| // Copyright 2011 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // SSE2 version of speed-critical encoding functions. |
| // |
| // Author: Christian Duvivier (cduvivier@google.com) |
| |
| #include "./dsp.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #if defined(WEBP_USE_SSE2) |
| #include <stdlib.h> // for abs() |
| #include <emmintrin.h> |
| |
| #include "../enc/vp8enci.h" |
| |
| //------------------------------------------------------------------------------ |
| // Quite useful macro for debugging. Left here for convenience. |
| |
| #if 0 |
| #include <stdio.h> |
| static void PrintReg(const __m128i r, const char* const name, int size) { |
| int n; |
| union { |
| __m128i r; |
| uint8_t i8[16]; |
| uint16_t i16[8]; |
| uint32_t i32[4]; |
| uint64_t i64[2]; |
| } tmp; |
| tmp.r = r; |
| printf("%s\t: ", name); |
| if (size == 8) { |
| for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]); |
| } else if (size == 16) { |
| for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]); |
| } else if (size == 32) { |
| for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]); |
| } else { |
| for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]); |
| } |
| printf("\n"); |
| } |
| #endif |
| |
| //------------------------------------------------------------------------------ |
| // Compute susceptibility based on DCT-coeff histograms: |
| // the higher, the "easier" the macroblock is to compress. |
| |
| static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred, |
| int start_block, int end_block, |
| VP8Histogram* const histo) { |
| const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
| int j; |
| for (j = start_block; j < end_block; ++j) { |
| int16_t out[16]; |
| int k; |
| |
| VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
| |
| // Convert coefficients to bin (within out[]). |
| { |
| // Load. |
| const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
| const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
| // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) |
| const __m128i sign0 = _mm_srai_epi16(out0, 15); |
| const __m128i sign1 = _mm_srai_epi16(out1, 15); |
| // abs(out) = (out ^ sign) - sign |
| const __m128i xor0 = _mm_xor_si128(out0, sign0); |
| const __m128i xor1 = _mm_xor_si128(out1, sign1); |
| const __m128i abs0 = _mm_sub_epi16(xor0, sign0); |
| const __m128i abs1 = _mm_sub_epi16(xor1, sign1); |
| // v = abs(out) >> 3 |
| const __m128i v0 = _mm_srai_epi16(abs0, 3); |
| const __m128i v1 = _mm_srai_epi16(abs1, 3); |
| // bin = min(v, MAX_COEFF_THRESH) |
| const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
| const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
| // Store. |
| _mm_storeu_si128((__m128i*)&out[0], bin0); |
| _mm_storeu_si128((__m128i*)&out[8], bin1); |
| } |
| |
| // Convert coefficients to bin. |
| for (k = 0; k < 16; ++k) { |
| histo->distribution[out[k]]++; |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Transforms (Paragraph 14.4) |
| |
| // Does one or two inverse transforms. |
| static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
| int do_two) { |
| // This implementation makes use of 16-bit fixed point versions of two |
| // multiply constants: |
| // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
| // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
| // |
| // To be able to use signed 16-bit integers, we use the following trick to |
| // have constants within range: |
| // - Associated constants are obtained by subtracting the 16-bit fixed point |
| // version of one: |
| // k = K - (1 << 16) => K = k + (1 << 16) |
| // K1 = 85267 => k1 = 20091 |
| // K2 = 35468 => k2 = -30068 |
| // - The multiplication of a variable by a constant become the sum of the |
| // variable and the multiplication of that variable by the associated |
| // constant: |
| // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
| const __m128i k1 = _mm_set1_epi16(20091); |
| const __m128i k2 = _mm_set1_epi16(-30068); |
| __m128i T0, T1, T2, T3; |
| |
| // Load and concatenate the transform coefficients (we'll do two inverse |
| // transforms in parallel). In the case of only one inverse transform, the |
| // second half of the vectors will just contain random value we'll never |
| // use nor store. |
| __m128i in0, in1, in2, in3; |
| { |
| in0 = _mm_loadl_epi64((__m128i*)&in[0]); |
| in1 = _mm_loadl_epi64((__m128i*)&in[4]); |
| in2 = _mm_loadl_epi64((__m128i*)&in[8]); |
| in3 = _mm_loadl_epi64((__m128i*)&in[12]); |
| // a00 a10 a20 a30 x x x x |
| // a01 a11 a21 a31 x x x x |
| // a02 a12 a22 a32 x x x x |
| // a03 a13 a23 a33 x x x x |
| if (do_two) { |
| const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); |
| const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); |
| const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); |
| const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); |
| in0 = _mm_unpacklo_epi64(in0, inB0); |
| in1 = _mm_unpacklo_epi64(in1, inB1); |
| in2 = _mm_unpacklo_epi64(in2, inB2); |
| in3 = _mm_unpacklo_epi64(in3, inB3); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| } |
| |
| // Vertical pass and subsequent transpose. |
| { |
| // First pass, c and d calculations are longer because of the "trick" |
| // multiplications. |
| const __m128i a = _mm_add_epi16(in0, in2); |
| const __m128i b = _mm_sub_epi16(in0, in2); |
| // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
| const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
| const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
| const __m128i c3 = _mm_sub_epi16(in1, in3); |
| const __m128i c4 = _mm_sub_epi16(c1, c2); |
| const __m128i c = _mm_add_epi16(c3, c4); |
| // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
| const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
| const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
| const __m128i d3 = _mm_add_epi16(in1, in3); |
| const __m128i d4 = _mm_add_epi16(d1, d2); |
| const __m128i d = _mm_add_epi16(d3, d4); |
| |
| // Second pass. |
| const __m128i tmp0 = _mm_add_epi16(a, d); |
| const __m128i tmp1 = _mm_add_epi16(b, c); |
| const __m128i tmp2 = _mm_sub_epi16(b, c); |
| const __m128i tmp3 = _mm_sub_epi16(a, d); |
| |
| // Transpose the two 4x4. |
| // a00 a01 a02 a03 b00 b01 b02 b03 |
| // a10 a11 a12 a13 b10 b11 b12 b13 |
| // a20 a21 a22 a23 b20 b21 b22 b23 |
| // a30 a31 a32 a33 b30 b31 b32 b33 |
| const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); |
| const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); |
| const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); |
| const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); |
| // a00 a10 a01 a11 a02 a12 a03 a13 |
| // a20 a30 a21 a31 a22 a32 a23 a33 |
| // b00 b10 b01 b11 b02 b12 b03 b13 |
| // b20 b30 b21 b31 b22 b32 b23 b33 |
| const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| // a00 a10 a20 a30 a01 a11 a21 a31 |
| // b00 b10 b20 b30 b01 b11 b21 b31 |
| // a02 a12 a22 a32 a03 a13 a23 a33 |
| // b02 b12 a22 b32 b03 b13 b23 b33 |
| T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| |
| // Horizontal pass and subsequent transpose. |
| { |
| // First pass, c and d calculations are longer because of the "trick" |
| // multiplications. |
| const __m128i four = _mm_set1_epi16(4); |
| const __m128i dc = _mm_add_epi16(T0, four); |
| const __m128i a = _mm_add_epi16(dc, T2); |
| const __m128i b = _mm_sub_epi16(dc, T2); |
| // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
| const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
| const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
| const __m128i c3 = _mm_sub_epi16(T1, T3); |
| const __m128i c4 = _mm_sub_epi16(c1, c2); |
| const __m128i c = _mm_add_epi16(c3, c4); |
| // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
| const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
| const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
| const __m128i d3 = _mm_add_epi16(T1, T3); |
| const __m128i d4 = _mm_add_epi16(d1, d2); |
| const __m128i d = _mm_add_epi16(d3, d4); |
| |
| // Second pass. |
| const __m128i tmp0 = _mm_add_epi16(a, d); |
| const __m128i tmp1 = _mm_add_epi16(b, c); |
| const __m128i tmp2 = _mm_sub_epi16(b, c); |
| const __m128i tmp3 = _mm_sub_epi16(a, d); |
| const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
| const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
| const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
| const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
| |
| // Transpose the two 4x4. |
| // a00 a01 a02 a03 b00 b01 b02 b03 |
| // a10 a11 a12 a13 b10 b11 b12 b13 |
| // a20 a21 a22 a23 b20 b21 b22 b23 |
| // a30 a31 a32 a33 b30 b31 b32 b33 |
| const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); |
| const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); |
| const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); |
| const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); |
| // a00 a10 a01 a11 a02 a12 a03 a13 |
| // a20 a30 a21 a31 a22 a32 a23 a33 |
| // b00 b10 b01 b11 b02 b12 b03 b13 |
| // b20 b30 b21 b31 b22 b32 b23 b33 |
| const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| // a00 a10 a20 a30 a01 a11 a21 a31 |
| // b00 b10 b20 b30 b01 b11 b21 b31 |
| // a02 a12 a22 a32 a03 a13 a23 a33 |
| // b02 b12 a22 b32 b03 b13 b23 b33 |
| T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| |
| // Add inverse transform to 'ref' and store. |
| { |
| const __m128i zero = _mm_setzero_si128(); |
| // Load the reference(s). |
| __m128i ref0, ref1, ref2, ref3; |
| if (do_two) { |
| // Load eight bytes/pixels per line. |
| ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); |
| ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); |
| ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); |
| ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); |
| } else { |
| // Load four bytes/pixels per line. |
| ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); |
| ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); |
| ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); |
| ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); |
| } |
| // Convert to 16b. |
| ref0 = _mm_unpacklo_epi8(ref0, zero); |
| ref1 = _mm_unpacklo_epi8(ref1, zero); |
| ref2 = _mm_unpacklo_epi8(ref2, zero); |
| ref3 = _mm_unpacklo_epi8(ref3, zero); |
| // Add the inverse transform(s). |
| ref0 = _mm_add_epi16(ref0, T0); |
| ref1 = _mm_add_epi16(ref1, T1); |
| ref2 = _mm_add_epi16(ref2, T2); |
| ref3 = _mm_add_epi16(ref3, T3); |
| // Unsigned saturate to 8b. |
| ref0 = _mm_packus_epi16(ref0, ref0); |
| ref1 = _mm_packus_epi16(ref1, ref1); |
| ref2 = _mm_packus_epi16(ref2, ref2); |
| ref3 = _mm_packus_epi16(ref3, ref3); |
| // Store the results. |
| if (do_two) { |
| // Store eight bytes/pixels per line. |
| _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
| _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
| _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
| _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
| } else { |
| // Store four bytes/pixels per line. |
| *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); |
| *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); |
| *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); |
| *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); |
| } |
| } |
| } |
| |
| static void FTransformSSE2(const uint8_t* src, const uint8_t* ref, |
| int16_t* out) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i seven = _mm_set1_epi16(7); |
| const __m128i k937 = _mm_set1_epi32(937); |
| const __m128i k1812 = _mm_set1_epi32(1812); |
| const __m128i k51000 = _mm_set1_epi32(51000); |
| const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
| const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
| 5352, 2217, 5352, 2217); |
| const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
| 2217, -5352, 2217, -5352); |
| const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
| const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
| const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
| 2217, 5352, 2217, 5352); |
| const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
| -5352, 2217, -5352, 2217); |
| __m128i v01, v32; |
| |
| |
| // Difference between src and ref and initial transpose. |
| { |
| // Load src and convert to 16b. |
| const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); |
| const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); |
| const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); |
| const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); |
| const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
| const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
| const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
| const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
| // Load ref and convert to 16b. |
| const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); |
| const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); |
| const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); |
| const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); |
| const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
| const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
| const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
| const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
| // Compute difference. -> 00 01 02 03 00 00 00 00 |
| const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
| const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
| const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
| const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
| |
| |
| // Unpack and shuffle |
| // 00 01 02 03 0 0 0 0 |
| // 10 11 12 13 0 0 0 0 |
| // 20 21 22 23 0 0 0 0 |
| // 30 31 32 33 0 0 0 0 |
| const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); |
| const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); |
| // 00 01 10 11 02 03 12 13 |
| // 20 21 30 31 22 23 32 33 |
| const __m128i shuf01_p = |
| _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1)); |
| const __m128i shuf23_p = |
| _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1)); |
| // 00 01 10 11 03 02 13 12 |
| // 20 21 30 31 23 22 33 32 |
| const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
| const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
| // 00 01 10 11 20 21 30 31 |
| // 03 02 13 12 23 22 33 32 |
| const __m128i a01 = _mm_add_epi16(s01, s32); |
| const __m128i a32 = _mm_sub_epi16(s01, s32); |
| // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
| // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
| |
| const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
| const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
| const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
| const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
| const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
| const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
| const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
| const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
| const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
| const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
| const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
| const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
| const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
| v01 = _mm_unpacklo_epi32(s_lo, s_hi); |
| v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
| } |
| |
| // Second pass |
| { |
| // Same operations are done on the (0,3) and (1,2) pairs. |
| // a0 = v0 + v3 |
| // a1 = v1 + v2 |
| // a3 = v0 - v3 |
| // a2 = v1 - v2 |
| const __m128i a01 = _mm_add_epi16(v01, v32); |
| const __m128i a32 = _mm_sub_epi16(v01, v32); |
| const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
| const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
| const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
| |
| // d0 = (a0 + a1 + 7) >> 4; |
| // d2 = (a0 - a1 + 7) >> 4; |
| const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
| const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
| const __m128i d0 = _mm_srai_epi16(c0, 4); |
| const __m128i d2 = _mm_srai_epi16(c2, 4); |
| |
| // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
| // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
| const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
| const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
| const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
| const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
| const __m128i d3 = _mm_add_epi32(c3, k51000); |
| const __m128i e1 = _mm_srai_epi32(d1, 16); |
| const __m128i e3 = _mm_srai_epi32(d3, 16); |
| const __m128i f1 = _mm_packs_epi32(e1, e1); |
| const __m128i f3 = _mm_packs_epi32(e3, e3); |
| // f1 = f1 + (a3 != 0); |
| // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
| // desired (0, 1), we add one earlier through k12000_plus_one. |
| // -> f1 = f1 + 1 - (a3 == 0) |
| const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
| |
| _mm_storel_epi64((__m128i*)&out[ 0], d0); |
| _mm_storel_epi64((__m128i*)&out[ 4], g1); |
| _mm_storel_epi64((__m128i*)&out[ 8], d2); |
| _mm_storel_epi64((__m128i*)&out[12], f3); |
| } |
| } |
| |
| static void FTransformWHTSSE2(const int16_t* in, int16_t* out) { |
| int16_t tmp[16]; |
| int i; |
| for (i = 0; i < 4; ++i, in += 64) { |
| const int a0 = (in[0 * 16] + in[2 * 16]); |
| const int a1 = (in[1 * 16] + in[3 * 16]); |
| const int a2 = (in[1 * 16] - in[3 * 16]); |
| const int a3 = (in[0 * 16] - in[2 * 16]); |
| tmp[0 + i * 4] = a0 + a1; |
| tmp[1 + i * 4] = a3 + a2; |
| tmp[2 + i * 4] = a3 - a2; |
| tmp[3 + i * 4] = a0 - a1; |
| } |
| { |
| const __m128i src0 = _mm_loadl_epi64((__m128i*)&tmp[0]); |
| const __m128i src1 = _mm_loadl_epi64((__m128i*)&tmp[4]); |
| const __m128i src2 = _mm_loadl_epi64((__m128i*)&tmp[8]); |
| const __m128i src3 = _mm_loadl_epi64((__m128i*)&tmp[12]); |
| const __m128i a0 = _mm_add_epi16(src0, src2); |
| const __m128i a1 = _mm_add_epi16(src1, src3); |
| const __m128i a2 = _mm_sub_epi16(src1, src3); |
| const __m128i a3 = _mm_sub_epi16(src0, src2); |
| const __m128i b0 = _mm_srai_epi16(_mm_adds_epi16(a0, a1), 1); |
| const __m128i b1 = _mm_srai_epi16(_mm_adds_epi16(a3, a2), 1); |
| const __m128i b2 = _mm_srai_epi16(_mm_subs_epi16(a3, a2), 1); |
| const __m128i b3 = _mm_srai_epi16(_mm_subs_epi16(a0, a1), 1); |
| _mm_storel_epi64((__m128i*)&out[ 0], b0); |
| _mm_storel_epi64((__m128i*)&out[ 4], b1); |
| _mm_storel_epi64((__m128i*)&out[ 8], b2); |
| _mm_storel_epi64((__m128i*)&out[12], b3); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Metric |
| |
| static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b, |
| int num_quads, int do_16) { |
| const __m128i zero = _mm_setzero_si128(); |
| __m128i sum1 = zero; |
| __m128i sum2 = zero; |
| |
| while (num_quads-- > 0) { |
| // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok, |
| // thanks to buffer over-allocation to that effect. |
| const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]); |
| const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]); |
| const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]); |
| const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]); |
| const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]); |
| const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]); |
| const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]); |
| const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]); |
| |
| // compute clip0(a-b) and clip0(b-a) |
| const __m128i a0p = _mm_subs_epu8(a0, b0); |
| const __m128i a0m = _mm_subs_epu8(b0, a0); |
| const __m128i a1p = _mm_subs_epu8(a1, b1); |
| const __m128i a1m = _mm_subs_epu8(b1, a1); |
| const __m128i a2p = _mm_subs_epu8(a2, b2); |
| const __m128i a2m = _mm_subs_epu8(b2, a2); |
| const __m128i a3p = _mm_subs_epu8(a3, b3); |
| const __m128i a3m = _mm_subs_epu8(b3, a3); |
| |
| // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a) |
| const __m128i diff0 = _mm_or_si128(a0p, a0m); |
| const __m128i diff1 = _mm_or_si128(a1p, a1m); |
| const __m128i diff2 = _mm_or_si128(a2p, a2m); |
| const __m128i diff3 = _mm_or_si128(a3p, a3m); |
| |
| // unpack (only four operations, instead of eight) |
| const __m128i low0 = _mm_unpacklo_epi8(diff0, zero); |
| const __m128i low1 = _mm_unpacklo_epi8(diff1, zero); |
| const __m128i low2 = _mm_unpacklo_epi8(diff2, zero); |
| const __m128i low3 = _mm_unpacklo_epi8(diff3, zero); |
| |
| // multiply with self |
| const __m128i low_madd0 = _mm_madd_epi16(low0, low0); |
| const __m128i low_madd1 = _mm_madd_epi16(low1, low1); |
| const __m128i low_madd2 = _mm_madd_epi16(low2, low2); |
| const __m128i low_madd3 = _mm_madd_epi16(low3, low3); |
| |
| // collect in a cascading way |
| const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1); |
| const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3); |
| sum1 = _mm_add_epi32(sum1, low_sum0); |
| sum2 = _mm_add_epi32(sum2, low_sum1); |
| |
| if (do_16) { // if necessary, process the higher 8 bytes similarly |
| const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero); |
| const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero); |
| const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero); |
| const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero); |
| |
| const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0); |
| const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1); |
| const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2); |
| const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3); |
| const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1); |
| const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3); |
| sum1 = _mm_add_epi32(sum1, hi_sum0); |
| sum2 = _mm_add_epi32(sum2, hi_sum1); |
| } |
| a += 4 * BPS; |
| b += 4 * BPS; |
| } |
| { |
| int32_t tmp[4]; |
| const __m128i sum = _mm_add_epi32(sum1, sum2); |
| _mm_storeu_si128((__m128i*)tmp, sum); |
| return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| } |
| } |
| |
| static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) { |
| return SSE_Nx4SSE2(a, b, 4, 1); |
| } |
| |
| static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) { |
| return SSE_Nx4SSE2(a, b, 2, 1); |
| } |
| |
| static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) { |
| return SSE_Nx4SSE2(a, b, 2, 0); |
| } |
| |
| static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) { |
| const __m128i zero = _mm_setzero_si128(); |
| |
| // Load values. Note that we read 8 pixels instead of 4, |
| // but the a/b buffers are over-allocated to that effect. |
| const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); |
| const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); |
| const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); |
| const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); |
| const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); |
| const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); |
| const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); |
| const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); |
| |
| // Combine pair of lines and convert to 16b. |
| const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
| const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
| const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
| const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
| const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
| const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
| const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
| const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
| |
| // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 |
| // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't |
| // need absolute values, there is no need to do calculation |
| // in 8bit as we are already in 16bit, ... Yet this is what |
| // benchmarks the fastest! |
| const __m128i d0 = _mm_subs_epu8(a01s, b01s); |
| const __m128i d1 = _mm_subs_epu8(b01s, a01s); |
| const __m128i d2 = _mm_subs_epu8(a23s, b23s); |
| const __m128i d3 = _mm_subs_epu8(b23s, a23s); |
| |
| // Square and add them all together. |
| const __m128i madd0 = _mm_madd_epi16(d0, d0); |
| const __m128i madd1 = _mm_madd_epi16(d1, d1); |
| const __m128i madd2 = _mm_madd_epi16(d2, d2); |
| const __m128i madd3 = _mm_madd_epi16(d3, d3); |
| const __m128i sum0 = _mm_add_epi32(madd0, madd1); |
| const __m128i sum1 = _mm_add_epi32(madd2, madd3); |
| const __m128i sum2 = _mm_add_epi32(sum0, sum1); |
| |
| int32_t tmp[4]; |
| _mm_storeu_si128((__m128i*)tmp, sum2); |
| return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Texture distortion |
| // |
| // We try to match the spectral content (weighted) between source and |
| // reconstructed samples. |
| |
| // Hadamard transform |
| // Returns the difference between the weighted sum of the absolute value of |
| // transformed coefficients. |
| static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB, |
| const uint16_t* const w) { |
| int32_t sum[4]; |
| __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
| const __m128i zero = _mm_setzero_si128(); |
| |
| // Load, combine and tranpose inputs. |
| { |
| const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); |
| const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); |
| const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); |
| const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); |
| const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); |
| const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); |
| const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); |
| const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); |
| |
| // Combine inA and inB (we'll do two transforms in parallel). |
| const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); |
| const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); |
| const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); |
| const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); |
| // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 |
| // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 |
| // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 |
| // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 |
| |
| // Transpose the two 4x4, discarding the filling zeroes. |
| const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2); |
| const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3); |
| // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23 |
| // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33 |
| const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1); |
| const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1); |
| // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33 |
| |
| // Convert to 16b. |
| tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero); |
| tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero); |
| tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero); |
| tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| |
| // Horizontal pass and subsequent transpose. |
| { |
| // Calculate a and b (two 4x4 at once). |
| const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| const __m128i b0 = _mm_add_epi16(a0, a1); |
| const __m128i b1 = _mm_add_epi16(a3, a2); |
| const __m128i b2 = _mm_sub_epi16(a3, a2); |
| const __m128i b3 = _mm_sub_epi16(a0, a1); |
| // a00 a01 a02 a03 b00 b01 b02 b03 |
| // a10 a11 a12 a13 b10 b11 b12 b13 |
| // a20 a21 a22 a23 b20 b21 b22 b23 |
| // a30 a31 a32 a33 b30 b31 b32 b33 |
| |
| // Transpose the two 4x4. |
| const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1); |
| const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3); |
| const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1); |
| const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3); |
| // a00 a10 a01 a11 a02 a12 a03 a13 |
| // a20 a30 a21 a31 a22 a32 a23 a33 |
| // b00 b10 b01 b11 b02 b12 b03 b13 |
| // b20 b30 b21 b31 b22 b32 b23 b33 |
| const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| // a00 a10 a20 a30 a01 a11 a21 a31 |
| // b00 b10 b20 b30 b01 b11 b21 b31 |
| // a02 a12 a22 a32 a03 a13 a23 a33 |
| // b02 b12 a22 b32 b03 b13 b23 b33 |
| tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| // a00 a10 a20 a30 b00 b10 b20 b30 |
| // a01 a11 a21 a31 b01 b11 b21 b31 |
| // a02 a12 a22 a32 b02 b12 b22 b32 |
| // a03 a13 a23 a33 b03 b13 b23 b33 |
| } |
| |
| // Vertical pass and difference of weighted sums. |
| { |
| // Load all inputs. |
| // TODO(cduvivier): Make variable declarations and allocations aligned so |
| // we can use _mm_load_si128 instead of _mm_loadu_si128. |
| const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); |
| const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); |
| |
| // Calculate a and b (two 4x4 at once). |
| const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| const __m128i b0 = _mm_add_epi16(a0, a1); |
| const __m128i b1 = _mm_add_epi16(a3, a2); |
| const __m128i b2 = _mm_sub_epi16(a3, a2); |
| const __m128i b3 = _mm_sub_epi16(a0, a1); |
| |
| // Separate the transforms of inA and inB. |
| __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
| __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
| __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
| __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
| |
| { |
| // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) |
| const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); |
| const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); |
| const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); |
| const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); |
| |
| // b = abs(b) = (b ^ sign) - sign |
| A_b0 = _mm_xor_si128(A_b0, sign_A_b0); |
| A_b2 = _mm_xor_si128(A_b2, sign_A_b2); |
| B_b0 = _mm_xor_si128(B_b0, sign_B_b0); |
| B_b2 = _mm_xor_si128(B_b2, sign_B_b2); |
| A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); |
| A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); |
| B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); |
| B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); |
| } |
| |
| // weighted sums |
| A_b0 = _mm_madd_epi16(A_b0, w_0); |
| A_b2 = _mm_madd_epi16(A_b2, w_8); |
| B_b0 = _mm_madd_epi16(B_b0, w_0); |
| B_b2 = _mm_madd_epi16(B_b2, w_8); |
| A_b0 = _mm_add_epi32(A_b0, A_b2); |
| B_b0 = _mm_add_epi32(B_b0, B_b2); |
| |
| // difference of weighted sums |
| A_b0 = _mm_sub_epi32(A_b0, B_b0); |
| _mm_storeu_si128((__m128i*)&sum[0], A_b0); |
| } |
| return sum[0] + sum[1] + sum[2] + sum[3]; |
| } |
| |
| static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b, |
| const uint16_t* const w) { |
| const int diff_sum = TTransformSSE2(a, b, w); |
| return abs(diff_sum) >> 5; |
| } |
| |
| static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b, |
| const uint16_t* const w) { |
| int D = 0; |
| int x, y; |
| for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
| for (x = 0; x < 16; x += 4) { |
| D += Disto4x4SSE2(a + x + y, b + x + y, w); |
| } |
| } |
| return D; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Quantization |
| // |
| |
| // Simple quantization |
| static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16], |
| int n, const VP8Matrix* const mtx) { |
| const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
| const __m128i zero = _mm_setzero_si128(); |
| __m128i coeff0, coeff8; |
| __m128i out0, out8; |
| __m128i packed_out; |
| |
| // Load all inputs. |
| // TODO(cduvivier): Make variable declarations and allocations aligned so that |
| // we can use _mm_load_si128 instead of _mm_loadu_si128. |
| __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
| __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
| const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]); |
| const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]); |
| const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); |
| const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); |
| const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); |
| const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); |
| const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); |
| const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); |
| const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]); |
| const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]); |
| |
| // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative) |
| const __m128i sign0 = _mm_srai_epi16(in0, 15); |
| const __m128i sign8 = _mm_srai_epi16(in8, 15); |
| |
| // coeff = abs(in) = (in ^ sign) - sign |
| coeff0 = _mm_xor_si128(in0, sign0); |
| coeff8 = _mm_xor_si128(in8, sign8); |
| coeff0 = _mm_sub_epi16(coeff0, sign0); |
| coeff8 = _mm_sub_epi16(coeff8, sign8); |
| |
| // coeff = abs(in) + sharpen |
| coeff0 = _mm_add_epi16(coeff0, sharpen0); |
| coeff8 = _mm_add_epi16(coeff8, sharpen8); |
| |
| // out = (coeff * iQ + B) >> QFIX; |
| { |
| // doing calculations with 32b precision (QFIX=17) |
| // out = (coeff * iQ) |
| __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
| __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
| __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
| __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
| __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
| __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
| __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
| __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
| // expand bias from 16b to 32b |
| __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero); |
| __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero); |
| __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero); |
| __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero); |
| // out = (coeff * iQ + B) |
| out_00 = _mm_add_epi32(out_00, bias_00); |
| out_04 = _mm_add_epi32(out_04, bias_04); |
| out_08 = _mm_add_epi32(out_08, bias_08); |
| out_12 = _mm_add_epi32(out_12, bias_12); |
| // out = (coeff * iQ + B) >> QFIX; |
| out_00 = _mm_srai_epi32(out_00, QFIX); |
| out_04 = _mm_srai_epi32(out_04, QFIX); |
| out_08 = _mm_srai_epi32(out_08, QFIX); |
| out_12 = _mm_srai_epi32(out_12, QFIX); |
| |
| // pack result as 16b |
| out0 = _mm_packs_epi32(out_00, out_04); |
| out8 = _mm_packs_epi32(out_08, out_12); |
| |
| // if (coeff > 2047) coeff = 2047 |
| out0 = _mm_min_epi16(out0, max_coeff_2047); |
| out8 = _mm_min_epi16(out8, max_coeff_2047); |
| } |
| |
| // get sign back (if (sign[j]) out_n = -out_n) |
| out0 = _mm_xor_si128(out0, sign0); |
| out8 = _mm_xor_si128(out8, sign8); |
| out0 = _mm_sub_epi16(out0, sign0); |
| out8 = _mm_sub_epi16(out8, sign8); |
| |
| // in = out * Q |
| in0 = _mm_mullo_epi16(out0, q0); |
| in8 = _mm_mullo_epi16(out8, q8); |
| |
| // if (coeff <= mtx->zthresh_) {in=0; out=0;} |
| { |
| __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0); |
| __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8); |
| in0 = _mm_and_si128(in0, cmp0); |
| in8 = _mm_and_si128(in8, cmp8); |
| _mm_storeu_si128((__m128i*)&in[0], in0); |
| _mm_storeu_si128((__m128i*)&in[8], in8); |
| out0 = _mm_and_si128(out0, cmp0); |
| out8 = _mm_and_si128(out8, cmp8); |
| } |
| |
| // zigzag the output before storing it. |
| // |
| // The zigzag pattern can almost be reproduced with a small sequence of |
| // shuffles. After it, we only need to swap the 7th (ending up in third |
| // position instead of twelfth) and 8th values. |
| { |
| __m128i outZ0, outZ8; |
| outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
| outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
| outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
| outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
| outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
| outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
| _mm_storeu_si128((__m128i*)&out[0], outZ0); |
| _mm_storeu_si128((__m128i*)&out[8], outZ8); |
| packed_out = _mm_packs_epi16(outZ0, outZ8); |
| } |
| { |
| const int16_t outZ_12 = out[12]; |
| const int16_t outZ_3 = out[3]; |
| out[3] = outZ_12; |
| out[12] = outZ_3; |
| } |
| |
| // detect if all 'out' values are zeroes or not |
| { |
| int32_t tmp[4]; |
| _mm_storeu_si128((__m128i*)tmp, packed_out); |
| if (n) { |
| tmp[0] &= ~0xff; |
| } |
| return (tmp[3] || tmp[2] || tmp[1] || tmp[0]); |
| } |
| } |
| |
| #endif // WEBP_USE_SSE2 |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| extern void VP8EncDspInitSSE2(void); |
| |
| void VP8EncDspInitSSE2(void) { |
| #if defined(WEBP_USE_SSE2) |
| VP8CollectHistogram = CollectHistogramSSE2; |
| VP8EncQuantizeBlock = QuantizeBlockSSE2; |
| VP8ITransform = ITransformSSE2; |
| VP8FTransform = FTransformSSE2; |
| VP8FTransformWHT = FTransformWHTSSE2; |
| VP8SSE16x16 = SSE16x16SSE2; |
| VP8SSE16x8 = SSE16x8SSE2; |
| VP8SSE8x8 = SSE8x8SSE2; |
| VP8SSE4x4 = SSE4x4SSE2; |
| VP8TDisto4x4 = Disto4x4SSE2; |
| VP8TDisto16x16 = Disto16x16SSE2; |
| #endif // WEBP_USE_SSE2 |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |