
| } |
| UChar32 first; |
| int32_t firstLength = 0; |
| U16_NEXT(conts, firstLength, contractionLength, first); |
| tailoredCE = utrie_get32(t->mapping, first, NULL); |
| if(tailoredCE != UCOL_NOT_FOUND) { |
| UBool needToAdd = TRUE; |
| if(isCntTableElement(tailoredCE)) { |
| if(uprv_cnttab_isTailored(t->contractions, tailoredCE, conts+firstLength, status) == TRUE) { |
| needToAdd = FALSE; |
| } |
| } |
| if (!needToAdd && isPrefix(tailoredCE) && *(conts+1)==0) { |
| UCAElements elm; |
| elm.cPoints = el.uchars; |
| elm.noOfCEs = 0; |
| elm.uchars[0] = *conts; |
| elm.uchars[1] = 0; |
| elm.cSize = 1; |
| elm.prefixChars[0] = *(conts+2); |
| elm.isThai = FALSE; |
| elm.prefix = elm.prefixChars; |
| elm.prefixSize = 1; |
| UCAElements *prefixEnt=(UCAElements *)uhash_get(t->prefixLookup, &elm); |
| if ((prefixEnt==NULL) || *(prefixEnt->prefix)!=*(conts+2)) { |
| needToAdd = TRUE; |
| } |
| } |
| if(src->removeSet != NULL && uset_contains(src->removeSet, first)) { |
| needToAdd = FALSE; |
| } |
| |
| if(needToAdd == TRUE) { // we need to add if this contraction is not tailored. |
| if (*(conts+1) != 0) { // contractions |
| el.prefix = el.prefixChars; |
| el.prefixSize = 0; |
| el.cPoints = el.uchars; |
| el.noOfCEs = 0; |
| u_memcpy(el.uchars, conts, contractionLength); |
| el.cSize = contractionLength; |
| ucol_setText(ucaEl, el.uchars, el.cSize, status); |
| } |
| else { // pre-context character |
| UChar str[4] = { 0 }; |
| int32_t len=0; |
| int32_t preKeyLen=0; |
| |
| el.cPoints = el.uchars; |
| el.noOfCEs = 0; |
| el.uchars[0] = *conts; |
| el.uchars[1] = 0; |
| el.cSize = 1; |
| el.prefixChars[0] = *(conts+2); |
| el.prefix = el.prefixChars; |
| el.prefixSize = 1; |
| if (el.prefixChars[0]!=0) { |
| // get CE of prefix character first |
| str[0]=el.prefixChars[0]; |
| str[1]=0; |
| ucol_setText(ucaEl, str, 1, status); |
| while ((int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, status)) |
| != UCOL_NULLORDER) { |
| preKeyLen++; // count number of keys for prefix character |
| } |
| str[len++] = el.prefixChars[0]; |
| } |
| |
| str[len++] = el.uchars[0]; |
| str[len]=0; |
| ucol_setText(ucaEl, str, len, status); |
| // Skip the keys for prefix character, then copy the rest to el. |
| while ((preKeyLen-->0) && |
| (int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, status)) != UCOL_NULLORDER) { |
| continue; |
| } |
| |
| } |
| while ((int32_t)(el.CEs[el.noOfCEs] = ucol_next(ucaEl, status)) != UCOL_NULLORDER) { |
| el.noOfCEs++; |
| } |
| uprv_uca_addAnElement(t, &el, status); |
| } |
| |
| } else if(src->removeSet != NULL && uset_contains(src->removeSet, first)) { |
| ucol_uprv_bld_copyRangeFromUCA(src, t, first, first, status); |
| } |
| conts+=maxUCAContractionLength; |
| } |
| ucol_closeElements(ucaEl); |
| } |
| |
| // Add completely ignorable elements |
| utrie_enum(&t->UCA->mapping, NULL, _processUCACompleteIgnorables, t); |
| |
| // add tailoring characters related canonical closures |
| uprv_uca_canonicalClosure(t, src, NULL, status); |
| |
| /* still need to produce compatibility closure */ |
| |
| UCATableHeader *myData = uprv_uca_assembleTable(t, status); |
| |
| uprv_uca_closeTempTable(t); |
| uprv_free(image); |
| |
| return myData; |
| } |
| |
| U_CDECL_BEGIN |
| static UBool U_CALLCONV |
| ucol_bld_cleanup(void) |
| { |
| udata_close(invUCA_DATA_MEM); |
| invUCA_DATA_MEM = NULL; |
| _staticInvUCA = NULL; |
| return TRUE; |
| } |
| U_CDECL_END |
| |
| U_CAPI const InverseUCATableHeader * U_EXPORT2 |
| ucol_initInverseUCA(UErrorCode *status) |
| { |
| if(U_FAILURE(*status)) return NULL; |
| |
| UBool needsInit; |
| UMTX_CHECK(NULL, (_staticInvUCA == NULL), needsInit); |
| |
| if(needsInit) { |
| InverseUCATableHeader *newInvUCA = NULL; |
| UDataMemory *result = udata_openChoice(U_ICUDATA_COLL, INVC_DATA_TYPE, INVC_DATA_NAME, isAcceptableInvUCA, NULL, status); |
| |
| if(U_FAILURE(*status)) { |
| if (result) { |
| udata_close(result); |
| } |
| // This is not needed, as we are talking about |
| // memory we got from UData |
| //uprv_free(newInvUCA); |
| } |
| |
| if(result != NULL) { /* It looks like sometimes we can fail to find the data file */ |
| newInvUCA = (InverseUCATableHeader *)udata_getMemory(result); |
| UCollator *UCA = ucol_initUCA(status); |
| // UCA versions of UCA and inverse UCA should match |
| if(uprv_memcmp(newInvUCA->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo)) != 0) { |
| *status = U_INVALID_FORMAT_ERROR; |
| udata_close(result); |
| return NULL; |
| } |
| |
| umtx_lock(NULL); |
| if(_staticInvUCA == NULL) { |
| invUCA_DATA_MEM = result; |
| _staticInvUCA = newInvUCA; |
| result = NULL; |
| newInvUCA = NULL; |
| } |
| umtx_unlock(NULL); |
| |
| if(newInvUCA != NULL) { |
| udata_close(result); |
| // This is not needed, as we are talking about |
| // memory we got from UData |
| //uprv_free(newInvUCA); |
| } |
| else { |
| ucln_i18n_registerCleanup(UCLN_I18N_UCOL_BLD, ucol_bld_cleanup); |
| } |
| } |
| } |
| return _staticInvUCA; |
| } |
| |
| /* This is the data that is used for non-script reordering codes. These _must_ be kept |
| * in order that they are to be applied as defaults and in synch with the UColReorderCode enum. |
| */ |
| static const char * const ReorderingTokenNames[] = { |
| "SPACE", |
| "PUNCT", |
| "SYMBOL", |
| "CURRENCY", |
| "DIGIT" |
| }; |
| |
| static void toUpper(const char* src, char* dst, uint32_t length) { |
| for (uint32_t i = 0; *src != '\0' && i < length - 1; ++src, ++dst, ++i) { |
| *dst = uprv_toupper(*src); |
| } |
| *dst = '\0'; |
| } |
| |
| U_INTERNAL int32_t U_EXPORT2 |
| ucol_findReorderingEntry(const char* name) { |
| char buffer[32]; |
| toUpper(name, buffer, 32); |
| for (uint32_t entry = 0; entry < LENGTHOF(ReorderingTokenNames); entry++) { |
| if (uprv_strcmp(buffer, ReorderingTokenNames[entry]) == 0) { |
| return entry + UCOL_REORDER_CODE_FIRST; |
| } |
| } |
| return USCRIPT_INVALID_CODE; |
| } |
| |
| #endif /* #if !UCONFIG_NO_COLLATION */ |