| # Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| # Use of this source code is governed by a BSD-style license that can be |
| # found in the LICENSE file. |
| |
| import("//build/config/clang/clang.gni") |
| import("//build/config/compiler/compiler.gni") |
| import("//build/config/sanitizers/sanitizers.gni") |
| import("//build/config/win/visual_studio_version.gni") |
| import("//build/toolchain/cc_wrapper.gni") |
| import("//build/toolchain/goma.gni") |
| import("//build/toolchain/rbe.gni") |
| import("//build/toolchain/toolchain.gni") |
| |
| # Should only be running on Windows. |
| assert(is_win) |
| |
| # Setup the Visual Studio state. |
| # |
| # Its arguments are the VS path and the compiler wrapper tool. It will write |
| # "environment.x86" and "environment.x64" to the build directory and return a |
| # list to us. |
| |
| # This tool will is used as a wrapper for various commands below. |
| tool_wrapper_path = rebase_path("tool_wrapper.py", root_build_dir) |
| |
| if (use_rbe) { |
| goma_prefix = "" |
| rbe_prefix = "${rbe_bin_dir}/rewrapper -cfg=${rbe_cc_cfg_file} -exec_root=${rbe_exec_root} " |
| clang_prefix = rbe_prefix |
| } else if (use_goma) { |
| if (host_os == "win") { |
| goma_prefix = "$goma_dir/gomacc.exe " |
| } else { |
| goma_prefix = "$goma_dir/gomacc " |
| } |
| clang_prefix = goma_prefix |
| } else { |
| goma_prefix = "" |
| if (cc_wrapper != "") { |
| clang_prefix = cc_wrapper + " " |
| } else { |
| clang_prefix = "" |
| } |
| } |
| |
| # Copy the VS runtime DLL for the default toolchain to the root build directory |
| # so things will run. |
| if (current_toolchain == default_toolchain) { |
| if (is_debug) { |
| configuration_name = "Debug" |
| } else { |
| configuration_name = "Release" |
| } |
| exec_script("../../vs_toolchain.py", |
| [ |
| "copy_dlls", |
| rebase_path(root_build_dir), |
| configuration_name, |
| target_cpu, |
| ]) |
| } |
| |
| if (host_os == "win") { |
| clang_cl = "clang-cl.exe" |
| } else { |
| clang_cl = "clang-cl" |
| } |
| |
| # Parameters: |
| # environment: File name of environment file. |
| # |
| # You would also define a toolchain_args variable with at least these set: |
| # current_cpu: current_cpu to pass as a build arg |
| # current_os: current_os to pass as a build arg |
| template("msvc_toolchain") { |
| toolchain(target_name) { |
| # When invoking this toolchain not as the default one, these args will be |
| # passed to the build. They are ignored when this is the default toolchain. |
| assert(defined(invoker.toolchain_args)) |
| toolchain_args = { |
| if (defined(invoker.toolchain_args)) { |
| forward_variables_from(invoker.toolchain_args, "*") |
| } |
| |
| # This value needs to be passed through unchanged. |
| host_toolchain = host_toolchain |
| } |
| |
| # Make these apply to all tools below. |
| lib_switch = "" |
| lib_dir_switch = "/LIBPATH:" |
| |
| # Object files go in this directory. |
| object_subdir = "{{target_out_dir}}/{{label_name}}" |
| |
| env = invoker.environment |
| |
| cl = invoker.cl |
| |
| if (use_lld) { |
| if (host_os == "win") { |
| lld_link = "lld-link.exe" |
| } else { |
| lld_link = "lld-link" |
| } |
| prefix = rebase_path("$clang_base_path/bin", root_build_dir) |
| |
| # lld-link includes a replacement for lib.exe that can produce thin |
| # archives and understands bitcode (for lto builds). |
| link = "$prefix/$lld_link" |
| if (host_os == "win") { |
| # Flip the slashes so that copy/paste of the commands works. |
| link = string_replace(link, "/", "\\") |
| } |
| lib = "$link /lib" |
| if (host_os != "win") { |
| # See comment adding --rsp-quoting to $cl above for more information. |
| link = "$link --rsp-quoting=posix" |
| } |
| } else { |
| lib = "lib.exe" |
| link = "link.exe" |
| } |
| |
| # If possible, pass system includes as flags to the compiler. When that's |
| # not possible, load a full environment file (containing %INCLUDE% and |
| # %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just |
| # passing in a list of include directories isn't enough. |
| if (defined(invoker.sys_include_flags)) { |
| env_wrapper = "" |
| sys_include_flags = |
| "${invoker.sys_include_flags} " # Note trailing space. |
| } else { |
| # clang-cl doesn't need this env hoop, so omit it there. |
| assert((defined(toolchain_args.is_clang) && !toolchain_args.is_clang) || |
| !is_clang) |
| env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. |
| sys_include_flags = "" |
| } |
| |
| # ninja does not have -t msvc other than windows, and lld doesn't depend on |
| # mt.exe in PATH on non-Windows, so it's not needed there anyways. |
| if (host_os != "win") { |
| linker_wrapper = "" |
| sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space. |
| } else if (defined(invoker.sys_lib_flags)) { |
| # Invoke ninja as wrapper instead of tool wrapper, because python |
| # invocation requires higher cpu usage compared to ninja invocation, and |
| # the python wrapper is only needed to work around link.exe problems. |
| # TODO(thakis): Remove wrapper once lld-link can merge manifests without |
| # relying on mt.exe being in %PATH% on Windows, https://crbug.com/872740 |
| linker_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. |
| sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space. |
| } else { |
| # Note trailing space: |
| linker_wrapper = |
| "$python_path $tool_wrapper_path link-wrapper $env False " |
| sys_lib_flags = "" |
| } |
| |
| if (defined(toolchain_args.use_clang_coverage)) { |
| toolchain_use_clang_coverage = toolchain_args.use_clang_coverage |
| } else { |
| toolchain_use_clang_coverage = use_clang_coverage |
| } |
| |
| if (toolchain_use_clang_coverage) { |
| assert(toolchain_args.is_clang, |
| "use_clang_coverage should only be used with Clang") |
| if (defined(toolchain_args.coverage_instrumentation_input_file)) { |
| toolchain_coverage_instrumentation_input_file = |
| toolchain_args.coverage_instrumentation_input_file |
| } else { |
| toolchain_coverage_instrumentation_input_file = |
| coverage_instrumentation_input_file |
| } |
| |
| coverage_wrapper = |
| rebase_path("//build/toolchain/clang_code_coverage_wrapper.py", |
| root_build_dir) |
| coverage_wrapper = coverage_wrapper + " --target-os=" + target_os |
| if (toolchain_coverage_instrumentation_input_file != "") { |
| coverage_wrapper = |
| coverage_wrapper + " --files-to-instrument=" + |
| rebase_path(toolchain_coverage_instrumentation_input_file, |
| root_build_dir) |
| } |
| coverage_wrapper = "$python_path " + coverage_wrapper + " " |
| } else { |
| coverage_wrapper = "" |
| } |
| |
| if (toolchain_args.is_clang) { |
| # This flag omits system includes from /showIncludes output, to reduce the |
| # amount of data to parse and store in .ninja_deps. We do this on non-Windows too, |
| # and already make sure rebuilds after win sdk / libc++ / clang header updates happen via |
| # changing commandline flags. |
| show_includes = "/showIncludes:user" |
| } else { |
| show_includes = "/showIncludes" |
| } |
| |
| tool("cc") { |
| precompiled_header_type = "msvc" |
| pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb" |
| |
| # Label names may have spaces in them so the pdbname must be quoted. The |
| # source and output don't need to be quoted because GN knows they're a |
| # full file name and will quote automatically when necessary. |
| depsformat = "msvc" |
| description = "CC {{output}}" |
| outputs = [ "$object_subdir/{{source_name_part}}.obj" ] |
| |
| command = "$coverage_wrapper$env_wrapper$cl /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} /c {{source}} /Fo{{output}} /Fd\"$pdbname\"" |
| } |
| |
| tool("cxx") { |
| precompiled_header_type = "msvc" |
| |
| # The PDB name needs to be different between C and C++ compiled files. |
| pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb" |
| |
| # See comment in CC tool about quoting. |
| depsformat = "msvc" |
| description = "CXX {{output}}" |
| outputs = [ "$object_subdir/{{source_name_part}}.obj" ] |
| |
| command = "$coverage_wrapper$env_wrapper$cl /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} /c {{source}} /Fo{{output}} /Fd\"$pdbname\"" |
| } |
| |
| tool("rc") { |
| command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}" |
| depsformat = "msvc" |
| outputs = [ "$object_subdir/{{source_name_part}}.res" ] |
| description = "RC {{output}}" |
| } |
| |
| tool("asm") { |
| is_msvc_assembler = true |
| |
| if (toolchain_args.current_cpu == "arm64") { |
| if (is_clang) { |
| prefix = rebase_path("$clang_base_path/bin", root_build_dir) |
| ml = "${clang_prefix}${prefix}/${clang_cl} --target=arm64-windows" |
| if (host_os == "win") { |
| # Flip the slashes so that copy/paste of the command works. |
| ml = string_replace(ml, "/", "\\") |
| } |
| ml += " -c -o{{output}}" |
| is_msvc_assembler = false |
| } else { |
| # Only affects Arm builds with is_clang = false, implemented for building |
| # V8 for Windows on Arm systems with the MSVC toolchain. |
| ml = "armasm64.exe" |
| } |
| } else { |
| # x86/x64 builds always use the MSVC assembler. |
| if (toolchain_args.current_cpu == "x64") { |
| ml = "ml64.exe" |
| } else { |
| ml = "ml.exe" |
| } |
| } |
| |
| if (is_msvc_assembler) { |
| ml += " /nologo /Fo{{output}}" |
| |
| # Suppress final-stage linking on x64/x86 builds. (Armasm64 does not |
| # require /c because it doesn't support linking.) |
| if (toolchain_args.current_cpu != "arm64") { |
| ml += " /c" |
| } |
| if (use_lld) { |
| # Wrap ml(64).exe with a script that makes its output deterministic. |
| # It's lld only because the script zaps obj Timestamp which |
| # link.exe /incremental looks at. |
| # TODO(https://crbug.com/762167): If we end up writing an llvm-ml64, |
| # make sure it has deterministic output (maybe with /Brepro or |
| # something) and remove this wrapper. |
| ml_py = rebase_path("ml.py", root_build_dir) |
| ml = "$python_path $ml_py $ml" |
| } |
| } |
| if (toolchain_args.current_cpu != "arm64" || is_clang) { |
| command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} {{source}}" |
| } else { |
| # armasm64.exe does not support definitions passed via the command line. |
| # (Fortunately, they're not needed for compiling the V8 snapshot, which |
| # is the only time this assembler is required.) |
| command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{include_dirs}} {{asmflags}} {{source}}" |
| } |
| |
| description = "ASM {{output}}" |
| outputs = [ "$object_subdir/{{source_name_part}}.obj" ] |
| } |
| |
| tool("alink") { |
| rspfile = "{{output}}.rsp" |
| command = "$linker_wrapper$lib /OUT:{{output}} /nologo ${sys_lib_flags}{{arflags}} @$rspfile" |
| description = "LIB {{output}}" |
| outputs = [ |
| # Ignore {{output_extension}} and always use .lib, there's no reason to |
| # allow targets to override this extension on Windows. |
| "{{output_dir}}/{{target_output_name}}.lib", |
| ] |
| default_output_extension = ".lib" |
| default_output_dir = "{{target_out_dir}}" |
| |
| # The use of inputs_newline is to work around a fixed per-line buffer |
| # size in the linker. |
| rspfile_content = "{{inputs_newline}}" |
| } |
| |
| tool("solink") { |
| # E.g. "foo.dll": |
| dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" |
| libname = "${dllname}.lib" # e.g. foo.dll.lib |
| pdbname = "${dllname}.pdb" |
| rspfile = "${dllname}.rsp" |
| pool = "//build/toolchain:link_pool($default_toolchain)" |
| |
| command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/IMPLIB:$libname /DLL /PDB:$pdbname @$rspfile" |
| |
| default_output_extension = ".dll" |
| default_output_dir = "{{root_out_dir}}" |
| description = "LINK(DLL) {{output}}" |
| outputs = [ |
| dllname, |
| libname, |
| pdbname, |
| ] |
| link_output = libname |
| depend_output = libname |
| runtime_outputs = [ |
| dllname, |
| pdbname, |
| ] |
| |
| # Since the above commands only updates the .lib file when it changes, ask |
| # Ninja to check if the timestamp actually changed to know if downstream |
| # dependencies should be recompiled. |
| restat = true |
| |
| # The use of inputs_newline is to work around a fixed per-line buffer |
| # size in the linker. |
| rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}" |
| } |
| |
| tool("solink_module") { |
| # E.g. "foo.dll": |
| dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" |
| pdbname = "${dllname}.pdb" |
| rspfile = "${dllname}.rsp" |
| pool = "//build/toolchain:link_pool($default_toolchain)" |
| |
| command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/DLL /PDB:$pdbname @$rspfile" |
| |
| default_output_extension = ".dll" |
| default_output_dir = "{{root_out_dir}}" |
| description = "LINK_MODULE(DLL) {{output}}" |
| outputs = [ |
| dllname, |
| pdbname, |
| ] |
| runtime_outputs = outputs |
| |
| # The use of inputs_newline is to work around a fixed per-line buffer |
| # size in the linker. |
| rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}" |
| } |
| |
| tool("link") { |
| exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}" |
| pdbname = "$exename.pdb" |
| rspfile = "$exename.rsp" |
| pool = "//build/toolchain:link_pool($default_toolchain)" |
| |
| command = "$linker_wrapper$link /OUT:$exename /nologo ${sys_lib_flags} /PDB:$pdbname @$rspfile" |
| |
| default_output_extension = ".exe" |
| default_output_dir = "{{root_out_dir}}" |
| description = "LINK {{output}}" |
| outputs = [ |
| exename, |
| pdbname, |
| ] |
| runtime_outputs = outputs |
| |
| # The use of inputs_newline is to work around a fixed per-line buffer |
| # size in the linker. |
| rspfile_content = "{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}}" |
| } |
| |
| # These two are really entirely generic, but have to be repeated in |
| # each toolchain because GN doesn't allow a template to be used here. |
| # See //build/toolchain/toolchain.gni for details. |
| tool("stamp") { |
| command = stamp_command |
| description = stamp_description |
| pool = "//build/toolchain:action_pool($default_toolchain)" |
| } |
| tool("copy") { |
| command = copy_command |
| description = copy_description |
| pool = "//build/toolchain:action_pool($default_toolchain)" |
| } |
| |
| tool("action") { |
| pool = "//build/toolchain:action_pool($default_toolchain)" |
| } |
| } |
| } |
| |
| template("win_toolchains") { |
| assert(defined(invoker.toolchain_arch)) |
| toolchain_arch = invoker.toolchain_arch |
| |
| win_toolchain_data = exec_script("setup_toolchain.py", |
| [ |
| visual_studio_path, |
| windows_sdk_path, |
| visual_studio_runtime_dirs, |
| "win", |
| toolchain_arch, |
| "environment." + toolchain_arch, |
| ], |
| "scope") |
| |
| # The toolchain using MSVC only makes sense when not doing cross builds. |
| # Chromium exclusively uses the win_clang_ toolchain below, but V8 and |
| # WebRTC still use this MSVC toolchain in some cases. |
| if (host_os == "win") { |
| msvc_toolchain(target_name) { |
| environment = "environment." + toolchain_arch |
| cl = "${goma_prefix}\"${win_toolchain_data.vc_bin_dir}/cl.exe\"" |
| |
| toolchain_args = { |
| if (defined(invoker.toolchain_args)) { |
| forward_variables_from(invoker.toolchain_args, "*") |
| } |
| is_clang = false |
| use_clang_coverage = false |
| current_os = "win" |
| current_cpu = toolchain_arch |
| } |
| } |
| } |
| |
| msvc_toolchain("win_clang_" + target_name) { |
| environment = "environment." + toolchain_arch |
| prefix = rebase_path("$clang_base_path/bin", root_build_dir) |
| cl = "${clang_prefix}$prefix/${clang_cl}" |
| _clang_lib_dir = |
| rebase_path("$clang_base_path/lib/clang/$clang_version/lib/windows", |
| root_build_dir) |
| if (host_os == "win") { |
| # Flip the slashes so that copy/paste of the command works. |
| cl = string_replace(cl, "/", "\\") |
| |
| # And to match the other -libpath flags. |
| _clang_lib_dir = string_replace(_clang_lib_dir, "/", "\\") |
| } |
| |
| sys_include_flags = "${win_toolchain_data.include_flags_imsvc}" |
| sys_lib_flags = |
| "-libpath:$_clang_lib_dir ${win_toolchain_data.libpath_flags}" |
| |
| toolchain_args = { |
| if (defined(invoker.toolchain_args)) { |
| forward_variables_from(invoker.toolchain_args, "*") |
| } |
| is_clang = true |
| current_os = "win" |
| current_cpu = toolchain_arch |
| } |
| } |
| } |
| |
| if (target_cpu == "x86" || target_cpu == "x64") { |
| win_toolchains("x86") { |
| toolchain_arch = "x86" |
| } |
| win_toolchains("x64") { |
| toolchain_arch = "x64" |
| } |
| } |
| |
| if (target_cpu == "arm64") { |
| win_toolchains("arm64") { |
| toolchain_arch = "arm64" |
| } |
| win_toolchains(host_cpu) { |
| toolchain_arch = host_cpu |
| } |
| } |
| |
| # The nacl_win64 toolchain is nearly identical to the plain x64 toolchain. |
| # It's used solely for building nacl64.exe (//components/nacl/broker:nacl64). |
| # The only reason it's a separate toolchain is so that it can force |
| # is_component_build to false in the toolchain_args() block, because |
| # building nacl64.exe in component style does not work. |
| win_toolchains("nacl_win64") { |
| toolchain_arch = "x64" |
| toolchain_args = { |
| is_component_build = false |
| } |
| } |
| |
| # WinUWP toolchains. Only define these when targeting them. |
| |
| if (target_os == "winuwp") { |
| assert(target_cpu == "x64" || target_cpu == "x86" || target_cpu == "arm" || |
| target_cpu == "arm64") |
| store_cpu_toolchain_data = exec_script("setup_toolchain.py", |
| [ |
| visual_studio_path, |
| windows_sdk_path, |
| visual_studio_runtime_dirs, |
| target_os, |
| target_cpu, |
| "environment.store_" + target_cpu, |
| ], |
| "scope") |
| |
| msvc_toolchain("uwp_" + target_cpu) { |
| environment = "environment.store_" + target_cpu |
| cl = "${goma_prefix}\"${store_cpu_toolchain_data.vc_bin_dir}/cl.exe\"" |
| toolchain_args = { |
| current_os = "winuwp" |
| current_cpu = target_cpu |
| is_clang = false |
| } |
| } |
| } |