|  | //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This tablegen backend emits a target specifier matcher for converting parsed | 
|  | // assembly operands in the MCInst structures. It also emits a matcher for | 
|  | // custom operand parsing. | 
|  | // | 
|  | // Converting assembly operands into MCInst structures | 
|  | // --------------------------------------------------- | 
|  | // | 
|  | // The input to the target specific matcher is a list of literal tokens and | 
|  | // operands. The target specific parser should generally eliminate any syntax | 
|  | // which is not relevant for matching; for example, comma tokens should have | 
|  | // already been consumed and eliminated by the parser. Most instructions will | 
|  | // end up with a single literal token (the instruction name) and some number of | 
|  | // operands. | 
|  | // | 
|  | // Some example inputs, for X86: | 
|  | //   'addl' (immediate ...) (register ...) | 
|  | //   'add' (immediate ...) (memory ...) | 
|  | //   'call' '*' %epc | 
|  | // | 
|  | // The assembly matcher is responsible for converting this input into a precise | 
|  | // machine instruction (i.e., an instruction with a well defined encoding). This | 
|  | // mapping has several properties which complicate matching: | 
|  | // | 
|  | //  - It may be ambiguous; many architectures can legally encode particular | 
|  | //    variants of an instruction in different ways (for example, using a smaller | 
|  | //    encoding for small immediates). Such ambiguities should never be | 
|  | //    arbitrarily resolved by the assembler, the assembler is always responsible | 
|  | //    for choosing the "best" available instruction. | 
|  | // | 
|  | //  - It may depend on the subtarget or the assembler context. Instructions | 
|  | //    which are invalid for the current mode, but otherwise unambiguous (e.g., | 
|  | //    an SSE instruction in a file being assembled for i486) should be accepted | 
|  | //    and rejected by the assembler front end. However, if the proper encoding | 
|  | //    for an instruction is dependent on the assembler context then the matcher | 
|  | //    is responsible for selecting the correct machine instruction for the | 
|  | //    current mode. | 
|  | // | 
|  | // The core matching algorithm attempts to exploit the regularity in most | 
|  | // instruction sets to quickly determine the set of possibly matching | 
|  | // instructions, and the simplify the generated code. Additionally, this helps | 
|  | // to ensure that the ambiguities are intentionally resolved by the user. | 
|  | // | 
|  | // The matching is divided into two distinct phases: | 
|  | // | 
|  | //   1. Classification: Each operand is mapped to the unique set which (a) | 
|  | //      contains it, and (b) is the largest such subset for which a single | 
|  | //      instruction could match all members. | 
|  | // | 
|  | //      For register classes, we can generate these subgroups automatically. For | 
|  | //      arbitrary operands, we expect the user to define the classes and their | 
|  | //      relations to one another (for example, 8-bit signed immediates as a | 
|  | //      subset of 32-bit immediates). | 
|  | // | 
|  | //      By partitioning the operands in this way, we guarantee that for any | 
|  | //      tuple of classes, any single instruction must match either all or none | 
|  | //      of the sets of operands which could classify to that tuple. | 
|  | // | 
|  | //      In addition, the subset relation amongst classes induces a partial order | 
|  | //      on such tuples, which we use to resolve ambiguities. | 
|  | // | 
|  | //   2. The input can now be treated as a tuple of classes (static tokens are | 
|  | //      simple singleton sets). Each such tuple should generally map to a single | 
|  | //      instruction (we currently ignore cases where this isn't true, whee!!!), | 
|  | //      which we can emit a simple matcher for. | 
|  | // | 
|  | // Custom Operand Parsing | 
|  | // ---------------------- | 
|  | // | 
|  | //  Some targets need a custom way to parse operands, some specific instructions | 
|  | //  can contain arguments that can represent processor flags and other kinds of | 
|  | //  identifiers that need to be mapped to specific values in the final encoded | 
|  | //  instructions. The target specific custom operand parsing works in the | 
|  | //  following way: | 
|  | // | 
|  | //   1. A operand match table is built, each entry contains a mnemonic, an | 
|  | //      operand class, a mask for all operand positions for that same | 
|  | //      class/mnemonic and target features to be checked while trying to match. | 
|  | // | 
|  | //   2. The operand matcher will try every possible entry with the same | 
|  | //      mnemonic and will check if the target feature for this mnemonic also | 
|  | //      matches. After that, if the operand to be matched has its index | 
|  | //      present in the mask, a successful match occurs. Otherwise, fallback | 
|  | //      to the regular operand parsing. | 
|  | // | 
|  | //   3. For a match success, each operand class that has a 'ParserMethod' | 
|  | //      becomes part of a switch from where the custom method is called. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenTarget.h" | 
|  | #include "SubtargetFeatureInfo.h" | 
|  | #include "Types.h" | 
|  | #include "llvm/ADT/CachedHashString.h" | 
|  | #include "llvm/ADT/PointerUnion.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include "llvm/TableGen/StringMatcher.h" | 
|  | #include "llvm/TableGen/StringToOffsetTable.h" | 
|  | #include "llvm/TableGen/TableGenBackend.h" | 
|  | #include <cassert> | 
|  | #include <cctype> | 
|  | #include <forward_list> | 
|  | #include <map> | 
|  | #include <set> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "asm-matcher-emitter" | 
|  |  | 
|  | cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); | 
|  |  | 
|  | static cl::opt<std::string> | 
|  | MatchPrefix("match-prefix", cl::init(""), | 
|  | cl::desc("Only match instructions with the given prefix"), | 
|  | cl::cat(AsmMatcherEmitterCat)); | 
|  |  | 
|  | namespace { | 
|  | class AsmMatcherInfo; | 
|  |  | 
|  | // Register sets are used as keys in some second-order sets TableGen creates | 
|  | // when generating its data structures. This means that the order of two | 
|  | // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and | 
|  | // can even affect compiler output (at least seen in diagnostics produced when | 
|  | // all matches fail). So we use a type that sorts them consistently. | 
|  | typedef std::set<Record*, LessRecordByID> RegisterSet; | 
|  |  | 
|  | class AsmMatcherEmitter { | 
|  | RecordKeeper &Records; | 
|  | public: | 
|  | AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} | 
|  |  | 
|  | void run(raw_ostream &o); | 
|  | }; | 
|  |  | 
|  | /// ClassInfo - Helper class for storing the information about a particular | 
|  | /// class of operands which can be matched. | 
|  | struct ClassInfo { | 
|  | enum ClassInfoKind { | 
|  | /// Invalid kind, for use as a sentinel value. | 
|  | Invalid = 0, | 
|  |  | 
|  | /// The class for a particular token. | 
|  | Token, | 
|  |  | 
|  | /// The (first) register class, subsequent register classes are | 
|  | /// RegisterClass0+1, and so on. | 
|  | RegisterClass0, | 
|  |  | 
|  | /// The (first) user defined class, subsequent user defined classes are | 
|  | /// UserClass0+1, and so on. | 
|  | UserClass0 = 1<<16 | 
|  | }; | 
|  |  | 
|  | /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + | 
|  | /// N) for the Nth user defined class. | 
|  | unsigned Kind; | 
|  |  | 
|  | /// SuperClasses - The super classes of this class. Note that for simplicities | 
|  | /// sake user operands only record their immediate super class, while register | 
|  | /// operands include all superclasses. | 
|  | std::vector<ClassInfo*> SuperClasses; | 
|  |  | 
|  | /// Name - The full class name, suitable for use in an enum. | 
|  | std::string Name; | 
|  |  | 
|  | /// ClassName - The unadorned generic name for this class (e.g., Token). | 
|  | std::string ClassName; | 
|  |  | 
|  | /// ValueName - The name of the value this class represents; for a token this | 
|  | /// is the literal token string, for an operand it is the TableGen class (or | 
|  | /// empty if this is a derived class). | 
|  | std::string ValueName; | 
|  |  | 
|  | /// PredicateMethod - The name of the operand method to test whether the | 
|  | /// operand matches this class; this is not valid for Token or register kinds. | 
|  | std::string PredicateMethod; | 
|  |  | 
|  | /// RenderMethod - The name of the operand method to add this operand to an | 
|  | /// MCInst; this is not valid for Token or register kinds. | 
|  | std::string RenderMethod; | 
|  |  | 
|  | /// ParserMethod - The name of the operand method to do a target specific | 
|  | /// parsing on the operand. | 
|  | std::string ParserMethod; | 
|  |  | 
|  | /// For register classes: the records for all the registers in this class. | 
|  | RegisterSet Registers; | 
|  |  | 
|  | /// For custom match classes: the diagnostic kind for when the predicate fails. | 
|  | std::string DiagnosticType; | 
|  |  | 
|  | /// For custom match classes: the diagnostic string for when the predicate fails. | 
|  | std::string DiagnosticString; | 
|  |  | 
|  | /// Is this operand optional and not always required. | 
|  | bool IsOptional; | 
|  |  | 
|  | /// DefaultMethod - The name of the method that returns the default operand | 
|  | /// for optional operand | 
|  | std::string DefaultMethod; | 
|  |  | 
|  | public: | 
|  | /// isRegisterClass() - Check if this is a register class. | 
|  | bool isRegisterClass() const { | 
|  | return Kind >= RegisterClass0 && Kind < UserClass0; | 
|  | } | 
|  |  | 
|  | /// isUserClass() - Check if this is a user defined class. | 
|  | bool isUserClass() const { | 
|  | return Kind >= UserClass0; | 
|  | } | 
|  |  | 
|  | /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes | 
|  | /// are related if they are in the same class hierarchy. | 
|  | bool isRelatedTo(const ClassInfo &RHS) const { | 
|  | // Tokens are only related to tokens. | 
|  | if (Kind == Token || RHS.Kind == Token) | 
|  | return Kind == Token && RHS.Kind == Token; | 
|  |  | 
|  | // Registers classes are only related to registers classes, and only if | 
|  | // their intersection is non-empty. | 
|  | if (isRegisterClass() || RHS.isRegisterClass()) { | 
|  | if (!isRegisterClass() || !RHS.isRegisterClass()) | 
|  | return false; | 
|  |  | 
|  | RegisterSet Tmp; | 
|  | std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); | 
|  | std::set_intersection(Registers.begin(), Registers.end(), | 
|  | RHS.Registers.begin(), RHS.Registers.end(), | 
|  | II, LessRecordByID()); | 
|  |  | 
|  | return !Tmp.empty(); | 
|  | } | 
|  |  | 
|  | // Otherwise we have two users operands; they are related if they are in the | 
|  | // same class hierarchy. | 
|  | // | 
|  | // FIXME: This is an oversimplification, they should only be related if they | 
|  | // intersect, however we don't have that information. | 
|  | assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); | 
|  | const ClassInfo *Root = this; | 
|  | while (!Root->SuperClasses.empty()) | 
|  | Root = Root->SuperClasses.front(); | 
|  |  | 
|  | const ClassInfo *RHSRoot = &RHS; | 
|  | while (!RHSRoot->SuperClasses.empty()) | 
|  | RHSRoot = RHSRoot->SuperClasses.front(); | 
|  |  | 
|  | return Root == RHSRoot; | 
|  | } | 
|  |  | 
|  | /// isSubsetOf - Test whether this class is a subset of \p RHS. | 
|  | bool isSubsetOf(const ClassInfo &RHS) const { | 
|  | // This is a subset of RHS if it is the same class... | 
|  | if (this == &RHS) | 
|  | return true; | 
|  |  | 
|  | // ... or if any of its super classes are a subset of RHS. | 
|  | SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), | 
|  | SuperClasses.end()); | 
|  | SmallPtrSet<const ClassInfo *, 16> Visited; | 
|  | while (!Worklist.empty()) { | 
|  | auto *CI = Worklist.pop_back_val(); | 
|  | if (CI == &RHS) | 
|  | return true; | 
|  | for (auto *Super : CI->SuperClasses) | 
|  | if (Visited.insert(Super).second) | 
|  | Worklist.push_back(Super); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int getTreeDepth() const { | 
|  | int Depth = 0; | 
|  | const ClassInfo *Root = this; | 
|  | while (!Root->SuperClasses.empty()) { | 
|  | Depth++; | 
|  | Root = Root->SuperClasses.front(); | 
|  | } | 
|  | return Depth; | 
|  | } | 
|  |  | 
|  | const ClassInfo *findRoot() const { | 
|  | const ClassInfo *Root = this; | 
|  | while (!Root->SuperClasses.empty()) | 
|  | Root = Root->SuperClasses.front(); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | /// Compare two classes. This does not produce a total ordering, but does | 
|  | /// guarantee that subclasses are sorted before their parents, and that the | 
|  | /// ordering is transitive. | 
|  | bool operator<(const ClassInfo &RHS) const { | 
|  | if (this == &RHS) | 
|  | return false; | 
|  |  | 
|  | // First, enforce the ordering between the three different types of class. | 
|  | // Tokens sort before registers, which sort before user classes. | 
|  | if (Kind == Token) { | 
|  | if (RHS.Kind != Token) | 
|  | return true; | 
|  | assert(RHS.Kind == Token); | 
|  | } else if (isRegisterClass()) { | 
|  | if (RHS.Kind == Token) | 
|  | return false; | 
|  | else if (RHS.isUserClass()) | 
|  | return true; | 
|  | assert(RHS.isRegisterClass()); | 
|  | } else if (isUserClass()) { | 
|  | if (!RHS.isUserClass()) | 
|  | return false; | 
|  | assert(RHS.isUserClass()); | 
|  | } else { | 
|  | llvm_unreachable("Unknown ClassInfoKind"); | 
|  | } | 
|  |  | 
|  | if (Kind == Token || isUserClass()) { | 
|  | // Related tokens and user classes get sorted by depth in the inheritence | 
|  | // tree (so that subclasses are before their parents). | 
|  | if (isRelatedTo(RHS)) { | 
|  | if (getTreeDepth() > RHS.getTreeDepth()) | 
|  | return true; | 
|  | if (getTreeDepth() < RHS.getTreeDepth()) | 
|  | return false; | 
|  | } else { | 
|  | // Unrelated tokens and user classes are ordered by the name of their | 
|  | // root nodes, so that there is a consistent ordering between | 
|  | // unconnected trees. | 
|  | return findRoot()->ValueName < RHS.findRoot()->ValueName; | 
|  | } | 
|  | } else if (isRegisterClass()) { | 
|  | // For register sets, sort by number of registers. This guarantees that | 
|  | // a set will always sort before all of it's strict supersets. | 
|  | if (Registers.size() != RHS.Registers.size()) | 
|  | return Registers.size() < RHS.Registers.size(); | 
|  | } else { | 
|  | llvm_unreachable("Unknown ClassInfoKind"); | 
|  | } | 
|  |  | 
|  | // FIXME: We should be able to just return false here, as we only need a | 
|  | // partial order (we use stable sorts, so this is deterministic) and the | 
|  | // name of a class shouldn't be significant. However, some of the backends | 
|  | // accidentally rely on this behaviour, so it will have to stay like this | 
|  | // until they are fixed. | 
|  | return ValueName < RHS.ValueName; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class AsmVariantInfo { | 
|  | public: | 
|  | StringRef RegisterPrefix; | 
|  | StringRef TokenizingCharacters; | 
|  | StringRef SeparatorCharacters; | 
|  | StringRef BreakCharacters; | 
|  | StringRef Name; | 
|  | int AsmVariantNo; | 
|  | }; | 
|  |  | 
|  | /// MatchableInfo - Helper class for storing the necessary information for an | 
|  | /// instruction or alias which is capable of being matched. | 
|  | struct MatchableInfo { | 
|  | struct AsmOperand { | 
|  | /// Token - This is the token that the operand came from. | 
|  | StringRef Token; | 
|  |  | 
|  | /// The unique class instance this operand should match. | 
|  | ClassInfo *Class; | 
|  |  | 
|  | /// The operand name this is, if anything. | 
|  | StringRef SrcOpName; | 
|  |  | 
|  | /// The operand name this is, before renaming for tied operands. | 
|  | StringRef OrigSrcOpName; | 
|  |  | 
|  | /// The suboperand index within SrcOpName, or -1 for the entire operand. | 
|  | int SubOpIdx; | 
|  |  | 
|  | /// Whether the token is "isolated", i.e., it is preceded and followed | 
|  | /// by separators. | 
|  | bool IsIsolatedToken; | 
|  |  | 
|  | /// Register record if this token is singleton register. | 
|  | Record *SingletonReg; | 
|  |  | 
|  | explicit AsmOperand(bool IsIsolatedToken, StringRef T) | 
|  | : Token(T), Class(nullptr), SubOpIdx(-1), | 
|  | IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} | 
|  | }; | 
|  |  | 
|  | /// ResOperand - This represents a single operand in the result instruction | 
|  | /// generated by the match.  In cases (like addressing modes) where a single | 
|  | /// assembler operand expands to multiple MCOperands, this represents the | 
|  | /// single assembler operand, not the MCOperand. | 
|  | struct ResOperand { | 
|  | enum { | 
|  | /// RenderAsmOperand - This represents an operand result that is | 
|  | /// generated by calling the render method on the assembly operand.  The | 
|  | /// corresponding AsmOperand is specified by AsmOperandNum. | 
|  | RenderAsmOperand, | 
|  |  | 
|  | /// TiedOperand - This represents a result operand that is a duplicate of | 
|  | /// a previous result operand. | 
|  | TiedOperand, | 
|  |  | 
|  | /// ImmOperand - This represents an immediate value that is dumped into | 
|  | /// the operand. | 
|  | ImmOperand, | 
|  |  | 
|  | /// RegOperand - This represents a fixed register that is dumped in. | 
|  | RegOperand | 
|  | } Kind; | 
|  |  | 
|  | /// Tuple containing the index of the (earlier) result operand that should | 
|  | /// be copied from, as well as the indices of the corresponding (parsed) | 
|  | /// operands in the asm string. | 
|  | struct TiedOperandsTuple { | 
|  | unsigned ResOpnd; | 
|  | unsigned SrcOpnd1Idx; | 
|  | unsigned SrcOpnd2Idx; | 
|  | }; | 
|  |  | 
|  | union { | 
|  | /// This is the operand # in the AsmOperands list that this should be | 
|  | /// copied from. | 
|  | unsigned AsmOperandNum; | 
|  |  | 
|  | /// Description of tied operands. | 
|  | TiedOperandsTuple TiedOperands; | 
|  |  | 
|  | /// ImmVal - This is the immediate value added to the instruction. | 
|  | int64_t ImmVal; | 
|  |  | 
|  | /// Register - This is the register record. | 
|  | Record *Register; | 
|  | }; | 
|  |  | 
|  | /// MINumOperands - The number of MCInst operands populated by this | 
|  | /// operand. | 
|  | unsigned MINumOperands; | 
|  |  | 
|  | static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { | 
|  | ResOperand X; | 
|  | X.Kind = RenderAsmOperand; | 
|  | X.AsmOperandNum = AsmOpNum; | 
|  | X.MINumOperands = NumOperands; | 
|  | return X; | 
|  | } | 
|  |  | 
|  | static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, | 
|  | unsigned SrcOperand2) { | 
|  | ResOperand X; | 
|  | X.Kind = TiedOperand; | 
|  | X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; | 
|  | X.MINumOperands = 1; | 
|  | return X; | 
|  | } | 
|  |  | 
|  | static ResOperand getImmOp(int64_t Val) { | 
|  | ResOperand X; | 
|  | X.Kind = ImmOperand; | 
|  | X.ImmVal = Val; | 
|  | X.MINumOperands = 1; | 
|  | return X; | 
|  | } | 
|  |  | 
|  | static ResOperand getRegOp(Record *Reg) { | 
|  | ResOperand X; | 
|  | X.Kind = RegOperand; | 
|  | X.Register = Reg; | 
|  | X.MINumOperands = 1; | 
|  | return X; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// AsmVariantID - Target's assembly syntax variant no. | 
|  | int AsmVariantID; | 
|  |  | 
|  | /// AsmString - The assembly string for this instruction (with variants | 
|  | /// removed), e.g. "movsx $src, $dst". | 
|  | std::string AsmString; | 
|  |  | 
|  | /// TheDef - This is the definition of the instruction or InstAlias that this | 
|  | /// matchable came from. | 
|  | Record *const TheDef; | 
|  |  | 
|  | /// DefRec - This is the definition that it came from. | 
|  | PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; | 
|  |  | 
|  | const CodeGenInstruction *getResultInst() const { | 
|  | if (DefRec.is<const CodeGenInstruction*>()) | 
|  | return DefRec.get<const CodeGenInstruction*>(); | 
|  | return DefRec.get<const CodeGenInstAlias*>()->ResultInst; | 
|  | } | 
|  |  | 
|  | /// ResOperands - This is the operand list that should be built for the result | 
|  | /// MCInst. | 
|  | SmallVector<ResOperand, 8> ResOperands; | 
|  |  | 
|  | /// Mnemonic - This is the first token of the matched instruction, its | 
|  | /// mnemonic. | 
|  | StringRef Mnemonic; | 
|  |  | 
|  | /// AsmOperands - The textual operands that this instruction matches, | 
|  | /// annotated with a class and where in the OperandList they were defined. | 
|  | /// This directly corresponds to the tokenized AsmString after the mnemonic is | 
|  | /// removed. | 
|  | SmallVector<AsmOperand, 8> AsmOperands; | 
|  |  | 
|  | /// Predicates - The required subtarget features to match this instruction. | 
|  | SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; | 
|  |  | 
|  | /// ConversionFnKind - The enum value which is passed to the generated | 
|  | /// convertToMCInst to convert parsed operands into an MCInst for this | 
|  | /// function. | 
|  | std::string ConversionFnKind; | 
|  |  | 
|  | /// If this instruction is deprecated in some form. | 
|  | bool HasDeprecation; | 
|  |  | 
|  | /// If this is an alias, this is use to determine whether or not to using | 
|  | /// the conversion function defined by the instruction's AsmMatchConverter | 
|  | /// or to use the function generated by the alias. | 
|  | bool UseInstAsmMatchConverter; | 
|  |  | 
|  | MatchableInfo(const CodeGenInstruction &CGI) | 
|  | : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), | 
|  | UseInstAsmMatchConverter(true) { | 
|  | } | 
|  |  | 
|  | MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) | 
|  | : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), | 
|  | DefRec(Alias.release()), | 
|  | UseInstAsmMatchConverter( | 
|  | TheDef->getValueAsBit("UseInstAsmMatchConverter")) { | 
|  | } | 
|  |  | 
|  | // Could remove this and the dtor if PointerUnion supported unique_ptr | 
|  | // elements with a dynamic failure/assertion (like the one below) in the case | 
|  | // where it was copied while being in an owning state. | 
|  | MatchableInfo(const MatchableInfo &RHS) | 
|  | : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), | 
|  | TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), | 
|  | Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), | 
|  | RequiredFeatures(RHS.RequiredFeatures), | 
|  | ConversionFnKind(RHS.ConversionFnKind), | 
|  | HasDeprecation(RHS.HasDeprecation), | 
|  | UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { | 
|  | assert(!DefRec.is<const CodeGenInstAlias *>()); | 
|  | } | 
|  |  | 
|  | ~MatchableInfo() { | 
|  | delete DefRec.dyn_cast<const CodeGenInstAlias*>(); | 
|  | } | 
|  |  | 
|  | // Two-operand aliases clone from the main matchable, but mark the second | 
|  | // operand as a tied operand of the first for purposes of the assembler. | 
|  | void formTwoOperandAlias(StringRef Constraint); | 
|  |  | 
|  | void initialize(const AsmMatcherInfo &Info, | 
|  | SmallPtrSetImpl<Record*> &SingletonRegisters, | 
|  | AsmVariantInfo const &Variant, | 
|  | bool HasMnemonicFirst); | 
|  |  | 
|  | /// validate - Return true if this matchable is a valid thing to match against | 
|  | /// and perform a bunch of validity checking. | 
|  | bool validate(StringRef CommentDelimiter, bool IsAlias) const; | 
|  |  | 
|  | /// findAsmOperand - Find the AsmOperand with the specified name and | 
|  | /// suboperand index. | 
|  | int findAsmOperand(StringRef N, int SubOpIdx) const { | 
|  | auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { | 
|  | return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; | 
|  | }); | 
|  | return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
|  | } | 
|  |  | 
|  | /// findAsmOperandNamed - Find the first AsmOperand with the specified name. | 
|  | /// This does not check the suboperand index. | 
|  | int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { | 
|  | auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), | 
|  | [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); | 
|  | return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
|  | } | 
|  |  | 
|  | int findAsmOperandOriginallyNamed(StringRef N) const { | 
|  | auto I = | 
|  | find_if(AsmOperands, | 
|  | [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); | 
|  | return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
|  | } | 
|  |  | 
|  | void buildInstructionResultOperands(); | 
|  | void buildAliasResultOperands(bool AliasConstraintsAreChecked); | 
|  |  | 
|  | /// operator< - Compare two matchables. | 
|  | bool operator<(const MatchableInfo &RHS) const { | 
|  | // The primary comparator is the instruction mnemonic. | 
|  | if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) | 
|  | return Cmp == -1; | 
|  |  | 
|  | if (AsmOperands.size() != RHS.AsmOperands.size()) | 
|  | return AsmOperands.size() < RHS.AsmOperands.size(); | 
|  |  | 
|  | // Compare lexicographically by operand. The matcher validates that other | 
|  | // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). | 
|  | for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
|  | if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) | 
|  | return true; | 
|  | if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Give matches that require more features higher precedence. This is useful | 
|  | // because we cannot define AssemblerPredicates with the negation of | 
|  | // processor features. For example, ARM v6 "nop" may be either a HINT or | 
|  | // MOV. With v6, we want to match HINT. The assembler has no way to | 
|  | // predicate MOV under "NoV6", but HINT will always match first because it | 
|  | // requires V6 while MOV does not. | 
|  | if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) | 
|  | return RequiredFeatures.size() > RHS.RequiredFeatures.size(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// couldMatchAmbiguouslyWith - Check whether this matchable could | 
|  | /// ambiguously match the same set of operands as \p RHS (without being a | 
|  | /// strictly superior match). | 
|  | bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { | 
|  | // The primary comparator is the instruction mnemonic. | 
|  | if (Mnemonic != RHS.Mnemonic) | 
|  | return false; | 
|  |  | 
|  | // Different variants can't conflict. | 
|  | if (AsmVariantID != RHS.AsmVariantID) | 
|  | return false; | 
|  |  | 
|  | // The number of operands is unambiguous. | 
|  | if (AsmOperands.size() != RHS.AsmOperands.size()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, make sure the ordering of the two instructions is unambiguous | 
|  | // by checking that either (a) a token or operand kind discriminates them, | 
|  | // or (b) the ordering among equivalent kinds is consistent. | 
|  |  | 
|  | // Tokens and operand kinds are unambiguous (assuming a correct target | 
|  | // specific parser). | 
|  | for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) | 
|  | if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || | 
|  | AsmOperands[i].Class->Kind == ClassInfo::Token) | 
|  | if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || | 
|  | *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, this operand could commute if all operands are equivalent, or | 
|  | // there is a pair of operands that compare less than and a pair that | 
|  | // compare greater than. | 
|  | bool HasLT = false, HasGT = false; | 
|  | for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
|  | if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) | 
|  | HasLT = true; | 
|  | if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
|  | HasGT = true; | 
|  | } | 
|  |  | 
|  | return HasLT == HasGT; | 
|  | } | 
|  |  | 
|  | void dump() const; | 
|  |  | 
|  | private: | 
|  | void tokenizeAsmString(AsmMatcherInfo const &Info, | 
|  | AsmVariantInfo const &Variant); | 
|  | void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); | 
|  | }; | 
|  |  | 
|  | struct OperandMatchEntry { | 
|  | unsigned OperandMask; | 
|  | const MatchableInfo* MI; | 
|  | ClassInfo *CI; | 
|  |  | 
|  | static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, | 
|  | unsigned opMask) { | 
|  | OperandMatchEntry X; | 
|  | X.OperandMask = opMask; | 
|  | X.CI = ci; | 
|  | X.MI = mi; | 
|  | return X; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class AsmMatcherInfo { | 
|  | public: | 
|  | /// Tracked Records | 
|  | RecordKeeper &Records; | 
|  |  | 
|  | /// The tablegen AsmParser record. | 
|  | Record *AsmParser; | 
|  |  | 
|  | /// Target - The target information. | 
|  | CodeGenTarget &Target; | 
|  |  | 
|  | /// The classes which are needed for matching. | 
|  | std::forward_list<ClassInfo> Classes; | 
|  |  | 
|  | /// The information on the matchables to match. | 
|  | std::vector<std::unique_ptr<MatchableInfo>> Matchables; | 
|  |  | 
|  | /// Info for custom matching operands by user defined methods. | 
|  | std::vector<OperandMatchEntry> OperandMatchInfo; | 
|  |  | 
|  | /// Map of Register records to their class information. | 
|  | typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; | 
|  | RegisterClassesTy RegisterClasses; | 
|  |  | 
|  | /// Map of Predicate records to their subtarget information. | 
|  | std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; | 
|  |  | 
|  | /// Map of AsmOperandClass records to their class information. | 
|  | std::map<Record*, ClassInfo*> AsmOperandClasses; | 
|  |  | 
|  | /// Map of RegisterClass records to their class information. | 
|  | std::map<Record*, ClassInfo*> RegisterClassClasses; | 
|  |  | 
|  | private: | 
|  | /// Map of token to class information which has already been constructed. | 
|  | std::map<std::string, ClassInfo*> TokenClasses; | 
|  |  | 
|  | private: | 
|  | /// getTokenClass - Lookup or create the class for the given token. | 
|  | ClassInfo *getTokenClass(StringRef Token); | 
|  |  | 
|  | /// getOperandClass - Lookup or create the class for the given operand. | 
|  | ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, | 
|  | int SubOpIdx); | 
|  | ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); | 
|  |  | 
|  | /// buildRegisterClasses - Build the ClassInfo* instances for register | 
|  | /// classes. | 
|  | void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); | 
|  |  | 
|  | /// buildOperandClasses - Build the ClassInfo* instances for user defined | 
|  | /// operand classes. | 
|  | void buildOperandClasses(); | 
|  |  | 
|  | void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, | 
|  | unsigned AsmOpIdx); | 
|  | void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, | 
|  | MatchableInfo::AsmOperand &Op); | 
|  |  | 
|  | public: | 
|  | AsmMatcherInfo(Record *AsmParser, | 
|  | CodeGenTarget &Target, | 
|  | RecordKeeper &Records); | 
|  |  | 
|  | /// Construct the various tables used during matching. | 
|  | void buildInfo(); | 
|  |  | 
|  | /// buildOperandMatchInfo - Build the necessary information to handle user | 
|  | /// defined operand parsing methods. | 
|  | void buildOperandMatchInfo(); | 
|  |  | 
|  | /// getSubtargetFeature - Lookup or create the subtarget feature info for the | 
|  | /// given operand. | 
|  | const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { | 
|  | assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); | 
|  | const auto &I = SubtargetFeatures.find(Def); | 
|  | return I == SubtargetFeatures.end() ? nullptr : &I->second; | 
|  | } | 
|  |  | 
|  | RecordKeeper &getRecords() const { | 
|  | return Records; | 
|  | } | 
|  |  | 
|  | bool hasOptionalOperands() const { | 
|  | return find_if(Classes, [](const ClassInfo &Class) { | 
|  | return Class.IsOptional; | 
|  | }) != Classes.end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MatchableInfo::dump() const { | 
|  | errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; | 
|  |  | 
|  | errs() << "  variant: " << AsmVariantID << "\n"; | 
|  |  | 
|  | for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
|  | const AsmOperand &Op = AsmOperands[i]; | 
|  | errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - "; | 
|  | errs() << '\"' << Op.Token << "\"\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static std::pair<StringRef, StringRef> | 
|  | parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { | 
|  | // Split via the '='. | 
|  | std::pair<StringRef, StringRef> Ops = S.split('='); | 
|  | if (Ops.second == "") | 
|  | PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); | 
|  | // Trim whitespace and the leading '$' on the operand names. | 
|  | size_t start = Ops.first.find_first_of('$'); | 
|  | if (start == std::string::npos) | 
|  | PrintFatalError(Loc, "expected '$' prefix on asm operand name"); | 
|  | Ops.first = Ops.first.slice(start + 1, std::string::npos); | 
|  | size_t end = Ops.first.find_last_of(" \t"); | 
|  | Ops.first = Ops.first.slice(0, end); | 
|  | // Now the second operand. | 
|  | start = Ops.second.find_first_of('$'); | 
|  | if (start == std::string::npos) | 
|  | PrintFatalError(Loc, "expected '$' prefix on asm operand name"); | 
|  | Ops.second = Ops.second.slice(start + 1, std::string::npos); | 
|  | end = Ops.second.find_last_of(" \t"); | 
|  | Ops.first = Ops.first.slice(0, end); | 
|  | return Ops; | 
|  | } | 
|  |  | 
|  | void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { | 
|  | // Figure out which operands are aliased and mark them as tied. | 
|  | std::pair<StringRef, StringRef> Ops = | 
|  | parseTwoOperandConstraint(Constraint, TheDef->getLoc()); | 
|  |  | 
|  | // Find the AsmOperands that refer to the operands we're aliasing. | 
|  | int SrcAsmOperand = findAsmOperandNamed(Ops.first); | 
|  | int DstAsmOperand = findAsmOperandNamed(Ops.second); | 
|  | if (SrcAsmOperand == -1) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "unknown source two-operand alias operand '" + Ops.first + | 
|  | "'."); | 
|  | if (DstAsmOperand == -1) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "unknown destination two-operand alias operand '" + | 
|  | Ops.second + "'."); | 
|  |  | 
|  | // Find the ResOperand that refers to the operand we're aliasing away | 
|  | // and update it to refer to the combined operand instead. | 
|  | for (ResOperand &Op : ResOperands) { | 
|  | if (Op.Kind == ResOperand::RenderAsmOperand && | 
|  | Op.AsmOperandNum == (unsigned)SrcAsmOperand) { | 
|  | Op.AsmOperandNum = DstAsmOperand; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Remove the AsmOperand for the alias operand. | 
|  | AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); | 
|  | // Adjust the ResOperand references to any AsmOperands that followed | 
|  | // the one we just deleted. | 
|  | for (ResOperand &Op : ResOperands) { | 
|  | switch(Op.Kind) { | 
|  | default: | 
|  | // Nothing to do for operands that don't reference AsmOperands. | 
|  | break; | 
|  | case ResOperand::RenderAsmOperand: | 
|  | if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) | 
|  | --Op.AsmOperandNum; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// extractSingletonRegisterForAsmOperand - Extract singleton register, | 
|  | /// if present, from specified token. | 
|  | static void | 
|  | extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, | 
|  | const AsmMatcherInfo &Info, | 
|  | StringRef RegisterPrefix) { | 
|  | StringRef Tok = Op.Token; | 
|  |  | 
|  | // If this token is not an isolated token, i.e., it isn't separated from | 
|  | // other tokens (e.g. with whitespace), don't interpret it as a register name. | 
|  | if (!Op.IsIsolatedToken) | 
|  | return; | 
|  |  | 
|  | if (RegisterPrefix.empty()) { | 
|  | std::string LoweredTok = Tok.lower(); | 
|  | if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) | 
|  | Op.SingletonReg = Reg->TheDef; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!Tok.startswith(RegisterPrefix)) | 
|  | return; | 
|  |  | 
|  | StringRef RegName = Tok.substr(RegisterPrefix.size()); | 
|  | if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) | 
|  | Op.SingletonReg = Reg->TheDef; | 
|  |  | 
|  | // If there is no register prefix (i.e. "%" in "%eax"), then this may | 
|  | // be some random non-register token, just ignore it. | 
|  | } | 
|  |  | 
|  | void MatchableInfo::initialize(const AsmMatcherInfo &Info, | 
|  | SmallPtrSetImpl<Record*> &SingletonRegisters, | 
|  | AsmVariantInfo const &Variant, | 
|  | bool HasMnemonicFirst) { | 
|  | AsmVariantID = Variant.AsmVariantNo; | 
|  | AsmString = | 
|  | CodeGenInstruction::FlattenAsmStringVariants(AsmString, | 
|  | Variant.AsmVariantNo); | 
|  |  | 
|  | tokenizeAsmString(Info, Variant); | 
|  |  | 
|  | // The first token of the instruction is the mnemonic, which must be a | 
|  | // simple string, not a $foo variable or a singleton register. | 
|  | if (AsmOperands.empty()) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "Instruction '" + TheDef->getName() + "' has no tokens"); | 
|  |  | 
|  | assert(!AsmOperands[0].Token.empty()); | 
|  | if (HasMnemonicFirst) { | 
|  | Mnemonic = AsmOperands[0].Token; | 
|  | if (Mnemonic[0] == '$') | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "Invalid instruction mnemonic '" + Mnemonic + "'!"); | 
|  |  | 
|  | // Remove the first operand, it is tracked in the mnemonic field. | 
|  | AsmOperands.erase(AsmOperands.begin()); | 
|  | } else if (AsmOperands[0].Token[0] != '$') | 
|  | Mnemonic = AsmOperands[0].Token; | 
|  |  | 
|  | // Compute the require features. | 
|  | for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) | 
|  | if (const SubtargetFeatureInfo *Feature = | 
|  | Info.getSubtargetFeature(Predicate)) | 
|  | RequiredFeatures.push_back(Feature); | 
|  |  | 
|  | // Collect singleton registers, if used. | 
|  | for (MatchableInfo::AsmOperand &Op : AsmOperands) { | 
|  | extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); | 
|  | if (Record *Reg = Op.SingletonReg) | 
|  | SingletonRegisters.insert(Reg); | 
|  | } | 
|  |  | 
|  | const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); | 
|  | if (!DepMask) | 
|  | DepMask = TheDef->getValue("ComplexDeprecationPredicate"); | 
|  |  | 
|  | HasDeprecation = | 
|  | DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; | 
|  | } | 
|  |  | 
|  | /// Append an AsmOperand for the given substring of AsmString. | 
|  | void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { | 
|  | AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); | 
|  | } | 
|  |  | 
|  | /// tokenizeAsmString - Tokenize a simplified assembly string. | 
|  | void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, | 
|  | AsmVariantInfo const &Variant) { | 
|  | StringRef String = AsmString; | 
|  | size_t Prev = 0; | 
|  | bool InTok = false; | 
|  | bool IsIsolatedToken = true; | 
|  | for (size_t i = 0, e = String.size(); i != e; ++i) { | 
|  | char Char = String[i]; | 
|  | if (Variant.BreakCharacters.find(Char) != std::string::npos) { | 
|  | if (InTok) { | 
|  | addAsmOperand(String.slice(Prev, i), false); | 
|  | Prev = i; | 
|  | IsIsolatedToken = false; | 
|  | } | 
|  | InTok = true; | 
|  | continue; | 
|  | } | 
|  | if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { | 
|  | if (InTok) { | 
|  | addAsmOperand(String.slice(Prev, i), IsIsolatedToken); | 
|  | InTok = false; | 
|  | IsIsolatedToken = false; | 
|  | } | 
|  | addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); | 
|  | Prev = i + 1; | 
|  | IsIsolatedToken = true; | 
|  | continue; | 
|  | } | 
|  | if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { | 
|  | if (InTok) { | 
|  | addAsmOperand(String.slice(Prev, i), IsIsolatedToken); | 
|  | InTok = false; | 
|  | } | 
|  | Prev = i + 1; | 
|  | IsIsolatedToken = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Char) { | 
|  | case '\\': | 
|  | if (InTok) { | 
|  | addAsmOperand(String.slice(Prev, i), false); | 
|  | InTok = false; | 
|  | IsIsolatedToken = false; | 
|  | } | 
|  | ++i; | 
|  | assert(i != String.size() && "Invalid quoted character"); | 
|  | addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); | 
|  | Prev = i + 1; | 
|  | IsIsolatedToken = false; | 
|  | break; | 
|  |  | 
|  | case '$': { | 
|  | if (InTok) { | 
|  | addAsmOperand(String.slice(Prev, i), false); | 
|  | InTok = false; | 
|  | IsIsolatedToken = false; | 
|  | } | 
|  |  | 
|  | // If this isn't "${", start new identifier looking like "$xxx" | 
|  | if (i + 1 == String.size() || String[i + 1] != '{') { | 
|  | Prev = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | size_t EndPos = String.find('}', i); | 
|  | assert(EndPos != StringRef::npos && | 
|  | "Missing brace in operand reference!"); | 
|  | addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); | 
|  | Prev = EndPos + 1; | 
|  | i = EndPos; | 
|  | IsIsolatedToken = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | InTok = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InTok && Prev != String.size()) | 
|  | addAsmOperand(String.substr(Prev), IsIsolatedToken); | 
|  | } | 
|  |  | 
|  | bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { | 
|  | // Reject matchables with no .s string. | 
|  | if (AsmString.empty()) | 
|  | PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); | 
|  |  | 
|  | // Reject any matchables with a newline in them, they should be marked | 
|  | // isCodeGenOnly if they are pseudo instructions. | 
|  | if (AsmString.find('\n') != std::string::npos) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "multiline instruction is not valid for the asmparser, " | 
|  | "mark it isCodeGenOnly"); | 
|  |  | 
|  | // Remove comments from the asm string.  We know that the asmstring only | 
|  | // has one line. | 
|  | if (!CommentDelimiter.empty() && | 
|  | StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "asmstring for instruction has comment character in it, " | 
|  | "mark it isCodeGenOnly"); | 
|  |  | 
|  | // Reject matchables with operand modifiers, these aren't something we can | 
|  | // handle, the target should be refactored to use operands instead of | 
|  | // modifiers. | 
|  | // | 
|  | // Also, check for instructions which reference the operand multiple times; | 
|  | // this implies a constraint we would not honor. | 
|  | std::set<std::string> OperandNames; | 
|  | for (const AsmOperand &Op : AsmOperands) { | 
|  | StringRef Tok = Op.Token; | 
|  | if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "matchable with operand modifier '" + Tok + | 
|  | "' not supported by asm matcher.  Mark isCodeGenOnly!"); | 
|  | // Verify that any operand is only mentioned once. | 
|  | // We reject aliases and ignore instructions for now. | 
|  | if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) { | 
|  | LLVM_DEBUG({ | 
|  | errs() << "warning: '" << TheDef->getName() << "': " | 
|  | << "ignoring instruction with tied operand '" | 
|  | << Tok << "'\n"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static std::string getEnumNameForToken(StringRef Str) { | 
|  | std::string Res; | 
|  |  | 
|  | for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { | 
|  | switch (*it) { | 
|  | case '*': Res += "_STAR_"; break; | 
|  | case '%': Res += "_PCT_"; break; | 
|  | case ':': Res += "_COLON_"; break; | 
|  | case '!': Res += "_EXCLAIM_"; break; | 
|  | case '.': Res += "_DOT_"; break; | 
|  | case '<': Res += "_LT_"; break; | 
|  | case '>': Res += "_GT_"; break; | 
|  | case '-': Res += "_MINUS_"; break; | 
|  | default: | 
|  | if ((*it >= 'A' && *it <= 'Z') || | 
|  | (*it >= 'a' && *it <= 'z') || | 
|  | (*it >= '0' && *it <= '9')) | 
|  | Res += *it; | 
|  | else | 
|  | Res += "_" + utostr((unsigned) *it) + "_"; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { | 
|  | ClassInfo *&Entry = TokenClasses[Token]; | 
|  |  | 
|  | if (!Entry) { | 
|  | Classes.emplace_front(); | 
|  | Entry = &Classes.front(); | 
|  | Entry->Kind = ClassInfo::Token; | 
|  | Entry->ClassName = "Token"; | 
|  | Entry->Name = "MCK_" + getEnumNameForToken(Token); | 
|  | Entry->ValueName = Token; | 
|  | Entry->PredicateMethod = "<invalid>"; | 
|  | Entry->RenderMethod = "<invalid>"; | 
|  | Entry->ParserMethod = ""; | 
|  | Entry->DiagnosticType = ""; | 
|  | Entry->IsOptional = false; | 
|  | Entry->DefaultMethod = "<invalid>"; | 
|  | } | 
|  |  | 
|  | return Entry; | 
|  | } | 
|  |  | 
|  | ClassInfo * | 
|  | AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, | 
|  | int SubOpIdx) { | 
|  | Record *Rec = OI.Rec; | 
|  | if (SubOpIdx != -1) | 
|  | Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); | 
|  | return getOperandClass(Rec, SubOpIdx); | 
|  | } | 
|  |  | 
|  | ClassInfo * | 
|  | AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { | 
|  | if (Rec->isSubClassOf("RegisterOperand")) { | 
|  | // RegisterOperand may have an associated ParserMatchClass. If it does, | 
|  | // use it, else just fall back to the underlying register class. | 
|  | const RecordVal *R = Rec->getValue("ParserMatchClass"); | 
|  | if (!R || !R->getValue()) | 
|  | PrintFatalError("Record `" + Rec->getName() + | 
|  | "' does not have a ParserMatchClass!\n"); | 
|  |  | 
|  | if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { | 
|  | Record *MatchClass = DI->getDef(); | 
|  | if (ClassInfo *CI = AsmOperandClasses[MatchClass]) | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | // No custom match class. Just use the register class. | 
|  | Record *ClassRec = Rec->getValueAsDef("RegClass"); | 
|  | if (!ClassRec) | 
|  | PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + | 
|  | "' has no associated register class!\n"); | 
|  | if (ClassInfo *CI = RegisterClassClasses[ClassRec]) | 
|  | return CI; | 
|  | PrintFatalError(Rec->getLoc(), "register class has no class info!"); | 
|  | } | 
|  |  | 
|  | if (Rec->isSubClassOf("RegisterClass")) { | 
|  | if (ClassInfo *CI = RegisterClassClasses[Rec]) | 
|  | return CI; | 
|  | PrintFatalError(Rec->getLoc(), "register class has no class info!"); | 
|  | } | 
|  |  | 
|  | if (!Rec->isSubClassOf("Operand")) | 
|  | PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + | 
|  | "' does not derive from class Operand!\n"); | 
|  | Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); | 
|  | if (ClassInfo *CI = AsmOperandClasses[MatchClass]) | 
|  | return CI; | 
|  |  | 
|  | PrintFatalError(Rec->getLoc(), "operand has no match class!"); | 
|  | } | 
|  |  | 
|  | struct LessRegisterSet { | 
|  | bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { | 
|  | // std::set<T> defines its own compariso "operator<", but it | 
|  | // performs a lexicographical comparison by T's innate comparison | 
|  | // for some reason. We don't want non-deterministic pointer | 
|  | // comparisons so use this instead. | 
|  | return std::lexicographical_compare(LHS.begin(), LHS.end(), | 
|  | RHS.begin(), RHS.end(), | 
|  | LessRecordByID()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void AsmMatcherInfo:: | 
|  | buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { | 
|  | const auto &Registers = Target.getRegBank().getRegisters(); | 
|  | auto &RegClassList = Target.getRegBank().getRegClasses(); | 
|  |  | 
|  | typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; | 
|  |  | 
|  | // The register sets used for matching. | 
|  | RegisterSetSet RegisterSets; | 
|  |  | 
|  | // Gather the defined sets. | 
|  | for (const CodeGenRegisterClass &RC : RegClassList) | 
|  | RegisterSets.insert( | 
|  | RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); | 
|  |  | 
|  | // Add any required singleton sets. | 
|  | for (Record *Rec : SingletonRegisters) { | 
|  | RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); | 
|  | } | 
|  |  | 
|  | // Introduce derived sets where necessary (when a register does not determine | 
|  | // a unique register set class), and build the mapping of registers to the set | 
|  | // they should classify to. | 
|  | std::map<Record*, RegisterSet> RegisterMap; | 
|  | for (const CodeGenRegister &CGR : Registers) { | 
|  | // Compute the intersection of all sets containing this register. | 
|  | RegisterSet ContainingSet; | 
|  |  | 
|  | for (const RegisterSet &RS : RegisterSets) { | 
|  | if (!RS.count(CGR.TheDef)) | 
|  | continue; | 
|  |  | 
|  | if (ContainingSet.empty()) { | 
|  | ContainingSet = RS; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RegisterSet Tmp; | 
|  | std::swap(Tmp, ContainingSet); | 
|  | std::insert_iterator<RegisterSet> II(ContainingSet, | 
|  | ContainingSet.begin()); | 
|  | std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, | 
|  | LessRecordByID()); | 
|  | } | 
|  |  | 
|  | if (!ContainingSet.empty()) { | 
|  | RegisterSets.insert(ContainingSet); | 
|  | RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Construct the register classes. | 
|  | std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; | 
|  | unsigned Index = 0; | 
|  | for (const RegisterSet &RS : RegisterSets) { | 
|  | Classes.emplace_front(); | 
|  | ClassInfo *CI = &Classes.front(); | 
|  | CI->Kind = ClassInfo::RegisterClass0 + Index; | 
|  | CI->ClassName = "Reg" + utostr(Index); | 
|  | CI->Name = "MCK_Reg" + utostr(Index); | 
|  | CI->ValueName = ""; | 
|  | CI->PredicateMethod = ""; // unused | 
|  | CI->RenderMethod = "addRegOperands"; | 
|  | CI->Registers = RS; | 
|  | // FIXME: diagnostic type. | 
|  | CI->DiagnosticType = ""; | 
|  | CI->IsOptional = false; | 
|  | CI->DefaultMethod = ""; // unused | 
|  | RegisterSetClasses.insert(std::make_pair(RS, CI)); | 
|  | ++Index; | 
|  | } | 
|  |  | 
|  | // Find the superclasses; we could compute only the subgroup lattice edges, | 
|  | // but there isn't really a point. | 
|  | for (const RegisterSet &RS : RegisterSets) { | 
|  | ClassInfo *CI = RegisterSetClasses[RS]; | 
|  | for (const RegisterSet &RS2 : RegisterSets) | 
|  | if (RS != RS2 && | 
|  | std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), | 
|  | LessRecordByID())) | 
|  | CI->SuperClasses.push_back(RegisterSetClasses[RS2]); | 
|  | } | 
|  |  | 
|  | // Name the register classes which correspond to a user defined RegisterClass. | 
|  | for (const CodeGenRegisterClass &RC : RegClassList) { | 
|  | // Def will be NULL for non-user defined register classes. | 
|  | Record *Def = RC.getDef(); | 
|  | if (!Def) | 
|  | continue; | 
|  | ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), | 
|  | RC.getOrder().end())]; | 
|  | if (CI->ValueName.empty()) { | 
|  | CI->ClassName = RC.getName(); | 
|  | CI->Name = "MCK_" + RC.getName(); | 
|  | CI->ValueName = RC.getName(); | 
|  | } else | 
|  | CI->ValueName = CI->ValueName + "," + RC.getName(); | 
|  |  | 
|  | Init *DiagnosticType = Def->getValueInit("DiagnosticType"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) | 
|  | CI->DiagnosticType = SI->getValue(); | 
|  |  | 
|  | Init *DiagnosticString = Def->getValueInit("DiagnosticString"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) | 
|  | CI->DiagnosticString = SI->getValue(); | 
|  |  | 
|  | // If we have a diagnostic string but the diagnostic type is not specified | 
|  | // explicitly, create an anonymous diagnostic type. | 
|  | if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) | 
|  | CI->DiagnosticType = RC.getName(); | 
|  |  | 
|  | RegisterClassClasses.insert(std::make_pair(Def, CI)); | 
|  | } | 
|  |  | 
|  | // Populate the map for individual registers. | 
|  | for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), | 
|  | ie = RegisterMap.end(); it != ie; ++it) | 
|  | RegisterClasses[it->first] = RegisterSetClasses[it->second]; | 
|  |  | 
|  | // Name the register classes which correspond to singleton registers. | 
|  | for (Record *Rec : SingletonRegisters) { | 
|  | ClassInfo *CI = RegisterClasses[Rec]; | 
|  | assert(CI && "Missing singleton register class info!"); | 
|  |  | 
|  | if (CI->ValueName.empty()) { | 
|  | CI->ClassName = Rec->getName(); | 
|  | CI->Name = "MCK_" + Rec->getName().str(); | 
|  | CI->ValueName = Rec->getName(); | 
|  | } else | 
|  | CI->ValueName = CI->ValueName + "," + Rec->getName().str(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmMatcherInfo::buildOperandClasses() { | 
|  | std::vector<Record*> AsmOperands = | 
|  | Records.getAllDerivedDefinitions("AsmOperandClass"); | 
|  |  | 
|  | // Pre-populate AsmOperandClasses map. | 
|  | for (Record *Rec : AsmOperands) { | 
|  | Classes.emplace_front(); | 
|  | AsmOperandClasses[Rec] = &Classes.front(); | 
|  | } | 
|  |  | 
|  | unsigned Index = 0; | 
|  | for (Record *Rec : AsmOperands) { | 
|  | ClassInfo *CI = AsmOperandClasses[Rec]; | 
|  | CI->Kind = ClassInfo::UserClass0 + Index; | 
|  |  | 
|  | ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); | 
|  | for (Init *I : Supers->getValues()) { | 
|  | DefInit *DI = dyn_cast<DefInit>(I); | 
|  | if (!DI) { | 
|  | PrintError(Rec->getLoc(), "Invalid super class reference!"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ClassInfo *SC = AsmOperandClasses[DI->getDef()]; | 
|  | if (!SC) | 
|  | PrintError(Rec->getLoc(), "Invalid super class reference!"); | 
|  | else | 
|  | CI->SuperClasses.push_back(SC); | 
|  | } | 
|  | CI->ClassName = Rec->getValueAsString("Name"); | 
|  | CI->Name = "MCK_" + CI->ClassName; | 
|  | CI->ValueName = Rec->getName(); | 
|  |  | 
|  | // Get or construct the predicate method name. | 
|  | Init *PMName = Rec->getValueInit("PredicateMethod"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(PMName)) { | 
|  | CI->PredicateMethod = SI->getValue(); | 
|  | } else { | 
|  | assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); | 
|  | CI->PredicateMethod = "is" + CI->ClassName; | 
|  | } | 
|  |  | 
|  | // Get or construct the render method name. | 
|  | Init *RMName = Rec->getValueInit("RenderMethod"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(RMName)) { | 
|  | CI->RenderMethod = SI->getValue(); | 
|  | } else { | 
|  | assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); | 
|  | CI->RenderMethod = "add" + CI->ClassName + "Operands"; | 
|  | } | 
|  |  | 
|  | // Get the parse method name or leave it as empty. | 
|  | Init *PRMName = Rec->getValueInit("ParserMethod"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(PRMName)) | 
|  | CI->ParserMethod = SI->getValue(); | 
|  |  | 
|  | // Get the diagnostic type and string or leave them as empty. | 
|  | Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) | 
|  | CI->DiagnosticType = SI->getValue(); | 
|  | Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) | 
|  | CI->DiagnosticString = SI->getValue(); | 
|  | // If we have a DiagnosticString, we need a DiagnosticType for use within | 
|  | // the matcher. | 
|  | if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) | 
|  | CI->DiagnosticType = CI->ClassName; | 
|  |  | 
|  | Init *IsOptional = Rec->getValueInit("IsOptional"); | 
|  | if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) | 
|  | CI->IsOptional = BI->getValue(); | 
|  |  | 
|  | // Get or construct the default method name. | 
|  | Init *DMName = Rec->getValueInit("DefaultMethod"); | 
|  | if (StringInit *SI = dyn_cast<StringInit>(DMName)) { | 
|  | CI->DefaultMethod = SI->getValue(); | 
|  | } else { | 
|  | assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); | 
|  | CI->DefaultMethod = "default" + CI->ClassName + "Operands"; | 
|  | } | 
|  |  | 
|  | ++Index; | 
|  | } | 
|  | } | 
|  |  | 
|  | AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, | 
|  | CodeGenTarget &target, | 
|  | RecordKeeper &records) | 
|  | : Records(records), AsmParser(asmParser), Target(target) { | 
|  | } | 
|  |  | 
|  | /// buildOperandMatchInfo - Build the necessary information to handle user | 
|  | /// defined operand parsing methods. | 
|  | void AsmMatcherInfo::buildOperandMatchInfo() { | 
|  |  | 
|  | /// Map containing a mask with all operands indices that can be found for | 
|  | /// that class inside a instruction. | 
|  | typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; | 
|  | OpClassMaskTy OpClassMask; | 
|  |  | 
|  | for (const auto &MI : Matchables) { | 
|  | OpClassMask.clear(); | 
|  |  | 
|  | // Keep track of all operands of this instructions which belong to the | 
|  | // same class. | 
|  | for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { | 
|  | const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; | 
|  | if (Op.Class->ParserMethod.empty()) | 
|  | continue; | 
|  | unsigned &OperandMask = OpClassMask[Op.Class]; | 
|  | OperandMask |= (1 << i); | 
|  | } | 
|  |  | 
|  | // Generate operand match info for each mnemonic/operand class pair. | 
|  | for (const auto &OCM : OpClassMask) { | 
|  | unsigned OpMask = OCM.second; | 
|  | ClassInfo *CI = OCM.first; | 
|  | OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, | 
|  | OpMask)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmMatcherInfo::buildInfo() { | 
|  | // Build information about all of the AssemblerPredicates. | 
|  | const std::vector<std::pair<Record *, SubtargetFeatureInfo>> | 
|  | &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); | 
|  | SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), | 
|  | SubtargetFeaturePairs.end()); | 
|  | #ifndef NDEBUG | 
|  | for (const auto &Pair : SubtargetFeatures) | 
|  | LLVM_DEBUG(Pair.second.dump()); | 
|  | #endif // NDEBUG | 
|  | assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); | 
|  |  | 
|  | bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); | 
|  | bool ReportMultipleNearMisses = | 
|  | AsmParser->getValueAsBit("ReportMultipleNearMisses"); | 
|  |  | 
|  | // Parse the instructions; we need to do this first so that we can gather the | 
|  | // singleton register classes. | 
|  | SmallPtrSet<Record*, 16> SingletonRegisters; | 
|  | unsigned VariantCount = Target.getAsmParserVariantCount(); | 
|  | for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
|  | Record *AsmVariant = Target.getAsmParserVariant(VC); | 
|  | StringRef CommentDelimiter = | 
|  | AsmVariant->getValueAsString("CommentDelimiter"); | 
|  | AsmVariantInfo Variant; | 
|  | Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); | 
|  | Variant.TokenizingCharacters = | 
|  | AsmVariant->getValueAsString("TokenizingCharacters"); | 
|  | Variant.SeparatorCharacters = | 
|  | AsmVariant->getValueAsString("SeparatorCharacters"); | 
|  | Variant.BreakCharacters = | 
|  | AsmVariant->getValueAsString("BreakCharacters"); | 
|  | Variant.Name = AsmVariant->getValueAsString("Name"); | 
|  | Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
|  |  | 
|  | for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { | 
|  |  | 
|  | // If the tblgen -match-prefix option is specified (for tblgen hackers), | 
|  | // filter the set of instructions we consider. | 
|  | if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) | 
|  | continue; | 
|  |  | 
|  | // Ignore "codegen only" instructions. | 
|  | if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) | 
|  | continue; | 
|  |  | 
|  | // Ignore instructions for different instructions | 
|  | StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); | 
|  | if (!V.empty() && V != Variant.Name) | 
|  | continue; | 
|  |  | 
|  | auto II = llvm::make_unique<MatchableInfo>(*CGI); | 
|  |  | 
|  | II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); | 
|  |  | 
|  | // Ignore instructions which shouldn't be matched and diagnose invalid | 
|  | // instruction definitions with an error. | 
|  | if (!II->validate(CommentDelimiter, false)) | 
|  | continue; | 
|  |  | 
|  | Matchables.push_back(std::move(II)); | 
|  | } | 
|  |  | 
|  | // Parse all of the InstAlias definitions and stick them in the list of | 
|  | // matchables. | 
|  | std::vector<Record*> AllInstAliases = | 
|  | Records.getAllDerivedDefinitions("InstAlias"); | 
|  | for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { | 
|  | auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], | 
|  | Target); | 
|  |  | 
|  | // If the tblgen -match-prefix option is specified (for tblgen hackers), | 
|  | // filter the set of instruction aliases we consider, based on the target | 
|  | // instruction. | 
|  | if (!StringRef(Alias->ResultInst->TheDef->getName()) | 
|  | .startswith( MatchPrefix)) | 
|  | continue; | 
|  |  | 
|  | StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); | 
|  | if (!V.empty() && V != Variant.Name) | 
|  | continue; | 
|  |  | 
|  | auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); | 
|  |  | 
|  | II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); | 
|  |  | 
|  | // Validate the alias definitions. | 
|  | II->validate(CommentDelimiter, true); | 
|  |  | 
|  | Matchables.push_back(std::move(II)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build info for the register classes. | 
|  | buildRegisterClasses(SingletonRegisters); | 
|  |  | 
|  | // Build info for the user defined assembly operand classes. | 
|  | buildOperandClasses(); | 
|  |  | 
|  | // Build the information about matchables, now that we have fully formed | 
|  | // classes. | 
|  | std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; | 
|  | for (auto &II : Matchables) { | 
|  | // Parse the tokens after the mnemonic. | 
|  | // Note: buildInstructionOperandReference may insert new AsmOperands, so | 
|  | // don't precompute the loop bound. | 
|  | for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { | 
|  | MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; | 
|  | StringRef Token = Op.Token; | 
|  |  | 
|  | // Check for singleton registers. | 
|  | if (Record *RegRecord = Op.SingletonReg) { | 
|  | Op.Class = RegisterClasses[RegRecord]; | 
|  | assert(Op.Class && Op.Class->Registers.size() == 1 && | 
|  | "Unexpected class for singleton register"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check for simple tokens. | 
|  | if (Token[0] != '$') { | 
|  | Op.Class = getTokenClass(Token); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Token.size() > 1 && isdigit(Token[1])) { | 
|  | Op.Class = getTokenClass(Token); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise this is an operand reference. | 
|  | StringRef OperandName; | 
|  | if (Token[1] == '{') | 
|  | OperandName = Token.substr(2, Token.size() - 3); | 
|  | else | 
|  | OperandName = Token.substr(1); | 
|  |  | 
|  | if (II->DefRec.is<const CodeGenInstruction*>()) | 
|  | buildInstructionOperandReference(II.get(), OperandName, i); | 
|  | else | 
|  | buildAliasOperandReference(II.get(), OperandName, Op); | 
|  | } | 
|  |  | 
|  | if (II->DefRec.is<const CodeGenInstruction*>()) { | 
|  | II->buildInstructionResultOperands(); | 
|  | // If the instruction has a two-operand alias, build up the | 
|  | // matchable here. We'll add them in bulk at the end to avoid | 
|  | // confusing this loop. | 
|  | StringRef Constraint = | 
|  | II->TheDef->getValueAsString("TwoOperandAliasConstraint"); | 
|  | if (Constraint != "") { | 
|  | // Start by making a copy of the original matchable. | 
|  | auto AliasII = llvm::make_unique<MatchableInfo>(*II); | 
|  |  | 
|  | // Adjust it to be a two-operand alias. | 
|  | AliasII->formTwoOperandAlias(Constraint); | 
|  |  | 
|  | // Add the alias to the matchables list. | 
|  | NewMatchables.push_back(std::move(AliasII)); | 
|  | } | 
|  | } else | 
|  | // FIXME: The tied operands checking is not yet integrated with the | 
|  | // framework for reporting multiple near misses. To prevent invalid | 
|  | // formats from being matched with an alias if a tied-operands check | 
|  | // would otherwise have disallowed it, we just disallow such constructs | 
|  | // in TableGen completely. | 
|  | II->buildAliasResultOperands(!ReportMultipleNearMisses); | 
|  | } | 
|  | if (!NewMatchables.empty()) | 
|  | Matchables.insert(Matchables.end(), | 
|  | std::make_move_iterator(NewMatchables.begin()), | 
|  | std::make_move_iterator(NewMatchables.end())); | 
|  |  | 
|  | // Process token alias definitions and set up the associated superclass | 
|  | // information. | 
|  | std::vector<Record*> AllTokenAliases = | 
|  | Records.getAllDerivedDefinitions("TokenAlias"); | 
|  | for (Record *Rec : AllTokenAliases) { | 
|  | ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); | 
|  | ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); | 
|  | if (FromClass == ToClass) | 
|  | PrintFatalError(Rec->getLoc(), | 
|  | "error: Destination value identical to source value."); | 
|  | FromClass->SuperClasses.push_back(ToClass); | 
|  | } | 
|  |  | 
|  | // Reorder classes so that classes precede super classes. | 
|  | Classes.sort(); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | // Verify that the table is sorted and operator < works transitively. | 
|  | for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { | 
|  | for (auto J = I; J != E; ++J) { | 
|  | assert(!(*J < *I)); | 
|  | assert(I == J || !J->isSubsetOf(*I)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// buildInstructionOperandReference - The specified operand is a reference to a | 
|  | /// named operand such as $src.  Resolve the Class and OperandInfo pointers. | 
|  | void AsmMatcherInfo:: | 
|  | buildInstructionOperandReference(MatchableInfo *II, | 
|  | StringRef OperandName, | 
|  | unsigned AsmOpIdx) { | 
|  | const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); | 
|  | const CGIOperandList &Operands = CGI.Operands; | 
|  | MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; | 
|  |  | 
|  | // Map this token to an operand. | 
|  | unsigned Idx; | 
|  | if (!Operands.hasOperandNamed(OperandName, Idx)) | 
|  | PrintFatalError(II->TheDef->getLoc(), | 
|  | "error: unable to find operand: '" + OperandName + "'"); | 
|  |  | 
|  | // If the instruction operand has multiple suboperands, but the parser | 
|  | // match class for the asm operand is still the default "ImmAsmOperand", | 
|  | // then handle each suboperand separately. | 
|  | if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { | 
|  | Record *Rec = Operands[Idx].Rec; | 
|  | assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); | 
|  | Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); | 
|  | if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { | 
|  | // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. | 
|  | StringRef Token = Op->Token; // save this in case Op gets moved | 
|  | for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { | 
|  | MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); | 
|  | NewAsmOp.SubOpIdx = SI; | 
|  | II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); | 
|  | } | 
|  | // Replace Op with first suboperand. | 
|  | Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved | 
|  | Op->SubOpIdx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set up the operand class. | 
|  | Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); | 
|  | Op->OrigSrcOpName = OperandName; | 
|  |  | 
|  | // If the named operand is tied, canonicalize it to the untied operand. | 
|  | // For example, something like: | 
|  | //   (outs GPR:$dst), (ins GPR:$src) | 
|  | // with an asmstring of | 
|  | //   "inc $src" | 
|  | // we want to canonicalize to: | 
|  | //   "inc $dst" | 
|  | // so that we know how to provide the $dst operand when filling in the result. | 
|  | int OITied = -1; | 
|  | if (Operands[Idx].MINumOperands == 1) | 
|  | OITied = Operands[Idx].getTiedRegister(); | 
|  | if (OITied != -1) { | 
|  | // The tied operand index is an MIOperand index, find the operand that | 
|  | // contains it. | 
|  | std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); | 
|  | OperandName = Operands[Idx.first].Name; | 
|  | Op->SubOpIdx = Idx.second; | 
|  | } | 
|  |  | 
|  | Op->SrcOpName = OperandName; | 
|  | } | 
|  |  | 
|  | /// buildAliasOperandReference - When parsing an operand reference out of the | 
|  | /// matching string (e.g. "movsx $src, $dst"), determine what the class of the | 
|  | /// operand reference is by looking it up in the result pattern definition. | 
|  | void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, | 
|  | StringRef OperandName, | 
|  | MatchableInfo::AsmOperand &Op) { | 
|  | const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); | 
|  |  | 
|  | // Set up the operand class. | 
|  | for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) | 
|  | if (CGA.ResultOperands[i].isRecord() && | 
|  | CGA.ResultOperands[i].getName() == OperandName) { | 
|  | // It's safe to go with the first one we find, because CodeGenInstAlias | 
|  | // validates that all operands with the same name have the same record. | 
|  | Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; | 
|  | // Use the match class from the Alias definition, not the | 
|  | // destination instruction, as we may have an immediate that's | 
|  | // being munged by the match class. | 
|  | Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), | 
|  | Op.SubOpIdx); | 
|  | Op.SrcOpName = OperandName; | 
|  | Op.OrigSrcOpName = OperandName; | 
|  | return; | 
|  | } | 
|  |  | 
|  | PrintFatalError(II->TheDef->getLoc(), | 
|  | "error: unable to find operand: '" + OperandName + "'"); | 
|  | } | 
|  |  | 
|  | void MatchableInfo::buildInstructionResultOperands() { | 
|  | const CodeGenInstruction *ResultInst = getResultInst(); | 
|  |  | 
|  | // Loop over all operands of the result instruction, determining how to | 
|  | // populate them. | 
|  | for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { | 
|  | // If this is a tied operand, just copy from the previously handled operand. | 
|  | int TiedOp = -1; | 
|  | if (OpInfo.MINumOperands == 1) | 
|  | TiedOp = OpInfo.getTiedRegister(); | 
|  | if (TiedOp != -1) { | 
|  | int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); | 
|  | if (TiedSrcOperand != -1 && | 
|  | ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) | 
|  | ResOperands.push_back(ResOperand::getTiedOp( | 
|  | TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); | 
|  | else | 
|  | ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int SrcOperand = findAsmOperandNamed(OpInfo.Name); | 
|  | if (OpInfo.Name.empty() || SrcOperand == -1) { | 
|  | // This may happen for operands that are tied to a suboperand of a | 
|  | // complex operand.  Simply use a dummy value here; nobody should | 
|  | // use this operand slot. | 
|  | // FIXME: The long term goal is for the MCOperand list to not contain | 
|  | // tied operands at all. | 
|  | ResOperands.push_back(ResOperand::getImmOp(0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if the one AsmOperand populates the entire operand. | 
|  | unsigned NumOperands = OpInfo.MINumOperands; | 
|  | if (AsmOperands[SrcOperand].SubOpIdx == -1) { | 
|  | ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Add a separate ResOperand for each suboperand. | 
|  | for (unsigned AI = 0; AI < NumOperands; ++AI) { | 
|  | assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && | 
|  | AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && | 
|  | "unexpected AsmOperands for suboperands"); | 
|  | ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { | 
|  | const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); | 
|  | const CodeGenInstruction *ResultInst = getResultInst(); | 
|  |  | 
|  | // Map of:  $reg -> #lastref | 
|  | //   where $reg is the name of the operand in the asm string | 
|  | //   where #lastref is the last processed index where $reg was referenced in | 
|  | //   the asm string. | 
|  | SmallDenseMap<StringRef, int> OperandRefs; | 
|  |  | 
|  | // Loop over all operands of the result instruction, determining how to | 
|  | // populate them. | 
|  | unsigned AliasOpNo = 0; | 
|  | unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); | 
|  | for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { | 
|  | const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; | 
|  |  | 
|  | // If this is a tied operand, just copy from the previously handled operand. | 
|  | int TiedOp = -1; | 
|  | if (OpInfo->MINumOperands == 1) | 
|  | TiedOp = OpInfo->getTiedRegister(); | 
|  | if (TiedOp != -1) { | 
|  | unsigned SrcOp1 = 0; | 
|  | unsigned SrcOp2 = 0; | 
|  |  | 
|  | // If an operand has been specified twice in the asm string, | 
|  | // add the two source operand's indices to the TiedOp so that | 
|  | // at runtime the 'tied' constraint is checked. | 
|  | if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { | 
|  | SrcOp1 = ResOperands[TiedOp].AsmOperandNum; | 
|  |  | 
|  | // Find the next operand (similarly named operand) in the string. | 
|  | StringRef Name = AsmOperands[SrcOp1].SrcOpName; | 
|  | auto Insert = OperandRefs.try_emplace(Name, SrcOp1); | 
|  | SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); | 
|  |  | 
|  | // Not updating the record in OperandRefs will cause TableGen | 
|  | // to fail with an error at the end of this function. | 
|  | if (AliasConstraintsAreChecked) | 
|  | Insert.first->second = SrcOp2; | 
|  |  | 
|  | // In case it only has one reference in the asm string, | 
|  | // it doesn't need to be checked for tied constraints. | 
|  | SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; | 
|  | } | 
|  |  | 
|  | // If the alias operand is of a different operand class, we only want | 
|  | // to benefit from the tied-operands check and just match the operand | 
|  | // as a normal, but not copy the original (TiedOp) to the result | 
|  | // instruction. We do this by passing -1 as the tied operand to copy. | 
|  | if (ResultInst->Operands[i].Rec->getName() != | 
|  | ResultInst->Operands[TiedOp].Rec->getName()) { | 
|  | SrcOp1 = ResOperands[TiedOp].AsmOperandNum; | 
|  | int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; | 
|  | StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); | 
|  | SrcOp2 = findAsmOperand(Name, SubIdx); | 
|  | ResOperands.push_back( | 
|  | ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); | 
|  | } else { | 
|  | ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle all the suboperands for this operand. | 
|  | const std::string &OpName = OpInfo->Name; | 
|  | for ( ; AliasOpNo <  LastOpNo && | 
|  | CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { | 
|  | int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; | 
|  |  | 
|  | // Find out what operand from the asmparser that this MCInst operand | 
|  | // comes from. | 
|  | switch (CGA.ResultOperands[AliasOpNo].Kind) { | 
|  | case CodeGenInstAlias::ResultOperand::K_Record: { | 
|  | StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); | 
|  | int SrcOperand = findAsmOperand(Name, SubIdx); | 
|  | if (SrcOperand == -1) | 
|  | PrintFatalError(TheDef->getLoc(), "Instruction '" + | 
|  | TheDef->getName() + "' has operand '" + OpName + | 
|  | "' that doesn't appear in asm string!"); | 
|  |  | 
|  | // Add it to the operand references. If it is added a second time, the | 
|  | // record won't be updated and it will fail later on. | 
|  | OperandRefs.try_emplace(Name, SrcOperand); | 
|  |  | 
|  | unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); | 
|  | ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, | 
|  | NumOperands)); | 
|  | break; | 
|  | } | 
|  | case CodeGenInstAlias::ResultOperand::K_Imm: { | 
|  | int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); | 
|  | ResOperands.push_back(ResOperand::getImmOp(ImmVal)); | 
|  | break; | 
|  | } | 
|  | case CodeGenInstAlias::ResultOperand::K_Reg: { | 
|  | Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); | 
|  | ResOperands.push_back(ResOperand::getRegOp(Reg)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that operands are not repeated more times than is supported. | 
|  | for (auto &T : OperandRefs) { | 
|  | if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) | 
|  | PrintFatalError(TheDef->getLoc(), | 
|  | "Operand '" + T.first + "' can never be matched"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned | 
|  | getConverterOperandID(const std::string &Name, | 
|  | SmallSetVector<CachedHashString, 16> &Table, | 
|  | bool &IsNew) { | 
|  | IsNew = Table.insert(CachedHashString(Name)); | 
|  |  | 
|  | unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); | 
|  |  | 
|  | assert(ID < Table.size()); | 
|  |  | 
|  | return ID; | 
|  | } | 
|  |  | 
|  | static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, | 
|  | std::vector<std::unique_ptr<MatchableInfo>> &Infos, | 
|  | bool HasMnemonicFirst, bool HasOptionalOperands, | 
|  | raw_ostream &OS) { | 
|  | SmallSetVector<CachedHashString, 16> OperandConversionKinds; | 
|  | SmallSetVector<CachedHashString, 16> InstructionConversionKinds; | 
|  | std::vector<std::vector<uint8_t> > ConversionTable; | 
|  | size_t MaxRowLength = 2; // minimum is custom converter plus terminator. | 
|  |  | 
|  | // TargetOperandClass - This is the target's operand class, like X86Operand. | 
|  | std::string TargetOperandClass = Target.getName().str() + "Operand"; | 
|  |  | 
|  | // Write the convert function to a separate stream, so we can drop it after | 
|  | // the enum. We'll build up the conversion handlers for the individual | 
|  | // operand types opportunistically as we encounter them. | 
|  | std::string ConvertFnBody; | 
|  | raw_string_ostream CvtOS(ConvertFnBody); | 
|  | // Start the unified conversion function. | 
|  | if (HasOptionalOperands) { | 
|  | CvtOS << "void " << Target.getName() << ClassName << "::\n" | 
|  | << "convertToMCInst(unsigned Kind, MCInst &Inst, " | 
|  | << "unsigned Opcode,\n" | 
|  | << "                const OperandVector &Operands,\n" | 
|  | << "                const SmallBitVector &OptionalOperandsMask) {\n"; | 
|  | } else { | 
|  | CvtOS << "void " << Target.getName() << ClassName << "::\n" | 
|  | << "convertToMCInst(unsigned Kind, MCInst &Inst, " | 
|  | << "unsigned Opcode,\n" | 
|  | << "                const OperandVector &Operands) {\n"; | 
|  | } | 
|  | CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; | 
|  | CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n"; | 
|  | if (HasOptionalOperands) { | 
|  | size_t MaxNumOperands = 0; | 
|  | for (const auto &MI : Infos) { | 
|  | MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); | 
|  | } | 
|  | CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1) | 
|  | << "] = { 0 };\n"; | 
|  | CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands) | 
|  | << ");\n"; | 
|  | CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) | 
|  | << "; ++i) {\n"; | 
|  | CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n"; | 
|  | CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; | 
|  | CvtOS << "  }\n"; | 
|  | } | 
|  | CvtOS << "  unsigned OpIdx;\n"; | 
|  | CvtOS << "  Inst.setOpcode(Opcode);\n"; | 
|  | CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"; | 
|  | if (HasOptionalOperands) { | 
|  | CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; | 
|  | } else { | 
|  | CvtOS << "    OpIdx = *(p + 1);\n"; | 
|  | } | 
|  | CvtOS << "    switch (*p) {\n"; | 
|  | CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"; | 
|  | CvtOS << "    case CVT_Reg:\n"; | 
|  | CvtOS << "      static_cast<" << TargetOperandClass | 
|  | << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; | 
|  | CvtOS << "      break;\n"; | 
|  | CvtOS << "    case CVT_Tied: {\n"; | 
|  | CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; | 
|  | CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n"; | 
|  | CvtOS << "             \"Tied operand not found\");\n"; | 
|  | CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; | 
|  | CvtOS << "      if (TiedResOpnd != (uint8_t) -1)\n"; | 
|  | CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; | 
|  | CvtOS << "      break;\n"; | 
|  | CvtOS << "    }\n"; | 
|  |  | 
|  | std::string OperandFnBody; | 
|  | raw_string_ostream OpOS(OperandFnBody); | 
|  | // Start the operand number lookup function. | 
|  | OpOS << "void " << Target.getName() << ClassName << "::\n" | 
|  | << "convertToMapAndConstraints(unsigned Kind,\n"; | 
|  | OpOS.indent(27); | 
|  | OpOS << "const OperandVector &Operands) {\n" | 
|  | << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" | 
|  | << "  unsigned NumMCOperands = 0;\n" | 
|  | << "  const uint8_t *Converter = ConversionTable[Kind];\n" | 
|  | << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n" | 
|  | << "    switch (*p) {\n" | 
|  | << "    default: llvm_unreachable(\"invalid conversion entry!\");\n" | 
|  | << "    case CVT_Reg:\n" | 
|  | << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
|  | << "      Operands[*(p + 1)]->setConstraint(\"r\");\n" | 
|  | << "      ++NumMCOperands;\n" | 
|  | << "      break;\n" | 
|  | << "    case CVT_Tied:\n" | 
|  | << "      ++NumMCOperands;\n" | 
|  | << "      break;\n"; | 
|  |  | 
|  | // Pre-populate the operand conversion kinds with the standard always | 
|  | // available entries. | 
|  | OperandConversionKinds.insert(CachedHashString("CVT_Done")); | 
|  | OperandConversionKinds.insert(CachedHashString("CVT_Reg")); | 
|  | OperandConversionKinds.insert(CachedHashString("CVT_Tied")); | 
|  | enum { CVT_Done, CVT_Reg, CVT_Tied }; | 
|  |  | 
|  | // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. | 
|  | std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> | 
|  | TiedOperandsEnumMap; | 
|  |  | 
|  | for (auto &II : Infos) { | 
|  | // Check if we have a custom match function. | 
|  | StringRef AsmMatchConverter = | 
|  | II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); | 
|  | if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { | 
|  | std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); | 
|  | II->ConversionFnKind = Signature; | 
|  |  | 
|  | // Check if we have already generated this signature. | 
|  | if (!InstructionConversionKinds.insert(CachedHashString(Signature))) | 
|  | continue; | 
|  |  | 
|  | // Remember this converter for the kind enum. | 
|  | unsigned KindID = OperandConversionKinds.size(); | 
|  | OperandConversionKinds.insert( | 
|  | CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); | 
|  |  | 
|  | // Add the converter row for this instruction. | 
|  | ConversionTable.emplace_back(); | 
|  | ConversionTable.back().push_back(KindID); | 
|  | ConversionTable.back().push_back(CVT_Done); | 
|  |  | 
|  | // Add the handler to the conversion driver function. | 
|  | CvtOS << "    case CVT_" | 
|  | << getEnumNameForToken(AsmMatchConverter) << ":\n" | 
|  | << "      " << AsmMatchConverter << "(Inst, Operands);\n" | 
|  | << "      break;\n"; | 
|  |  | 
|  | // FIXME: Handle the operand number lookup for custom match functions. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Build the conversion function signature. | 
|  | std::string Signature = "Convert"; | 
|  |  | 
|  | std::vector<uint8_t> ConversionRow; | 
|  |  | 
|  | // Compute the convert enum and the case body. | 
|  | MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); | 
|  |  | 
|  | for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { | 
|  | const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; | 
|  |  | 
|  | // Generate code to populate each result operand. | 
|  | switch (OpInfo.Kind) { | 
|  | case MatchableInfo::ResOperand::RenderAsmOperand: { | 
|  | // This comes from something we parsed. | 
|  | const MatchableInfo::AsmOperand &Op = | 
|  | II->AsmOperands[OpInfo.AsmOperandNum]; | 
|  |  | 
|  | // Registers are always converted the same, don't duplicate the | 
|  | // conversion function based on them. | 
|  | Signature += "__"; | 
|  | std::string Class; | 
|  | Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; | 
|  | Signature += Class; | 
|  | Signature += utostr(OpInfo.MINumOperands); | 
|  | Signature += "_" + itostr(OpInfo.AsmOperandNum); | 
|  |  | 
|  | // Add the conversion kind, if necessary, and get the associated ID | 
|  | // the index of its entry in the vector). | 
|  | std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : | 
|  | Op.Class->RenderMethod); | 
|  | if (Op.Class->IsOptional) { | 
|  | // For optional operands we must also care about DefaultMethod | 
|  | assert(HasOptionalOperands); | 
|  | Name += "_" + Op.Class->DefaultMethod; | 
|  | } | 
|  | Name = getEnumNameForToken(Name); | 
|  |  | 
|  | bool IsNewConverter = false; | 
|  | unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
|  | IsNewConverter); | 
|  |  | 
|  | // Add the operand entry to the instruction kind conversion row. | 
|  | ConversionRow.push_back(ID); | 
|  | ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); | 
|  |  | 
|  | if (!IsNewConverter) | 
|  | break; | 
|  |  | 
|  | // This is a new operand kind. Add a handler for it to the | 
|  | // converter driver. | 
|  | CvtOS << "    case " << Name << ":\n"; | 
|  | if (Op.Class->IsOptional) { | 
|  | // If optional operand is not present in actual instruction then we | 
|  | // should call its DefaultMethod before RenderMethod | 
|  | assert(HasOptionalOperands); | 
|  | CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n" | 
|  | << "        " << Op.Class->DefaultMethod << "()" | 
|  | << "->" << Op.Class->RenderMethod << "(Inst, " | 
|  | << OpInfo.MINumOperands << ");\n" | 
|  | << "      } else {\n" | 
|  | << "        static_cast<" << TargetOperandClass | 
|  | << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod | 
|  | << "(Inst, " << OpInfo.MINumOperands << ");\n" | 
|  | << "      }\n"; | 
|  | } else { | 
|  | CvtOS << "      static_cast<" << TargetOperandClass | 
|  | << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod | 
|  | << "(Inst, " << OpInfo.MINumOperands << ");\n"; | 
|  | } | 
|  | CvtOS << "      break;\n"; | 
|  |  | 
|  | // Add a handler for the operand number lookup. | 
|  | OpOS << "    case " << Name << ":\n" | 
|  | << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; | 
|  |  | 
|  | if (Op.Class->isRegisterClass()) | 
|  | OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"; | 
|  | else | 
|  | OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"; | 
|  | OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n" | 
|  | << "      break;\n"; | 
|  | break; | 
|  | } | 
|  | case MatchableInfo::ResOperand::TiedOperand: { | 
|  | // If this operand is tied to a previous one, just copy the MCInst | 
|  | // operand from the earlier one.We can only tie single MCOperand values. | 
|  | assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); | 
|  | uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; | 
|  | uint8_t SrcOp1 = | 
|  | OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; | 
|  | uint8_t SrcOp2 = | 
|  | OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; | 
|  | assert((i > TiedOp || TiedOp == (uint8_t)-1) && | 
|  | "Tied operand precedes its target!"); | 
|  | auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + | 
|  | utostr(SrcOp1) + '_' + utostr(SrcOp2); | 
|  | Signature += "__" + TiedTupleName; | 
|  | ConversionRow.push_back(CVT_Tied); | 
|  | ConversionRow.push_back(TiedOp); | 
|  | ConversionRow.push_back(SrcOp1); | 
|  | ConversionRow.push_back(SrcOp2); | 
|  |  | 
|  | // Also create an 'enum' for this combination of tied operands. | 
|  | auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); | 
|  | TiedOperandsEnumMap.emplace(Key, TiedTupleName); | 
|  | break; | 
|  | } | 
|  | case MatchableInfo::ResOperand::ImmOperand: { | 
|  | int64_t Val = OpInfo.ImmVal; | 
|  | std::string Ty = "imm_" + itostr(Val); | 
|  | Ty = getEnumNameForToken(Ty); | 
|  | Signature += "__" + Ty; | 
|  |  | 
|  | std::string Name = "CVT_" + Ty; | 
|  | bool IsNewConverter = false; | 
|  | unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
|  | IsNewConverter); | 
|  | // Add the operand entry to the instruction kind conversion row. | 
|  | ConversionRow.push_back(ID); | 
|  | ConversionRow.push_back(0); | 
|  |  | 
|  | if (!IsNewConverter) | 
|  | break; | 
|  |  | 
|  | CvtOS << "    case " << Name << ":\n" | 
|  | << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n" | 
|  | << "      break;\n"; | 
|  |  | 
|  | OpOS << "    case " << Name << ":\n" | 
|  | << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
|  | << "      Operands[*(p + 1)]->setConstraint(\"\");\n" | 
|  | << "      ++NumMCOperands;\n" | 
|  | << "      break;\n"; | 
|  | break; | 
|  | } | 
|  | case MatchableInfo::ResOperand::RegOperand: { | 
|  | std::string Reg, Name; | 
|  | if (!OpInfo.Register) { | 
|  | Name = "reg0"; | 
|  | Reg = "0"; | 
|  | } else { | 
|  | Reg = getQualifiedName(OpInfo.Register); | 
|  | Name = "reg" + OpInfo.Register->getName().str(); | 
|  | } | 
|  | Signature += "__" + Name; | 
|  | Name = "CVT_" + Name; | 
|  | bool IsNewConverter = false; | 
|  | unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
|  | IsNewConverter); | 
|  | // Add the operand entry to the instruction kind conversion row. | 
|  | ConversionRow.push_back(ID); | 
|  | ConversionRow.push_back(0); | 
|  |  | 
|  | if (!IsNewConverter) | 
|  | break; | 
|  | CvtOS << "    case " << Name << ":\n" | 
|  | << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" | 
|  | << "      break;\n"; | 
|  |  | 
|  | OpOS << "    case " << Name << ":\n" | 
|  | << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
|  | << "      Operands[*(p + 1)]->setConstraint(\"m\");\n" | 
|  | << "      ++NumMCOperands;\n" | 
|  | << "      break;\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there were no operands, add to the signature to that effect | 
|  | if (Signature == "Convert") | 
|  | Signature += "_NoOperands"; | 
|  |  | 
|  | II->ConversionFnKind = Signature; | 
|  |  | 
|  | // Save the signature. If we already have it, don't add a new row | 
|  | // to the table. | 
|  | if (!InstructionConversionKinds.insert(CachedHashString(Signature))) | 
|  | continue; | 
|  |  | 
|  | // Add the row to the table. | 
|  | ConversionTable.push_back(std::move(ConversionRow)); | 
|  | } | 
|  |  | 
|  | // Finish up the converter driver function. | 
|  | CvtOS << "    }\n  }\n}\n\n"; | 
|  |  | 
|  | // Finish up the operand number lookup function. | 
|  | OpOS << "    }\n  }\n}\n\n"; | 
|  |  | 
|  | // Output a static table for tied operands. | 
|  | if (TiedOperandsEnumMap.size()) { | 
|  | // The number of tied operand combinations will be small in practice, | 
|  | // but just add the assert to be sure. | 
|  | assert(TiedOperandsEnumMap.size() <= 254 && | 
|  | "Too many tied-operand combinations to reference with " | 
|  | "an 8bit offset from the conversion table, where index " | 
|  | "'255' is reserved as operand not to be copied."); | 
|  |  | 
|  | OS << "enum {\n"; | 
|  | for (auto &KV : TiedOperandsEnumMap) { | 
|  | OS << "  " << KV.second << ",\n"; | 
|  | } | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; | 
|  | for (auto &KV : TiedOperandsEnumMap) { | 
|  | OS << "  /* " << KV.second << " */ { " | 
|  | << utostr(std::get<0>(KV.first)) << ", " | 
|  | << utostr(std::get<1>(KV.first)) << ", " | 
|  | << utostr(std::get<2>(KV.first)) << " },\n"; | 
|  | } | 
|  | OS << "};\n\n"; | 
|  | } else | 
|  | OS << "static const uint8_t TiedAsmOperandTable[][3] = " | 
|  | "{ /* empty  */ {0, 0, 0} };\n\n"; | 
|  |  | 
|  | OS << "namespace {\n"; | 
|  |  | 
|  | // Output the operand conversion kind enum. | 
|  | OS << "enum OperatorConversionKind {\n"; | 
|  | for (const auto &Converter : OperandConversionKinds) | 
|  | OS << "  " << Converter << ",\n"; | 
|  | OS << "  CVT_NUM_CONVERTERS\n"; | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | // Output the instruction conversion kind enum. | 
|  | OS << "enum InstructionConversionKind {\n"; | 
|  | for (const auto &Signature : InstructionConversionKinds) | 
|  | OS << "  " << Signature << ",\n"; | 
|  | OS << "  CVT_NUM_SIGNATURES\n"; | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | OS << "} // end anonymous namespace\n\n"; | 
|  |  | 
|  | // Output the conversion table. | 
|  | OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" | 
|  | << MaxRowLength << "] = {\n"; | 
|  |  | 
|  | for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { | 
|  | assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); | 
|  | OS << "  // " << InstructionConversionKinds[Row] << "\n"; | 
|  | OS << "  { "; | 
|  | for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { | 
|  | OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; | 
|  | if (OperandConversionKinds[ConversionTable[Row][i]] != | 
|  | CachedHashString("CVT_Tied")) { | 
|  | OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For a tied operand, emit a reference to the TiedAsmOperandTable | 
|  | // that contains the operand to copy, and the parsed operands to | 
|  | // check for their tied constraints. | 
|  | auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], | 
|  | (uint8_t)ConversionTable[Row][i + 2], | 
|  | (uint8_t)ConversionTable[Row][i + 3]); | 
|  | auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); | 
|  | assert(TiedOpndEnum != TiedOperandsEnumMap.end() && | 
|  | "No record for tied operand pair"); | 
|  | OS << TiedOpndEnum->second << ", "; | 
|  | i += 2; | 
|  | } | 
|  | OS << "CVT_Done },\n"; | 
|  | } | 
|  |  | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | // Spit out the conversion driver function. | 
|  | OS << CvtOS.str(); | 
|  |  | 
|  | // Spit out the operand number lookup function. | 
|  | OS << OpOS.str(); | 
|  | } | 
|  |  | 
|  | /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. | 
|  | static void emitMatchClassEnumeration(CodeGenTarget &Target, | 
|  | std::forward_list<ClassInfo> &Infos, | 
|  | raw_ostream &OS) { | 
|  | OS << "namespace {\n\n"; | 
|  |  | 
|  | OS << "/// MatchClassKind - The kinds of classes which participate in\n" | 
|  | << "/// instruction matching.\n"; | 
|  | OS << "enum MatchClassKind {\n"; | 
|  | OS << "  InvalidMatchClass = 0,\n"; | 
|  | OS << "  OptionalMatchClass = 1,\n"; | 
|  | ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; | 
|  | StringRef LastName = "OptionalMatchClass"; | 
|  | for (const auto &CI : Infos) { | 
|  | if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { | 
|  | OS << "  MCK_LAST_TOKEN = " << LastName << ",\n"; | 
|  | } else if (LastKind < ClassInfo::UserClass0 && | 
|  | CI.Kind >= ClassInfo::UserClass0) { | 
|  | OS << "  MCK_LAST_REGISTER = " << LastName << ",\n"; | 
|  | } | 
|  | LastKind = (ClassInfo::ClassInfoKind)CI.Kind; | 
|  | LastName = CI.Name; | 
|  |  | 
|  | OS << "  " << CI.Name << ", // "; | 
|  | if (CI.Kind == ClassInfo::Token) { | 
|  | OS << "'" << CI.ValueName << "'\n"; | 
|  | } else if (CI.isRegisterClass()) { | 
|  | if (!CI.ValueName.empty()) | 
|  | OS << "register class '" << CI.ValueName << "'\n"; | 
|  | else | 
|  | OS << "derived register class\n"; | 
|  | } else { | 
|  | OS << "user defined class '" << CI.ValueName << "'\n"; | 
|  | } | 
|  | } | 
|  | OS << "  NumMatchClassKinds\n"; | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be | 
|  | /// used when an assembly operand does not match the expected operand class. | 
|  | static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { | 
|  | // If the target does not use DiagnosticString for any operands, don't emit | 
|  | // an unused function. | 
|  | if (std::all_of( | 
|  | Info.Classes.begin(), Info.Classes.end(), | 
|  | [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) | 
|  | return; | 
|  |  | 
|  | OS << "static const char *getMatchKindDiag(" << Info.Target.getName() | 
|  | << "AsmParser::" << Info.Target.getName() | 
|  | << "MatchResultTy MatchResult) {\n"; | 
|  | OS << "  switch (MatchResult) {\n"; | 
|  |  | 
|  | for (const auto &CI: Info.Classes) { | 
|  | if (!CI.DiagnosticString.empty()) { | 
|  | assert(!CI.DiagnosticType.empty() && | 
|  | "DiagnosticString set without DiagnosticType"); | 
|  | OS << "  case " << Info.Target.getName() | 
|  | << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; | 
|  | OS << "    return \"" << CI.DiagnosticString << "\";\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "  default:\n"; | 
|  | OS << "    return nullptr;\n"; | 
|  |  | 
|  | OS << "  }\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { | 
|  | OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " | 
|  | "RegisterClass) {\n"; | 
|  | if (std::none_of(Info.Classes.begin(), Info.Classes.end(), | 
|  | [](const ClassInfo &CI) { | 
|  | return CI.isRegisterClass() && !CI.DiagnosticType.empty(); | 
|  | })) { | 
|  | OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
|  | } else { | 
|  | OS << "  switch (RegisterClass) {\n"; | 
|  | for (const auto &CI: Info.Classes) { | 
|  | if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { | 
|  | OS << "  case " << CI.Name << ":\n"; | 
|  | OS << "    return " << Info.Target.getName() << "AsmParser::Match_" | 
|  | << CI.DiagnosticType << ";\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "  default:\n"; | 
|  | OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
|  |  | 
|  | OS << "  }\n"; | 
|  | } | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitValidateOperandClass - Emit the function to validate an operand class. | 
|  | static void emitValidateOperandClass(AsmMatcherInfo &Info, | 
|  | raw_ostream &OS) { | 
|  | OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " | 
|  | << "MatchClassKind Kind) {\n"; | 
|  | OS << "  " << Info.Target.getName() << "Operand &Operand = (" | 
|  | << Info.Target.getName() << "Operand&)GOp;\n"; | 
|  |  | 
|  | // The InvalidMatchClass is not to match any operand. | 
|  | OS << "  if (Kind == InvalidMatchClass)\n"; | 
|  | OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n"; | 
|  |  | 
|  | // Check for Token operands first. | 
|  | // FIXME: Use a more specific diagnostic type. | 
|  | OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; | 
|  | OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" | 
|  | << "             MCTargetAsmParser::Match_Success :\n" | 
|  | << "             MCTargetAsmParser::Match_InvalidOperand;\n\n"; | 
|  |  | 
|  | // Check the user classes. We don't care what order since we're only | 
|  | // actually matching against one of them. | 
|  | OS << "  switch (Kind) {\n" | 
|  | "  default: break;\n"; | 
|  | for (const auto &CI : Info.Classes) { | 
|  | if (!CI.isUserClass()) | 
|  | continue; | 
|  |  | 
|  | OS << "  // '" << CI.ClassName << "' class\n"; | 
|  | OS << "  case " << CI.Name << ": {\n"; | 
|  | OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod | 
|  | << "());\n"; | 
|  | OS << "    if (DP.isMatch())\n"; | 
|  | OS << "      return MCTargetAsmParser::Match_Success;\n"; | 
|  | if (!CI.DiagnosticType.empty()) { | 
|  | OS << "    if (DP.isNearMatch())\n"; | 
|  | OS << "      return " << Info.Target.getName() << "AsmParser::Match_" | 
|  | << CI.DiagnosticType << ";\n"; | 
|  | OS << "    break;\n"; | 
|  | } | 
|  | else | 
|  | OS << "    break;\n"; | 
|  | OS << "    }\n"; | 
|  | } | 
|  | OS << "  } // end switch (Kind)\n\n"; | 
|  |  | 
|  | // Check for register operands, including sub-classes. | 
|  | OS << "  if (Operand.isReg()) {\n"; | 
|  | OS << "    MatchClassKind OpKind;\n"; | 
|  | OS << "    switch (Operand.getReg()) {\n"; | 
|  | OS << "    default: OpKind = InvalidMatchClass; break;\n"; | 
|  | for (const auto &RC : Info.RegisterClasses) | 
|  | OS << "    case " << RC.first->getValueAsString("Namespace") << "::" | 
|  | << RC.first->getName() << ": OpKind = " << RC.second->Name | 
|  | << "; break;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    return isSubclass(OpKind, Kind) ? " | 
|  | << "(unsigned)MCTargetAsmParser::Match_Success :\n                     " | 
|  | << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n"; | 
|  |  | 
|  | // Expected operand is a register, but actual is not. | 
|  | OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; | 
|  | OS << "    return getDiagKindFromRegisterClass(Kind);\n\n"; | 
|  |  | 
|  | // Generic fallthrough match failure case for operands that don't have | 
|  | // specialized diagnostic types. | 
|  | OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitIsSubclass - Emit the subclass predicate function. | 
|  | static void emitIsSubclass(CodeGenTarget &Target, | 
|  | std::forward_list<ClassInfo> &Infos, | 
|  | raw_ostream &OS) { | 
|  | OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; | 
|  | OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; | 
|  | OS << "  if (A == B)\n"; | 
|  | OS << "    return true;\n\n"; | 
|  |  | 
|  | bool EmittedSwitch = false; | 
|  | for (const auto &A : Infos) { | 
|  | std::vector<StringRef> SuperClasses; | 
|  | if (A.IsOptional) | 
|  | SuperClasses.push_back("OptionalMatchClass"); | 
|  | for (const auto &B : Infos) { | 
|  | if (&A != &B && A.isSubsetOf(B)) | 
|  | SuperClasses.push_back(B.Name); | 
|  | } | 
|  |  | 
|  | if (SuperClasses.empty()) | 
|  | continue; | 
|  |  | 
|  | // If this is the first SuperClass, emit the switch header. | 
|  | if (!EmittedSwitch) { | 
|  | OS << "  switch (A) {\n"; | 
|  | OS << "  default:\n"; | 
|  | OS << "    return false;\n"; | 
|  | EmittedSwitch = true; | 
|  | } | 
|  |  | 
|  | OS << "\n  case " << A.Name << ":\n"; | 
|  |  | 
|  | if (SuperClasses.size() == 1) { | 
|  | OS << "    return B == " << SuperClasses.back() << ";\n"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!SuperClasses.empty()) { | 
|  | OS << "    switch (B) {\n"; | 
|  | OS << "    default: return false;\n"; | 
|  | for (StringRef SC : SuperClasses) | 
|  | OS << "    case " << SC << ": return true;\n"; | 
|  | OS << "    }\n"; | 
|  | } else { | 
|  | // No case statement to emit | 
|  | OS << "    return false;\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there were case statements emitted into the string stream write the | 
|  | // default. | 
|  | if (EmittedSwitch) | 
|  | OS << "  }\n"; | 
|  | else | 
|  | OS << "  return false;\n"; | 
|  |  | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitMatchTokenString - Emit the function to match a token string to the | 
|  | /// appropriate match class value. | 
|  | static void emitMatchTokenString(CodeGenTarget &Target, | 
|  | std::forward_list<ClassInfo> &Infos, | 
|  | raw_ostream &OS) { | 
|  | // Construct the match list. | 
|  | std::vector<StringMatcher::StringPair> Matches; | 
|  | for (const auto &CI : Infos) { | 
|  | if (CI.Kind == ClassInfo::Token) | 
|  | Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); | 
|  | } | 
|  |  | 
|  | OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; | 
|  |  | 
|  | StringMatcher("Name", Matches, OS).Emit(); | 
|  |  | 
|  | OS << "  return InvalidMatchClass;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitMatchRegisterName - Emit the function to match a string to the target | 
|  | /// specific register enum. | 
|  | static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, | 
|  | raw_ostream &OS) { | 
|  | // Construct the match list. | 
|  | std::vector<StringMatcher::StringPair> Matches; | 
|  | const auto &Regs = Target.getRegBank().getRegisters(); | 
|  | for (const CodeGenRegister &Reg : Regs) { | 
|  | if (Reg.TheDef->getValueAsString("AsmName").empty()) | 
|  | continue; | 
|  |  | 
|  | Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), | 
|  | "return " + utostr(Reg.EnumValue) + ";"); | 
|  | } | 
|  |  | 
|  | OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; | 
|  |  | 
|  | bool IgnoreDuplicates = | 
|  | AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); | 
|  | StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); | 
|  |  | 
|  | OS << "  return 0;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// Emit the function to match a string to the target | 
|  | /// specific register enum. | 
|  | static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, | 
|  | raw_ostream &OS) { | 
|  | // Construct the match list. | 
|  | std::vector<StringMatcher::StringPair> Matches; | 
|  | const auto &Regs = Target.getRegBank().getRegisters(); | 
|  | for (const CodeGenRegister &Reg : Regs) { | 
|  |  | 
|  | auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); | 
|  |  | 
|  | for (auto AltName : AltNames) { | 
|  | AltName = StringRef(AltName).trim(); | 
|  |  | 
|  | // don't handle empty alternative names | 
|  | if (AltName.empty()) | 
|  | continue; | 
|  |  | 
|  | Matches.emplace_back(AltName, | 
|  | "return " + utostr(Reg.EnumValue) + ";"); | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; | 
|  |  | 
|  | bool IgnoreDuplicates = | 
|  | AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); | 
|  | StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); | 
|  |  | 
|  | OS << "  return 0;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. | 
|  | static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { | 
|  | // Get the set of diagnostic types from all of the operand classes. | 
|  | std::set<StringRef> Types; | 
|  | for (const auto &OpClassEntry : Info.AsmOperandClasses) { | 
|  | if (!OpClassEntry.second->DiagnosticType.empty()) | 
|  | Types.insert(OpClassEntry.second->DiagnosticType); | 
|  | } | 
|  | for (const auto &OpClassEntry : Info.RegisterClassClasses) { | 
|  | if (!OpClassEntry.second->DiagnosticType.empty()) | 
|  | Types.insert(OpClassEntry.second->DiagnosticType); | 
|  | } | 
|  |  | 
|  | if (Types.empty()) return; | 
|  |  | 
|  | // Now emit the enum entries. | 
|  | for (StringRef Type : Types) | 
|  | OS << "  Match_" << Type << ",\n"; | 
|  | OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n"; | 
|  | } | 
|  |  | 
|  | /// emitGetSubtargetFeatureName - Emit the helper function to get the | 
|  | /// user-level name for a subtarget feature. | 
|  | static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { | 
|  | OS << "// User-level names for subtarget features that participate in\n" | 
|  | << "// instruction matching.\n" | 
|  | << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; | 
|  | if (!Info.SubtargetFeatures.empty()) { | 
|  | OS << "  switch(Val) {\n"; | 
|  | for (const auto &SF : Info.SubtargetFeatures) { | 
|  | const SubtargetFeatureInfo &SFI = SF.second; | 
|  | // FIXME: Totally just a placeholder name to get the algorithm working. | 
|  | OS << "  case " << SFI.getEnumName() << ": return \"" | 
|  | << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; | 
|  | } | 
|  | OS << "  default: return \"(unknown)\";\n"; | 
|  | OS << "  }\n"; | 
|  | } else { | 
|  | // Nothing to emit, so skip the switch | 
|  | OS << "  return \"(unknown)\";\n"; | 
|  | } | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | static std::string GetAliasRequiredFeatures(Record *R, | 
|  | const AsmMatcherInfo &Info) { | 
|  | std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); | 
|  | std::string Result; | 
|  | unsigned NumFeatures = 0; | 
|  | for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { | 
|  | const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); | 
|  |  | 
|  | if (!F) | 
|  | PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + | 
|  | "' is not marked as an AssemblerPredicate!"); | 
|  |  | 
|  | if (NumFeatures) | 
|  | Result += '|'; | 
|  |  | 
|  | Result += F->getEnumName(); | 
|  | ++NumFeatures; | 
|  | } | 
|  |  | 
|  | if (NumFeatures > 1) | 
|  | Result = '(' + Result + ')'; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, | 
|  | std::vector<Record*> &Aliases, | 
|  | unsigned Indent = 0, | 
|  | StringRef AsmParserVariantName = StringRef()){ | 
|  | // Keep track of all the aliases from a mnemonic.  Use an std::map so that the | 
|  | // iteration order of the map is stable. | 
|  | std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; | 
|  |  | 
|  | for (Record *R : Aliases) { | 
|  | // FIXME: Allow AssemblerVariantName to be a comma separated list. | 
|  | StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); | 
|  | if (AsmVariantName != AsmParserVariantName) | 
|  | continue; | 
|  | AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); | 
|  | } | 
|  | if (AliasesFromMnemonic.empty()) | 
|  | return; | 
|  |  | 
|  | // Process each alias a "from" mnemonic at a time, building the code executed | 
|  | // by the string remapper. | 
|  | std::vector<StringMatcher::StringPair> Cases; | 
|  | for (const auto &AliasEntry : AliasesFromMnemonic) { | 
|  | const std::vector<Record*> &ToVec = AliasEntry.second; | 
|  |  | 
|  | // Loop through each alias and emit code that handles each case.  If there | 
|  | // are two instructions without predicates, emit an error.  If there is one, | 
|  | // emit it last. | 
|  | std::string MatchCode; | 
|  | int AliasWithNoPredicate = -1; | 
|  |  | 
|  | for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { | 
|  | Record *R = ToVec[i]; | 
|  | std::string FeatureMask = GetAliasRequiredFeatures(R, Info); | 
|  |  | 
|  | // If this unconditionally matches, remember it for later and diagnose | 
|  | // duplicates. | 
|  | if (FeatureMask.empty()) { | 
|  | if (AliasWithNoPredicate != -1) { | 
|  | // We can't have two aliases from the same mnemonic with no predicate. | 
|  | PrintError(ToVec[AliasWithNoPredicate]->getLoc(), | 
|  | "two MnemonicAliases with the same 'from' mnemonic!"); | 
|  | PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); | 
|  | } | 
|  |  | 
|  | AliasWithNoPredicate = i; | 
|  | continue; | 
|  | } | 
|  | if (R->getValueAsString("ToMnemonic") == AliasEntry.first) | 
|  | PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); | 
|  |  | 
|  | if (!MatchCode.empty()) | 
|  | MatchCode += "else "; | 
|  | MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; | 
|  | MatchCode += "  Mnemonic = \""; | 
|  | MatchCode += R->getValueAsString("ToMnemonic"); | 
|  | MatchCode += "\";\n"; | 
|  | } | 
|  |  | 
|  | if (AliasWithNoPredicate != -1) { | 
|  | Record *R = ToVec[AliasWithNoPredicate]; | 
|  | if (!MatchCode.empty()) | 
|  | MatchCode += "else\n  "; | 
|  | MatchCode += "Mnemonic = \""; | 
|  | MatchCode += R->getValueAsString("ToMnemonic"); | 
|  | MatchCode += "\";\n"; | 
|  | } | 
|  |  | 
|  | MatchCode += "return;"; | 
|  |  | 
|  | Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); | 
|  | } | 
|  | StringMatcher("Mnemonic", Cases, OS).Emit(Indent); | 
|  | } | 
|  |  | 
|  | /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, | 
|  | /// emit a function for them and return true, otherwise return false. | 
|  | static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, | 
|  | CodeGenTarget &Target) { | 
|  | // Ignore aliases when match-prefix is set. | 
|  | if (!MatchPrefix.empty()) | 
|  | return false; | 
|  |  | 
|  | std::vector<Record*> Aliases = | 
|  | Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); | 
|  | if (Aliases.empty()) return false; | 
|  |  | 
|  | OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " | 
|  | "uint64_t Features, unsigned VariantID) {\n"; | 
|  | OS << "  switch (VariantID) {\n"; | 
|  | unsigned VariantCount = Target.getAsmParserVariantCount(); | 
|  | for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
|  | Record *AsmVariant = Target.getAsmParserVariant(VC); | 
|  | int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); | 
|  | StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); | 
|  | OS << "    case " << AsmParserVariantNo << ":\n"; | 
|  | emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, | 
|  | AsmParserVariantName); | 
|  | OS << "    break;\n"; | 
|  | } | 
|  | OS << "  }\n"; | 
|  |  | 
|  | // Emit aliases that apply to all variants. | 
|  | emitMnemonicAliasVariant(OS, Info, Aliases); | 
|  |  | 
|  | OS << "}\n\n"; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, | 
|  | const AsmMatcherInfo &Info, StringRef ClassName, | 
|  | StringToOffsetTable &StringTable, | 
|  | unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { | 
|  | unsigned MaxMask = 0; | 
|  | for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { | 
|  | MaxMask |= OMI.OperandMask; | 
|  | } | 
|  |  | 
|  | // Emit the static custom operand parsing table; | 
|  | OS << "namespace {\n"; | 
|  | OS << "  struct OperandMatchEntry {\n"; | 
|  | OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) | 
|  | << " RequiredFeatures;\n"; | 
|  | OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) | 
|  | << " Mnemonic;\n"; | 
|  | OS << "    " << getMinimalTypeForRange(std::distance( | 
|  | Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; | 
|  | OS << "    " << getMinimalTypeForRange(MaxMask) | 
|  | << " OperandMask;\n\n"; | 
|  | OS << "    StringRef getMnemonic() const {\n"; | 
|  | OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n"; | 
|  | OS << "                       MnemonicTable[Mnemonic]);\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  };\n\n"; | 
|  |  | 
|  | OS << "  // Predicate for searching for an opcode.\n"; | 
|  | OS << "  struct LessOpcodeOperand {\n"; | 
|  | OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; | 
|  | OS << "      return LHS.getMnemonic()  < RHS;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; | 
|  | OS << "      return LHS < RHS.getMnemonic();\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    bool operator()(const OperandMatchEntry &LHS,"; | 
|  | OS << " const OperandMatchEntry &RHS) {\n"; | 
|  | OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  };\n"; | 
|  |  | 
|  | OS << "} // end anonymous namespace.\n\n"; | 
|  |  | 
|  | OS << "static const OperandMatchEntry OperandMatchTable[" | 
|  | << Info.OperandMatchInfo.size() << "] = {\n"; | 
|  |  | 
|  | OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; | 
|  | for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { | 
|  | const MatchableInfo &II = *OMI.MI; | 
|  |  | 
|  | OS << "  { "; | 
|  |  | 
|  | // Write the required features mask. | 
|  | if (!II.RequiredFeatures.empty()) { | 
|  | for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { | 
|  | if (i) OS << "|"; | 
|  | OS << II.RequiredFeatures[i]->getEnumName(); | 
|  | } | 
|  | } else | 
|  | OS << "0"; | 
|  |  | 
|  | // Store a pascal-style length byte in the mnemonic. | 
|  | std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); | 
|  | OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) | 
|  | << " /* " << II.Mnemonic << " */, "; | 
|  |  | 
|  | OS << OMI.CI->Name; | 
|  |  | 
|  | OS << ", " << OMI.OperandMask; | 
|  | OS << " /* "; | 
|  | bool printComma = false; | 
|  | for (int i = 0, e = 31; i !=e; ++i) | 
|  | if (OMI.OperandMask & (1 << i)) { | 
|  | if (printComma) | 
|  | OS << ", "; | 
|  | OS << i; | 
|  | printComma = true; | 
|  | } | 
|  | OS << " */"; | 
|  |  | 
|  | OS << " },\n"; | 
|  | } | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | // Emit the operand class switch to call the correct custom parser for | 
|  | // the found operand class. | 
|  | OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" | 
|  | << "tryCustomParseOperand(OperandVector" | 
|  | << " &Operands,\n                      unsigned MCK) {\n\n" | 
|  | << "  switch(MCK) {\n"; | 
|  |  | 
|  | for (const auto &CI : Info.Classes) { | 
|  | if (CI.ParserMethod.empty()) | 
|  | continue; | 
|  | OS << "  case " << CI.Name << ":\n" | 
|  | << "    return " << CI.ParserMethod << "(Operands);\n"; | 
|  | } | 
|  |  | 
|  | OS << "  default:\n"; | 
|  | OS << "    return MatchOperand_NoMatch;\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "  return MatchOperand_NoMatch;\n"; | 
|  | OS << "}\n\n"; | 
|  |  | 
|  | // Emit the static custom operand parser. This code is very similar with | 
|  | // the other matcher. Also use MatchResultTy here just in case we go for | 
|  | // a better error handling. | 
|  | OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" | 
|  | << "MatchOperandParserImpl(OperandVector" | 
|  | << " &Operands,\n                       StringRef Mnemonic,\n" | 
|  | << "                       bool ParseForAllFeatures) {\n"; | 
|  |  | 
|  | // Emit code to get the available features. | 
|  | OS << "  // Get the current feature set.\n"; | 
|  | OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; | 
|  |  | 
|  | OS << "  // Get the next operand index.\n"; | 
|  | OS << "  unsigned NextOpNum = Operands.size()" | 
|  | << (HasMnemonicFirst ? " - 1" : "") << ";\n"; | 
|  |  | 
|  | // Emit code to search the table. | 
|  | OS << "  // Search the table.\n"; | 
|  | if (HasMnemonicFirst) { | 
|  | OS << "  auto MnemonicRange =\n"; | 
|  | OS << "    std::equal_range(std::begin(OperandMatchTable), " | 
|  | "std::end(OperandMatchTable),\n"; | 
|  | OS << "                     Mnemonic, LessOpcodeOperand());\n\n"; | 
|  | } else { | 
|  | OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," | 
|  | " std::end(OperandMatchTable));\n"; | 
|  | OS << "  if (!Mnemonic.empty())\n"; | 
|  | OS << "    MnemonicRange =\n"; | 
|  | OS << "      std::equal_range(std::begin(OperandMatchTable), " | 
|  | "std::end(OperandMatchTable),\n"; | 
|  | OS << "                       Mnemonic, LessOpcodeOperand());\n\n"; | 
|  | } | 
|  |  | 
|  | OS << "  if (MnemonicRange.first == MnemonicRange.second)\n"; | 
|  | OS << "    return MatchOperand_NoMatch;\n\n"; | 
|  |  | 
|  | OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n" | 
|  | << "       *ie = MnemonicRange.second; it != ie; ++it) {\n"; | 
|  |  | 
|  | OS << "    // equal_range guarantees that instruction mnemonic matches.\n"; | 
|  | OS << "    assert(Mnemonic == it->getMnemonic());\n\n"; | 
|  |  | 
|  | // Emit check that the required features are available. | 
|  | OS << "    // check if the available features match\n"; | 
|  | OS << "    if (!ParseForAllFeatures && (AvailableFeatures & " | 
|  | "it->RequiredFeatures) != it->RequiredFeatures)\n"; | 
|  | OS << "        continue;\n\n"; | 
|  |  | 
|  | // Emit check to ensure the operand number matches. | 
|  | OS << "    // check if the operand in question has a custom parser.\n"; | 
|  | OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n"; | 
|  | OS << "      continue;\n\n"; | 
|  |  | 
|  | // Emit call to the custom parser method | 
|  | OS << "    // call custom parse method to handle the operand\n"; | 
|  | OS << "    OperandMatchResultTy Result = "; | 
|  | OS << "tryCustomParseOperand(Operands, it->Class);\n"; | 
|  | OS << "    if (Result != MatchOperand_NoMatch)\n"; | 
|  | OS << "      return Result;\n"; | 
|  | OS << "  }\n\n"; | 
|  |  | 
|  | OS << "  // Okay, we had no match.\n"; | 
|  | OS << "  return MatchOperand_NoMatch;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, | 
|  | AsmMatcherInfo &Info, | 
|  | raw_ostream &OS) { | 
|  | std::string AsmParserName = | 
|  | Info.AsmParser->getValueAsString("AsmParserClassName"); | 
|  | OS << "static bool "; | 
|  | OS << "checkAsmTiedOperandConstraints(const " << Target.getName() | 
|  | << AsmParserName << "&AsmParser,\n"; | 
|  | OS << "                               unsigned Kind,\n"; | 
|  | OS << "                               const OperandVector &Operands,\n"; | 
|  | OS << "                               uint64_t &ErrorInfo) {\n"; | 
|  | OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; | 
|  | OS << "  const uint8_t *Converter = ConversionTable[Kind];\n"; | 
|  | OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"; | 
|  | OS << "    switch (*p) {\n"; | 
|  | OS << "    case CVT_Tied: {\n"; | 
|  | OS << "      unsigned OpIdx = *(p+1);\n"; | 
|  | OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; | 
|  | OS << "                              std::begin(TiedAsmOperandTable)) &&\n"; | 
|  | OS << "             \"Tied operand not found\");\n"; | 
|  | OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; | 
|  | OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; | 
|  | OS << "      if (OpndNum1 != OpndNum2) {\n"; | 
|  | OS << "        auto &SrcOp1 = Operands[OpndNum1];\n"; | 
|  | OS << "        auto &SrcOp2 = Operands[OpndNum2];\n"; | 
|  | OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; | 
|  | OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; | 
|  | OS << "            ErrorInfo = OpndNum2;\n"; | 
|  | OS << "            return false;\n"; | 
|  | OS << "          }\n"; | 
|  | OS << "        }\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      break;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    default:\n"; | 
|  | OS << "      break;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "  return true;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, | 
|  | unsigned VariantCount) { | 
|  | OS << "static std::string " << Target.getName() | 
|  | << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n"; | 
|  | if (!VariantCount) | 
|  | OS <<  "  return \"\";"; | 
|  | else { | 
|  | OS << "  const unsigned MaxEditDist = 2;\n"; | 
|  | OS << "  std::vector<StringRef> Candidates;\n"; | 
|  | OS << "  StringRef Prev = \"\";\n\n"; | 
|  |  | 
|  | OS << "  // Find the appropriate table for this asm variant.\n"; | 
|  | OS << "  const MatchEntry *Start, *End;\n"; | 
|  | OS << "  switch (VariantID) {\n"; | 
|  | OS << "  default: llvm_unreachable(\"invalid variant!\");\n"; | 
|  | for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
|  | Record *AsmVariant = Target.getAsmParserVariant(VC); | 
|  | int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
|  | OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC | 
|  | << "); End = std::end(MatchTable" << VC << "); break;\n"; | 
|  | } | 
|  | OS << "  }\n\n"; | 
|  | OS << "  for (auto I = Start; I < End; I++) {\n"; | 
|  | OS << "    // Ignore unsupported instructions.\n"; | 
|  | OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "\n"; | 
|  | OS << "    StringRef T = I->getMnemonic();\n"; | 
|  | OS << "    // Avoid recomputing the edit distance for the same string.\n"; | 
|  | OS << "    if (T.equals(Prev))\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "\n"; | 
|  | OS << "    Prev = T;\n"; | 
|  | OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; | 
|  | OS << "    if (Dist <= MaxEditDist)\n"; | 
|  | OS << "      Candidates.push_back(T);\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "\n"; | 
|  | OS << "  if (Candidates.empty())\n"; | 
|  | OS << "    return \"\";\n"; | 
|  | OS << "\n"; | 
|  | OS << "  std::string Res = \", did you mean: \";\n"; | 
|  | OS << "  unsigned i = 0;\n"; | 
|  | OS << "  for( ; i < Candidates.size() - 1; i++)\n"; | 
|  | OS << "    Res += Candidates[i].str() + \", \";\n"; | 
|  | OS << "  return Res + Candidates[i].str() + \"?\";\n"; | 
|  | } | 
|  | OS << "}\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Emit a function mapping match classes to strings, for debugging. | 
|  | static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, | 
|  | raw_ostream &OS) { | 
|  | OS << "#ifndef NDEBUG\n"; | 
|  | OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; | 
|  | OS << "  switch (Kind) {\n"; | 
|  |  | 
|  | OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n"; | 
|  | OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n"; | 
|  | for (const auto &CI : Infos) { | 
|  | OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n"; | 
|  | } | 
|  | OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; | 
|  |  | 
|  | OS << "  }\n"; | 
|  | OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n"; | 
|  | OS << "}\n\n"; | 
|  | OS << "#endif // NDEBUG\n"; | 
|  | } | 
|  |  | 
|  | void AsmMatcherEmitter::run(raw_ostream &OS) { | 
|  | CodeGenTarget Target(Records); | 
|  | Record *AsmParser = Target.getAsmParser(); | 
|  | StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); | 
|  |  | 
|  | // Compute the information on the instructions to match. | 
|  | AsmMatcherInfo Info(AsmParser, Target, Records); | 
|  | Info.buildInfo(); | 
|  |  | 
|  | // Sort the instruction table using the partial order on classes. We use | 
|  | // stable_sort to ensure that ambiguous instructions are still | 
|  | // deterministically ordered. | 
|  | std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), | 
|  | [](const std::unique_ptr<MatchableInfo> &a, | 
|  | const std::unique_ptr<MatchableInfo> &b){ | 
|  | return *a < *b;}); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | // Verify that the table is sorted and operator < works transitively. | 
|  | for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; | 
|  | ++I) { | 
|  | for (auto J = I; J != E; ++J) { | 
|  | assert(!(**J < **I)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | DEBUG_WITH_TYPE("instruction_info", { | 
|  | for (const auto &MI : Info.Matchables) | 
|  | MI->dump(); | 
|  | }); | 
|  |  | 
|  | // Check for ambiguous matchables. | 
|  | DEBUG_WITH_TYPE("ambiguous_instrs", { | 
|  | unsigned NumAmbiguous = 0; | 
|  | for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; | 
|  | ++I) { | 
|  | for (auto J = std::next(I); J != E; ++J) { | 
|  | const MatchableInfo &A = **I; | 
|  | const MatchableInfo &B = **J; | 
|  |  | 
|  | if (A.couldMatchAmbiguouslyWith(B)) { | 
|  | errs() << "warning: ambiguous matchables:\n"; | 
|  | A.dump(); | 
|  | errs() << "\nis incomparable with:\n"; | 
|  | B.dump(); | 
|  | errs() << "\n\n"; | 
|  | ++NumAmbiguous; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (NumAmbiguous) | 
|  | errs() << "warning: " << NumAmbiguous | 
|  | << " ambiguous matchables!\n"; | 
|  | }); | 
|  |  | 
|  | // Compute the information on the custom operand parsing. | 
|  | Info.buildOperandMatchInfo(); | 
|  |  | 
|  | bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); | 
|  | bool HasOptionalOperands = Info.hasOptionalOperands(); | 
|  | bool ReportMultipleNearMisses = | 
|  | AsmParser->getValueAsBit("ReportMultipleNearMisses"); | 
|  |  | 
|  | // Write the output. | 
|  |  | 
|  | // Information for the class declaration. | 
|  | OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; | 
|  | OS << "#undef GET_ASSEMBLER_HEADER\n"; | 
|  | OS << "  // This should be included into the middle of the declaration of\n"; | 
|  | OS << "  // your subclasses implementation of MCTargetAsmParser.\n"; | 
|  | OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; | 
|  | if (HasOptionalOperands) { | 
|  | OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, " | 
|  | << "unsigned Opcode,\n" | 
|  | << "                       const OperandVector &Operands,\n" | 
|  | << "                       const SmallBitVector &OptionalOperandsMask);\n"; | 
|  | } else { | 
|  | OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, " | 
|  | << "unsigned Opcode,\n" | 
|  | << "                       const OperandVector &Operands);\n"; | 
|  | } | 
|  | OS << "  void convertToMapAndConstraints(unsigned Kind,\n                "; | 
|  | OS << "           const OperandVector &Operands) override;\n"; | 
|  | OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n" | 
|  | << "                                MCInst &Inst,\n"; | 
|  | if (ReportMultipleNearMisses) | 
|  | OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n"; | 
|  | else | 
|  | OS << "                                uint64_t &ErrorInfo,\n"; | 
|  | OS << "                                bool matchingInlineAsm,\n" | 
|  | << "                                unsigned VariantID = 0);\n"; | 
|  |  | 
|  | if (!Info.OperandMatchInfo.empty()) { | 
|  | OS << "  OperandMatchResultTy MatchOperandParserImpl(\n"; | 
|  | OS << "    OperandVector &Operands,\n"; | 
|  | OS << "    StringRef Mnemonic,\n"; | 
|  | OS << "    bool ParseForAllFeatures = false);\n"; | 
|  |  | 
|  | OS << "  OperandMatchResultTy tryCustomParseOperand(\n"; | 
|  | OS << "    OperandVector &Operands,\n"; | 
|  | OS << "    unsigned MCK);\n\n"; | 
|  | } | 
|  |  | 
|  | OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; | 
|  |  | 
|  | // Emit the operand match diagnostic enum names. | 
|  | OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; | 
|  | OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; | 
|  | emitOperandDiagnosticTypes(Info, OS); | 
|  | OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; | 
|  |  | 
|  | OS << "\n#ifdef GET_REGISTER_MATCHER\n"; | 
|  | OS << "#undef GET_REGISTER_MATCHER\n\n"; | 
|  |  | 
|  | // Emit the subtarget feature enumeration. | 
|  | SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration( | 
|  | Info.SubtargetFeatures, OS); | 
|  |  | 
|  | // Emit the function to match a register name to number. | 
|  | // This should be omitted for Mips target | 
|  | if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) | 
|  | emitMatchRegisterName(Target, AsmParser, OS); | 
|  |  | 
|  | if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) | 
|  | emitMatchRegisterAltName(Target, AsmParser, OS); | 
|  |  | 
|  | OS << "#endif // GET_REGISTER_MATCHER\n\n"; | 
|  |  | 
|  | OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; | 
|  | OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; | 
|  |  | 
|  | // Generate the helper function to get the names for subtarget features. | 
|  | emitGetSubtargetFeatureName(Info, OS); | 
|  |  | 
|  | OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; | 
|  |  | 
|  | OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; | 
|  | OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; | 
|  |  | 
|  | // Generate the function that remaps for mnemonic aliases. | 
|  | bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); | 
|  |  | 
|  | // Generate the convertToMCInst function to convert operands into an MCInst. | 
|  | // Also, generate the convertToMapAndConstraints function for MS-style inline | 
|  | // assembly.  The latter doesn't actually generate a MCInst. | 
|  | emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, | 
|  | HasOptionalOperands, OS); | 
|  |  | 
|  | // Emit the enumeration for classes which participate in matching. | 
|  | emitMatchClassEnumeration(Target, Info.Classes, OS); | 
|  |  | 
|  | // Emit a function to get the user-visible string to describe an operand | 
|  | // match failure in diagnostics. | 
|  | emitOperandMatchErrorDiagStrings(Info, OS); | 
|  |  | 
|  | // Emit a function to map register classes to operand match failure codes. | 
|  | emitRegisterMatchErrorFunc(Info, OS); | 
|  |  | 
|  | // Emit the routine to match token strings to their match class. | 
|  | emitMatchTokenString(Target, Info.Classes, OS); | 
|  |  | 
|  | // Emit the subclass predicate routine. | 
|  | emitIsSubclass(Target, Info.Classes, OS); | 
|  |  | 
|  | // Emit the routine to validate an operand against a match class. | 
|  | emitValidateOperandClass(Info, OS); | 
|  |  | 
|  | emitMatchClassKindNames(Info.Classes, OS); | 
|  |  | 
|  | // Emit the available features compute function. | 
|  | SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( | 
|  | Info.Target.getName(), ClassName, "ComputeAvailableFeatures", | 
|  | Info.SubtargetFeatures, OS); | 
|  |  | 
|  | if (!ReportMultipleNearMisses) | 
|  | emitAsmTiedOperandConstraints(Target, Info, OS); | 
|  |  | 
|  | StringToOffsetTable StringTable; | 
|  |  | 
|  | size_t MaxNumOperands = 0; | 
|  | unsigned MaxMnemonicIndex = 0; | 
|  | bool HasDeprecation = false; | 
|  | for (const auto &MI : Info.Matchables) { | 
|  | MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); | 
|  | HasDeprecation |= MI->HasDeprecation; | 
|  |  | 
|  | // Store a pascal-style length byte in the mnemonic. | 
|  | std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); | 
|  | MaxMnemonicIndex = std::max(MaxMnemonicIndex, | 
|  | StringTable.GetOrAddStringOffset(LenMnemonic, false)); | 
|  | } | 
|  |  | 
|  | OS << "static const char *const MnemonicTable =\n"; | 
|  | StringTable.EmitString(OS); | 
|  | OS << ";\n\n"; | 
|  |  | 
|  | // Emit the static match table; unused classes get initialized to 0 which is | 
|  | // guaranteed to be InvalidMatchClass. | 
|  | // | 
|  | // FIXME: We can reduce the size of this table very easily. First, we change | 
|  | // it so that store the kinds in separate bit-fields for each index, which | 
|  | // only needs to be the max width used for classes at that index (we also need | 
|  | // to reject based on this during classification). If we then make sure to | 
|  | // order the match kinds appropriately (putting mnemonics last), then we | 
|  | // should only end up using a few bits for each class, especially the ones | 
|  | // following the mnemonic. | 
|  | OS << "namespace {\n"; | 
|  | OS << "  struct MatchEntry {\n"; | 
|  | OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) | 
|  | << " Mnemonic;\n"; | 
|  | OS << "    uint16_t Opcode;\n"; | 
|  | OS << "    " << getMinimalTypeForRange(Info.Matchables.size()) | 
|  | << " ConvertFn;\n"; | 
|  | OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) | 
|  | << " RequiredFeatures;\n"; | 
|  | OS << "    " << getMinimalTypeForRange( | 
|  | std::distance(Info.Classes.begin(), Info.Classes.end())) | 
|  | << " Classes[" << MaxNumOperands << "];\n"; | 
|  | OS << "    StringRef getMnemonic() const {\n"; | 
|  | OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n"; | 
|  | OS << "                       MnemonicTable[Mnemonic]);\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  };\n\n"; | 
|  |  | 
|  | OS << "  // Predicate for searching for an opcode.\n"; | 
|  | OS << "  struct LessOpcode {\n"; | 
|  | OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; | 
|  | OS << "      return LHS.getMnemonic() < RHS;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; | 
|  | OS << "      return LHS < RHS.getMnemonic();\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; | 
|  | OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  };\n"; | 
|  |  | 
|  | OS << "} // end anonymous namespace.\n\n"; | 
|  |  | 
|  | unsigned VariantCount = Target.getAsmParserVariantCount(); | 
|  | for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
|  | Record *AsmVariant = Target.getAsmParserVariant(VC); | 
|  | int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
|  |  | 
|  | OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; | 
|  |  | 
|  | for (const auto &MI : Info.Matchables) { | 
|  | if (MI->AsmVariantID != AsmVariantNo) | 
|  | continue; | 
|  |  | 
|  | // Store a pascal-style length byte in the mnemonic. | 
|  | std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); | 
|  | OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) | 
|  | << " /* " << MI->Mnemonic << " */, " | 
|  | << Target.getInstNamespace() << "::" | 
|  | << MI->getResultInst()->TheDef->getName() << ", " | 
|  | << MI->ConversionFnKind << ", "; | 
|  |  | 
|  | // Write the required features mask. | 
|  | if (!MI->RequiredFeatures.empty()) { | 
|  | for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { | 
|  | if (i) OS << "|"; | 
|  | OS << MI->RequiredFeatures[i]->getEnumName(); | 
|  | } | 
|  | } else | 
|  | OS << "0"; | 
|  |  | 
|  | OS << ", { "; | 
|  | for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { | 
|  | const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; | 
|  |  | 
|  | if (i) OS << ", "; | 
|  | OS << Op.Class->Name; | 
|  | } | 
|  | OS << " }, },\n"; | 
|  | } | 
|  |  | 
|  | OS << "};\n\n"; | 
|  | } | 
|  |  | 
|  | OS << "#include \"llvm/Support/Debug.h\"\n"; | 
|  | OS << "#include \"llvm/Support/Format.h\"\n\n"; | 
|  |  | 
|  | // Finally, build the match function. | 
|  | OS << "unsigned " << Target.getName() << ClassName << "::\n" | 
|  | << "MatchInstructionImpl(const OperandVector &Operands,\n"; | 
|  | OS << "                     MCInst &Inst,\n"; | 
|  | if (ReportMultipleNearMisses) | 
|  | OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n"; | 
|  | else | 
|  | OS << "                     uint64_t &ErrorInfo,\n"; | 
|  | OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n"; | 
|  |  | 
|  | if (!ReportMultipleNearMisses) { | 
|  | OS << "  // Eliminate obvious mismatches.\n"; | 
|  | OS << "  if (Operands.size() > " | 
|  | << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; | 
|  | OS << "    ErrorInfo = " | 
|  | << (MaxNumOperands + HasMnemonicFirst) << ";\n"; | 
|  | OS << "    return Match_InvalidOperand;\n"; | 
|  | OS << "  }\n\n"; | 
|  | } | 
|  |  | 
|  | // Emit code to get the available features. | 
|  | OS << "  // Get the current feature set.\n"; | 
|  | OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; | 
|  |  | 
|  | OS << "  // Get the instruction mnemonic, which is the first token.\n"; | 
|  | if (HasMnemonicFirst) { | 
|  | OS << "  StringRef Mnemonic = ((" << Target.getName() | 
|  | << "Operand&)*Operands[0]).getToken();\n\n"; | 
|  | } else { | 
|  | OS << "  StringRef Mnemonic;\n"; | 
|  | OS << "  if (Operands[0]->isToken())\n"; | 
|  | OS << "    Mnemonic = ((" << Target.getName() | 
|  | << "Operand&)*Operands[0]).getToken();\n\n"; | 
|  | } | 
|  |  | 
|  | if (HasMnemonicAliases) { | 
|  | OS << "  // Process all MnemonicAliases to remap the mnemonic.\n"; | 
|  | OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; | 
|  | } | 
|  |  | 
|  | // Emit code to compute the class list for this operand vector. | 
|  | if (!ReportMultipleNearMisses) { | 
|  | OS << "  // Some state to try to produce better error messages.\n"; | 
|  | OS << "  bool HadMatchOtherThanFeatures = false;\n"; | 
|  | OS << "  bool HadMatchOtherThanPredicate = false;\n"; | 
|  | OS << "  unsigned RetCode = Match_InvalidOperand;\n"; | 
|  | OS << "  uint64_t MissingFeatures = ~0ULL;\n"; | 
|  | OS << "  // Set ErrorInfo to the operand that mismatches if it is\n"; | 
|  | OS << "  // wrong for all instances of the instruction.\n"; | 
|  | OS << "  ErrorInfo = ~0ULL;\n"; | 
|  | } | 
|  |  | 
|  | if (HasOptionalOperands) { | 
|  | OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; | 
|  | } | 
|  |  | 
|  | // Emit code to search the table. | 
|  | OS << "  // Find the appropriate table for this asm variant.\n"; | 
|  | OS << "  const MatchEntry *Start, *End;\n"; | 
|  | OS << "  switch (VariantID) {\n"; | 
|  | OS << "  default: llvm_unreachable(\"invalid variant!\");\n"; | 
|  | for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
|  | Record *AsmVariant = Target.getAsmParserVariant(VC); | 
|  | int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
|  | OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC | 
|  | << "); End = std::end(MatchTable" << VC << "); break;\n"; | 
|  | } | 
|  | OS << "  }\n"; | 
|  |  | 
|  | OS << "  // Search the table.\n"; | 
|  | if (HasMnemonicFirst) { | 
|  | OS << "  auto MnemonicRange = " | 
|  | "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; | 
|  | } else { | 
|  | OS << "  auto MnemonicRange = std::make_pair(Start, End);\n"; | 
|  | OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; | 
|  | OS << "  if (!Mnemonic.empty())\n"; | 
|  | OS << "    MnemonicRange = " | 
|  | "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; | 
|  | } | 
|  |  | 
|  | OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" | 
|  | << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n" | 
|  | << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; | 
|  |  | 
|  | OS << "  // Return a more specific error code if no mnemonics match.\n"; | 
|  | OS << "  if (MnemonicRange.first == MnemonicRange.second)\n"; | 
|  | OS << "    return Match_MnemonicFail;\n\n"; | 
|  |  | 
|  | OS << "  for (const MatchEntry *it = MnemonicRange.first, " | 
|  | << "*ie = MnemonicRange.second;\n"; | 
|  | OS << "       it != ie; ++it) {\n"; | 
|  | OS << "    bool HasRequiredFeatures =\n"; | 
|  | OS << "      (AvailableFeatures & it->RequiredFeatures) == " | 
|  | "it->RequiredFeatures;\n"; | 
|  | OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; | 
|  | OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n"; | 
|  |  | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "    // Some state to record ways in which this instruction did not match.\n"; | 
|  | OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; | 
|  | OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; | 
|  | OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; | 
|  | OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; | 
|  | OS << "    bool MultipleInvalidOperands = false;\n"; | 
|  | } | 
|  |  | 
|  | if (HasMnemonicFirst) { | 
|  | OS << "    // equal_range guarantees that instruction mnemonic matches.\n"; | 
|  | OS << "    assert(Mnemonic == it->getMnemonic());\n"; | 
|  | } | 
|  |  | 
|  | // Emit check that the subclasses match. | 
|  | if (!ReportMultipleNearMisses) | 
|  | OS << "    bool OperandsValid = true;\n"; | 
|  | if (HasOptionalOperands) { | 
|  | OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; | 
|  | } | 
|  | OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") | 
|  | << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") | 
|  | << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; | 
|  | OS << "      auto Formal = " | 
|  | << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
|  | OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n"; | 
|  | OS << "                             << \" against actual operand at index \" << ActualIdx);\n"; | 
|  | OS << "      if (ActualIdx < Operands.size())\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; | 
|  | OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; | 
|  | OS << "      else\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; | 
|  | OS << "      if (ActualIdx >= Operands.size()) {\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " | 
|  | "isSubclass(Formal, OptionalMatchClass);\n"; | 
|  | OS << "        if (!ThisOperandValid) {\n"; | 
|  | OS << "          if (!OperandNearMiss) {\n"; | 
|  | OS << "            // Record info about match failure for later use.\n"; | 
|  | OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; | 
|  | OS << "            OperandNearMiss =\n"; | 
|  | OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; | 
|  | OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; | 
|  | OS << "            // If more than one operand is invalid, give up on this match entry.\n"; | 
|  | OS << "            DEBUG_WITH_TYPE(\n"; | 
|  | OS << "                \"asm-matcher\",\n"; | 
|  | OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; | 
|  | OS << "            MultipleInvalidOperands = true;\n"; | 
|  | OS << "            break;\n"; | 
|  | OS << "          }\n"; | 
|  | OS << "        } else {\n"; | 
|  | OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; | 
|  | OS << "          break;\n"; | 
|  | OS << "        }\n"; | 
|  | OS << "        continue;\n"; | 
|  | } else { | 
|  | OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; | 
|  | OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n"; | 
|  | if (HasOptionalOperands) { | 
|  | OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands | 
|  | << ");\n"; | 
|  | } | 
|  | OS << "        break;\n"; | 
|  | } | 
|  | OS << "      }\n"; | 
|  | OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; | 
|  | OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n"; | 
|  | OS << "      if (Diag == Match_Success) {\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
|  | OS << "                        dbgs() << \"match success using generic matcher\\n\");\n"; | 
|  | OS << "        ++ActualIdx;\n"; | 
|  | OS << "        continue;\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      // If the generic handler indicates an invalid operand\n"; | 
|  | OS << "      // failure, check for a special case.\n"; | 
|  | OS << "      if (Diag != Match_Success) {\n"; | 
|  | OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; | 
|  | OS << "        if (TargetDiag == Match_Success) {\n"; | 
|  | OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
|  | OS << "                          dbgs() << \"match success using target matcher\\n\");\n"; | 
|  | OS << "          ++ActualIdx;\n"; | 
|  | OS << "          continue;\n"; | 
|  | OS << "        }\n"; | 
|  | OS << "        // If the target matcher returned a specific error code use\n"; | 
|  | OS << "        // that, else use the one from the generic matcher.\n"; | 
|  | OS << "        if (TargetDiag != Match_InvalidOperand && " | 
|  | "HasRequiredFeatures)\n"; | 
|  | OS << "          Diag = TargetDiag;\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      // If current formal operand wasn't matched and it is optional\n" | 
|  | << "      // then try to match next formal operand\n"; | 
|  | OS << "      if (Diag == Match_InvalidOperand " | 
|  | << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; | 
|  | if (HasOptionalOperands) { | 
|  | OS << "        OptionalOperandsMask.set(FormalIdx);\n"; | 
|  | } | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; | 
|  | OS << "        continue;\n"; | 
|  | OS << "      }\n"; | 
|  |  | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "      if (!OperandNearMiss) {\n"; | 
|  | OS << "        // If this is the first invalid operand we have seen, record some\n"; | 
|  | OS << "        // information about it.\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\n"; | 
|  | OS << "            \"asm-matcher\",\n"; | 
|  | OS << "            dbgs()\n"; | 
|  | OS << "                << \"operand match failed, recording near-miss with diag code \"\n"; | 
|  | OS << "                << Diag << \"\\n\");\n"; | 
|  | OS << "        OperandNearMiss =\n"; | 
|  | OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; | 
|  | OS << "        ++ActualIdx;\n"; | 
|  | OS << "      } else {\n"; | 
|  | OS << "        // If more than one operand is invalid, give up on this match entry.\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\n"; | 
|  | OS << "            \"asm-matcher\",\n"; | 
|  | OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; | 
|  | OS << "        MultipleInvalidOperands = true;\n"; | 
|  | OS << "        break;\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "    }\n\n"; | 
|  | } else { | 
|  | OS << "      // If this operand is broken for all of the instances of this\n"; | 
|  | OS << "      // mnemonic, keep track of it so we can report loc info.\n"; | 
|  | OS << "      // If we already had a match that only failed due to a\n"; | 
|  | OS << "      // target predicate, that diagnostic is preferred.\n"; | 
|  | OS << "      if (!HadMatchOtherThanPredicate &&\n"; | 
|  | OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; | 
|  | OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " | 
|  | "!= Match_InvalidOperand))\n"; | 
|  | OS << "          RetCode = Diag;\n"; | 
|  | OS << "        ErrorInfo = ActualIdx;\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      // Otherwise, just reject this instance of the mnemonic.\n"; | 
|  | OS << "      OperandsValid = false;\n"; | 
|  | OS << "      break;\n"; | 
|  | OS << "    }\n\n"; | 
|  | } | 
|  |  | 
|  | if (ReportMultipleNearMisses) | 
|  | OS << "    if (MultipleInvalidOperands) {\n"; | 
|  | else | 
|  | OS << "    if (!OperandsValid) {\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
|  | OS << "                                               \"operand mismatches, ignoring \"\n"; | 
|  | OS << "                                               \"this opcode\\n\");\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "    }\n"; | 
|  |  | 
|  | // Emit check that the required features are available. | 
|  | OS << "    if (!HasRequiredFeatures) {\n"; | 
|  | if (!ReportMultipleNearMisses) | 
|  | OS << "      HadMatchOtherThanFeatures = true;\n"; | 
|  | OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & " | 
|  | "~AvailableFeatures;\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n"; | 
|  | OS << "                                            << format_hex(NewMissingFeatures, 18)\n"; | 
|  | OS << "                                            << \"\\n\");\n"; | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; | 
|  | } else { | 
|  | OS << "      if (countPopulation(NewMissingFeatures) <=\n" | 
|  | "          countPopulation(MissingFeatures))\n"; | 
|  | OS << "        MissingFeatures = NewMissingFeatures;\n"; | 
|  | OS << "      continue;\n"; | 
|  | } | 
|  | OS << "    }\n"; | 
|  | OS << "\n"; | 
|  | OS << "    Inst.clear();\n\n"; | 
|  | OS << "    Inst.setOpcode(it->Opcode);\n"; | 
|  | // Verify the instruction with the target-specific match predicate function. | 
|  | OS << "    // We have a potential match but have not rendered the operands.\n" | 
|  | << "    // Check the target predicate to handle any context sensitive\n" | 
|  | "    // constraints.\n" | 
|  | << "    // For example, Ties that are referenced multiple times must be\n" | 
|  | "    // checked here to ensure the input is the same for each match\n" | 
|  | "    // constraints. If we leave it any later the ties will have been\n" | 
|  | "    // canonicalized\n" | 
|  | << "    unsigned MatchResult;\n" | 
|  | << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " | 
|  | "Operands)) != Match_Success) {\n" | 
|  | << "      Inst.clear();\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\n"; | 
|  | OS << "          \"asm-matcher\",\n"; | 
|  | OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n"; | 
|  | OS << "                 << MatchResult << \"\\n\");\n"; | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; | 
|  | } else { | 
|  | OS << "      RetCode = MatchResult;\n" | 
|  | << "      HadMatchOtherThanPredicate = true;\n" | 
|  | << "      continue;\n"; | 
|  | } | 
|  | OS << "    }\n\n"; | 
|  |  | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "    // If we did not successfully match the operands, then we can't convert to\n"; | 
|  | OS << "    // an MCInst, so bail out on this instruction variant now.\n"; | 
|  | OS << "    if (OperandNearMiss) {\n"; | 
|  | OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; | 
|  | OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\n"; | 
|  | OS << "            \"asm-matcher\",\n"; | 
|  | OS << "            dbgs()\n"; | 
|  | OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; | 
|  | OS << "        NearMisses->push_back(OperandNearMiss);\n"; | 
|  | OS << "      } else {\n"; | 
|  | OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
|  | OS << "                                                 \"types of mismatch, so not \"\n"; | 
|  | OS << "                                                 \"reporting near-miss\\n\");\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "    }\n\n"; | 
|  | } | 
|  |  | 
|  | OS << "    if (matchingInlineAsm) {\n"; | 
|  | OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n"; | 
|  | if (!ReportMultipleNearMisses) { | 
|  | OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " | 
|  | "Operands, ErrorInfo))\n"; | 
|  | OS << "        return Match_InvalidTiedOperand;\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  | OS << "      return Match_Success;\n"; | 
|  | OS << "    }\n\n"; | 
|  | OS << "    // We have selected a definite instruction, convert the parsed\n" | 
|  | << "    // operands into the appropriate MCInst.\n"; | 
|  | if (HasOptionalOperands) { | 
|  | OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" | 
|  | << "                    OptionalOperandsMask);\n"; | 
|  | } else { | 
|  | OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; | 
|  | } | 
|  | OS << "\n"; | 
|  |  | 
|  | // Verify the instruction with the target-specific match predicate function. | 
|  | OS << "    // We have a potential match. Check the target predicate to\n" | 
|  | << "    // handle any context sensitive constraints.\n" | 
|  | << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" | 
|  | << " Match_Success) {\n" | 
|  | << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n" | 
|  | << "                      dbgs() << \"Target match predicate failed with diag code \"\n" | 
|  | << "                             << MatchResult << \"\\n\");\n" | 
|  | << "      Inst.clear();\n"; | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; | 
|  | } else { | 
|  | OS << "      RetCode = MatchResult;\n" | 
|  | << "      HadMatchOtherThanPredicate = true;\n" | 
|  | << "      continue;\n"; | 
|  | } | 
|  | OS << "    }\n\n"; | 
|  |  | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; | 
|  | OS << "                         (int)(bool)FeaturesNearMiss +\n"; | 
|  | OS << "                         (int)(bool)EarlyPredicateNearMiss +\n"; | 
|  | OS << "                         (int)(bool)LatePredicateNearMiss);\n"; | 
|  | OS << "    if (NumNearMisses == 1) {\n"; | 
|  | OS << "      // We had exactly one type of near-miss, so add that to the list.\n"; | 
|  | OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; | 
|  | OS << "                                            \"mismatch, so reporting a \"\n"; | 
|  | OS << "                                            \"near-miss\\n\");\n"; | 
|  | OS << "      if (NearMisses && FeaturesNearMiss)\n"; | 
|  | OS << "        NearMisses->push_back(FeaturesNearMiss);\n"; | 
|  | OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n"; | 
|  | OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n"; | 
|  | OS << "      else if (NearMisses && LatePredicateNearMiss)\n"; | 
|  | OS << "        NearMisses->push_back(LatePredicateNearMiss);\n"; | 
|  | OS << "\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "    } else if (NumNearMisses > 1) {\n"; | 
|  | OS << "      // This instruction missed in more than one way, so ignore it.\n"; | 
|  | OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
|  | OS << "                                               \"types of mismatch, so not \"\n"; | 
|  | OS << "                                               \"reporting near-miss\\n\");\n"; | 
|  | OS << "      continue;\n"; | 
|  | OS << "    }\n"; | 
|  | } | 
|  |  | 
|  | // Call the post-processing function, if used. | 
|  | StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); | 
|  | if (!InsnCleanupFn.empty()) | 
|  | OS << "    " << InsnCleanupFn << "(Inst);\n"; | 
|  |  | 
|  | if (HasDeprecation) { | 
|  | OS << "    std::string Info;\n"; | 
|  | OS << "    if (!getParser().getTargetParser().\n"; | 
|  | OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n"; | 
|  | OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; | 
|  | OS << "      SMLoc Loc = ((" << Target.getName() | 
|  | << "Operand&)*Operands[0]).getStartLoc();\n"; | 
|  | OS << "      getParser().Warning(Loc, Info, None);\n"; | 
|  | OS << "    }\n"; | 
|  | } | 
|  |  | 
|  | if (!ReportMultipleNearMisses) { | 
|  | OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " | 
|  | "Operands, ErrorInfo))\n"; | 
|  | OS << "      return Match_InvalidTiedOperand;\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | OS << "    DEBUG_WITH_TYPE(\n"; | 
|  | OS << "        \"asm-matcher\",\n"; | 
|  | OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; | 
|  | OS << "    return Match_Success;\n"; | 
|  | OS << "  }\n\n"; | 
|  |  | 
|  | if (ReportMultipleNearMisses) { | 
|  | OS << "  // No instruction variants matched exactly.\n"; | 
|  | OS << "  return Match_NearMisses;\n"; | 
|  | } else { | 
|  | OS << "  // Okay, we had no match.  Try to return a useful error code.\n"; | 
|  | OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; | 
|  | OS << "    return RetCode;\n\n"; | 
|  | OS << "  // Missing feature matches return which features were missing\n"; | 
|  | OS << "  ErrorInfo = MissingFeatures;\n"; | 
|  | OS << "  return Match_MissingFeature;\n"; | 
|  | } | 
|  | OS << "}\n\n"; | 
|  |  | 
|  | if (!Info.OperandMatchInfo.empty()) | 
|  | emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, | 
|  | MaxMnemonicIndex, HasMnemonicFirst); | 
|  |  | 
|  | OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; | 
|  |  | 
|  | OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; | 
|  | OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; | 
|  |  | 
|  | emitMnemonicSpellChecker(OS, Target, VariantCount); | 
|  |  | 
|  | OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { | 
|  | emitSourceFileHeader("Assembly Matcher Source Fragment", OS); | 
|  | AsmMatcherEmitter(RK).run(OS); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |