blob: b5e8cdf43491f243ba521f84f8a514a9a8da2f68 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/congestion_control/cubic.h"
#include <algorithm>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/time.h"
namespace net {
// Constants based on TCP defaults.
// The following constants are in 2^10 fractions of a second instead of ms to
// allow a 10 shift right to divide.
const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
// where 0.100 is 100 ms which is the scaling
// round trip time.
const int kCubeCongestionWindowScale = 410;
const uint64 kCubeFactor = (1ull << kCubeScale) / kCubeCongestionWindowScale;
const uint32 kBeta = 717; // Back off factor after loss.
const uint32 kBetaLastMax = 871; // Additional back off factor after loss for
// the stored max value.
namespace {
// Find last bit in a 64-bit word.
int FindMostSignificantBit(uint64 x) {
if (!x) {
return 0;
}
int r = 0;
if (x & 0xffffffff00000000ull) {
x >>= 32;
r += 32;
}
if (x & 0xffff0000u) {
x >>= 16;
r += 16;
}
if (x & 0xff00u) {
x >>= 8;
r += 8;
}
if (x & 0xf0u) {
x >>= 4;
r += 4;
}
if (x & 0xcu) {
x >>= 2;
r += 2;
}
if (x & 0x02u) {
x >>= 1;
r++;
}
if (x & 0x01u) {
r++;
}
return r;
}
// 6 bits table [0..63]
const uint32 cube_root_table[] = {
0, 54, 54, 54, 118, 118, 118, 118, 123, 129, 134, 138, 143, 147, 151,
156, 157, 161, 164, 168, 170, 173, 176, 179, 181, 185, 187, 190, 192, 194,
197, 199, 200, 202, 204, 206, 209, 211, 213, 215, 217, 219, 221, 222, 224,
225, 227, 229, 231, 232, 234, 236, 237, 239, 240, 242, 244, 245, 246, 248,
250, 251, 252, 254
};
} // namespace
Cubic::Cubic(const QuicClock* clock)
: clock_(clock) {
Reset();
}
// Calculate the cube root using a table lookup followed by one Newton-Raphson
// iteration.
uint32 Cubic::CubeRoot(uint64 a) {
uint32 msb = FindMostSignificantBit(a);
DCHECK_LE(msb, 64u);
if (msb < 7) {
// MSB in our table.
return ((cube_root_table[static_cast<uint32>(a)]) + 31) >> 6;
}
// MSB 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
// cubic_shift 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ...
uint32 cubic_shift = (msb - 4);
cubic_shift = ((cubic_shift * 342) >> 10); // Div by 3, biased high.
// 4 to 6 bits accuracy depending on MSB.
uint32 down_shifted_to_6bit = (a >> (cubic_shift * 3));
uint64 root = ((cube_root_table[down_shifted_to_6bit] + 10) << cubic_shift)
>> 6;
// Make one Newton-Raphson iteration.
// Since x has an error (inaccuracy due to the use of fix point) we get a
// more accurate result by doing x * (x - 1) instead of x * x.
root = 2 * root + (a / (root * (root - 1)));
root = ((root * 341) >> 10); // Div by 3, biased low.
return static_cast<uint32>(root);
}
void Cubic::Reset() {
epoch_ = QuicTime(); // Reset time.
last_update_time_ = QuicTime(); // Reset time.
last_congestion_window_ = 0;
last_max_congestion_window_ = 0;
acked_packets_count_ = 0;
estimated_tcp_congestion_window_ = 0;
origin_point_congestion_window_ = 0;
time_to_origin_point_ = 0;
last_target_congestion_window_ = 0;
}
QuicTcpCongestionWindow Cubic::CongestionWindowAfterPacketLoss(
QuicTcpCongestionWindow current_congestion_window) {
if (current_congestion_window < last_max_congestion_window_) {
// We never reached the old max, so assume we are competing with another
// flow. Use our extra back off factor to allow the other flow to go up.
last_max_congestion_window_ =
(kBetaLastMax * current_congestion_window) >> 10;
} else {
last_max_congestion_window_ = current_congestion_window;
}
epoch_ = QuicTime(); // Reset time.
return (current_congestion_window * kBeta) >> 10;
}
QuicTcpCongestionWindow Cubic::CongestionWindowAfterAck(
QuicTcpCongestionWindow current_congestion_window,
QuicTime::Delta delay_min) {
acked_packets_count_ += 1; // Packets acked.
QuicTime current_time = clock_->Now();
// Cubic is "independent" of RTT, the update is limited by the time elapsed.
if (last_congestion_window_ == current_congestion_window &&
(current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
DCHECK(epoch_.IsInitialized());
return std::max(last_target_congestion_window_,
estimated_tcp_congestion_window_);
}
last_congestion_window_ = current_congestion_window;
last_update_time_ = current_time;
if (!epoch_.IsInitialized()) {
// First ACK after a loss event.
DLOG(INFO) << "Start of epoch";
epoch_ = current_time; // Start of epoch.
acked_packets_count_ = 1; // Reset count.
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
estimated_tcp_congestion_window_ = current_congestion_window;
if (last_max_congestion_window_ <= current_congestion_window) {
time_to_origin_point_ = 0;
origin_point_congestion_window_ = current_congestion_window;
} else {
time_to_origin_point_ = CubeRoot(kCubeFactor *
(last_max_congestion_window_ - current_congestion_window));
origin_point_congestion_window_ =
last_max_congestion_window_;
}
}
// Change the time unit from microseconds to 2^10 fractions per second. Take
// the round trip time in account. This is done to allow us to use shift as a
// divide operator.
int64 elapsed_time =
(current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
base::Time::kMicrosecondsPerSecond;
int64 offset = time_to_origin_point_ - elapsed_time;
QuicTcpCongestionWindow delta_congestion_window = (kCubeCongestionWindowScale
* offset * offset * offset) >> kCubeScale;
QuicTcpCongestionWindow target_congestion_window =
origin_point_congestion_window_ - delta_congestion_window;
// We have a new cubic congestion window.
last_target_congestion_window_ = target_congestion_window;
// Update estimated TCP congestion_window.
// Note: we do a normal Reno congestion avoidance calculation not the
// calculation described in section 3.3 TCP-friendly region of the document.
while (acked_packets_count_ >= estimated_tcp_congestion_window_) {
acked_packets_count_ -= estimated_tcp_congestion_window_;
estimated_tcp_congestion_window_++;
}
// Compute target congestion_window based on cubic target and estimated TCP
// congestion_window, use highest (fastest).
if (target_congestion_window < estimated_tcp_congestion_window_) {
target_congestion_window = estimated_tcp_congestion_window_;
}
DLOG(INFO) << "Target congestion_window:" << target_congestion_window;
return target_congestion_window;
}
} // namespace net