| //===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Tools, utilities, helpers and extensions useful in conjunction with the |
| // Integer Set Library (isl). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "polly/Support/ISLTools.h" |
| #include "llvm/ADT/StringRef.h" |
| |
| using namespace polly; |
| |
| namespace { |
| /// Create a map that shifts one dimension by an offset. |
| /// |
| /// Example: |
| /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) |
| /// = { [i0, i1] -> [i0, i1 - 1] } |
| /// |
| /// @param Space The map space of the result. Must have equal number of in- and |
| /// out-dimensions. |
| /// @param Pos Position to shift. |
| /// @param Amount Value added to the shifted dimension. |
| /// |
| /// @return An isl_multi_aff for the map with this shifted dimension. |
| isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { |
| auto Identity = isl::multi_aff::identity(Space); |
| if (Amount == 0) |
| return Identity; |
| auto ShiftAff = Identity.get_aff(Pos); |
| ShiftAff = ShiftAff.set_constant_si(Amount); |
| return Identity.set_aff(Pos, ShiftAff); |
| } |
| |
| /// Construct a map that swaps two nested tuples. |
| /// |
| /// @param FromSpace1 { Space1[] } |
| /// @param FromSpace2 { Space2[] } |
| /// |
| /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } |
| isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, |
| isl::space FromSpace2) { |
| // Fast-path on out-of-quota. |
| if (!FromSpace1 || !FromSpace2) |
| return {}; |
| |
| assert(FromSpace1.is_set()); |
| assert(FromSpace2.is_set()); |
| |
| unsigned Dims1 = FromSpace1.dim(isl::dim::set); |
| unsigned Dims2 = FromSpace2.dim(isl::dim::set); |
| |
| isl::space FromSpace = |
| FromSpace1.map_from_domain_and_range(FromSpace2).wrap(); |
| isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap(); |
| isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace); |
| |
| isl::basic_map Result = isl::basic_map::universe(MapSpace); |
| for (auto i = Dims1 - Dims1; i < Dims1; i += 1) |
| Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i); |
| for (auto i = Dims2 - Dims2; i < Dims2; i += 1) { |
| Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i); |
| } |
| |
| return Result; |
| } |
| |
| /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns |
| /// an isl_map. |
| isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { |
| isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2); |
| return isl::map(BMapResult); |
| } |
| } // anonymous namespace |
| |
| isl::map polly::beforeScatter(isl::map Map, bool Strict) { |
| isl::space RangeSpace = Map.get_space().range(); |
| isl::map ScatterRel = |
| Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace); |
| return Map.apply_range(ScatterRel); |
| } |
| |
| isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { |
| isl::union_map Result = isl::union_map::empty(UMap.get_space()); |
| |
| for (isl::map Map : UMap.get_map_list()) { |
| isl::map After = beforeScatter(Map, Strict); |
| Result = Result.add_map(After); |
| } |
| |
| return Result; |
| } |
| |
| isl::map polly::afterScatter(isl::map Map, bool Strict) { |
| isl::space RangeSpace = Map.get_space().range(); |
| isl::map ScatterRel = |
| Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace); |
| return Map.apply_range(ScatterRel); |
| } |
| |
| isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { |
| isl::union_map Result = isl::union_map::empty(UMap.get_space()); |
| for (isl::map Map : UMap.get_map_list()) { |
| isl::map After = afterScatter(Map, Strict); |
| Result = Result.add_map(After); |
| } |
| return Result; |
| } |
| |
| isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, |
| bool InclTo) { |
| isl::map AfterFrom = afterScatter(From, !InclFrom); |
| isl::map BeforeTo = beforeScatter(To, !InclTo); |
| |
| return AfterFrom.intersect(BeforeTo); |
| } |
| |
| isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, |
| bool InclFrom, bool InclTo) { |
| isl::union_map AfterFrom = afterScatter(From, !InclFrom); |
| isl::union_map BeforeTo = beforeScatter(To, !InclTo); |
| |
| return AfterFrom.intersect(BeforeTo); |
| } |
| |
| isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { |
| if (!UMap) |
| return nullptr; |
| |
| if (isl_union_map_n_map(UMap.get()) == 0) |
| return isl::map::empty(ExpectedSpace); |
| |
| isl::map Result = isl::map::from_union_map(UMap); |
| assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); |
| |
| return Result; |
| } |
| |
| isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { |
| if (!USet) |
| return nullptr; |
| |
| if (isl_union_set_n_set(USet.get()) == 0) |
| return isl::set::empty(ExpectedSpace); |
| |
| isl::set Result(USet); |
| assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); |
| |
| return Result; |
| } |
| |
| unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { |
| unsigned Dims = 0; |
| for (isl::map Map : Schedule.get_map_list()) |
| Dims = std::max(Dims, Map.dim(isl::dim::out)); |
| return Dims; |
| } |
| |
| isl::space polly::getScatterSpace(const isl::union_map &Schedule) { |
| if (!Schedule) |
| return nullptr; |
| unsigned Dims = getNumScatterDims(Schedule); |
| isl::space ScatterSpace = Schedule.get_space().set_from_params(); |
| return ScatterSpace.add_dims(isl::dim::set, Dims); |
| } |
| |
| isl::union_map polly::makeIdentityMap(const isl::union_set &USet, |
| bool RestrictDomain) { |
| isl::union_map Result = isl::union_map::empty(USet.get_space()); |
| for (isl::set Set : USet.get_set_list()) { |
| isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set()); |
| if (RestrictDomain) |
| IdentityMap = IdentityMap.intersect_domain(Set); |
| Result = Result.add_map(IdentityMap); |
| } |
| return Result; |
| } |
| |
| isl::map polly::reverseDomain(isl::map Map) { |
| isl::space DomSpace = Map.get_space().domain().unwrap(); |
| isl::space Space1 = DomSpace.domain(); |
| isl::space Space2 = DomSpace.range(); |
| isl::map Swap = makeTupleSwapMap(Space1, Space2); |
| return Map.apply_domain(Swap); |
| } |
| |
| isl::union_map polly::reverseDomain(const isl::union_map &UMap) { |
| isl::union_map Result = isl::union_map::empty(UMap.get_space()); |
| for (isl::map Map : UMap.get_map_list()) { |
| auto Reversed = reverseDomain(std::move(Map)); |
| Result = Result.add_map(Reversed); |
| } |
| return Result; |
| } |
| |
| isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { |
| int NumDims = Set.dim(isl::dim::set); |
| if (Pos < 0) |
| Pos = NumDims + Pos; |
| assert(Pos < NumDims && "Dimension index must be in range"); |
| isl::space Space = Set.get_space(); |
| Space = Space.map_from_domain_and_range(Space); |
| isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); |
| isl::map TranslatorMap = isl::map::from_multi_aff(Translator); |
| return Set.apply(TranslatorMap); |
| } |
| |
| isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { |
| isl::union_set Result = isl::union_set::empty(USet.get_space()); |
| for (isl::set Set : USet.get_set_list()) { |
| isl::set Shifted = shiftDim(Set, Pos, Amount); |
| Result = Result.add_set(Shifted); |
| } |
| return Result; |
| } |
| |
| isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { |
| int NumDims = Map.dim(Dim); |
| if (Pos < 0) |
| Pos = NumDims + Pos; |
| assert(Pos < NumDims && "Dimension index must be in range"); |
| isl::space Space = Map.get_space(); |
| switch (Dim) { |
| case isl::dim::in: |
| Space = Space.domain(); |
| break; |
| case isl::dim::out: |
| Space = Space.range(); |
| break; |
| default: |
| llvm_unreachable("Unsupported value for 'dim'"); |
| } |
| Space = Space.map_from_domain_and_range(Space); |
| isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount); |
| isl::map TranslatorMap = isl::map::from_multi_aff(Translator); |
| switch (Dim) { |
| case isl::dim::in: |
| return Map.apply_domain(TranslatorMap); |
| case isl::dim::out: |
| return Map.apply_range(TranslatorMap); |
| default: |
| llvm_unreachable("Unsupported value for 'dim'"); |
| } |
| } |
| |
| isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, |
| int Amount) { |
| isl::union_map Result = isl::union_map::empty(UMap.get_space()); |
| |
| for (isl::map Map : UMap.get_map_list()) { |
| isl::map Shifted = shiftDim(Map, Dim, Pos, Amount); |
| Result = Result.add_map(Shifted); |
| } |
| return Result; |
| } |
| |
| void polly::simplify(isl::set &Set) { |
| Set = isl::manage(isl_set_compute_divs(Set.copy())); |
| Set = Set.detect_equalities(); |
| Set = Set.coalesce(); |
| } |
| |
| void polly::simplify(isl::union_set &USet) { |
| USet = isl::manage(isl_union_set_compute_divs(USet.copy())); |
| USet = USet.detect_equalities(); |
| USet = USet.coalesce(); |
| } |
| |
| void polly::simplify(isl::map &Map) { |
| Map = isl::manage(isl_map_compute_divs(Map.copy())); |
| Map = Map.detect_equalities(); |
| Map = Map.coalesce(); |
| } |
| |
| void polly::simplify(isl::union_map &UMap) { |
| UMap = isl::manage(isl_union_map_compute_divs(UMap.copy())); |
| UMap = UMap.detect_equalities(); |
| UMap = UMap.coalesce(); |
| } |
| |
| isl::union_map polly::computeReachingWrite(isl::union_map Schedule, |
| isl::union_map Writes, bool Reverse, |
| bool InclPrevDef, bool InclNextDef) { |
| |
| // { Scatter[] } |
| isl::space ScatterSpace = getScatterSpace(Schedule); |
| |
| // { ScatterRead[] -> ScatterWrite[] } |
| isl::map Relation; |
| if (Reverse) |
| Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) |
| : isl::map::lex_le(ScatterSpace); |
| else |
| Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) |
| : isl::map::lex_ge(ScatterSpace); |
| |
| // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } |
| isl::map RelationMap = Relation.range_map().reverse(); |
| |
| // { Element[] -> ScatterWrite[] } |
| isl::union_map WriteAction = Schedule.apply_domain(Writes); |
| |
| // { ScatterWrite[] -> Element[] } |
| isl::union_map WriteActionRev = WriteAction.reverse(); |
| |
| // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } |
| isl::union_map DefSchedRelation = |
| isl::union_map(RelationMap).apply_domain(WriteActionRev); |
| |
| // For each element, at every point in time, map to the times of previous |
| // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } |
| isl::union_map ReachableWrites = DefSchedRelation.uncurry(); |
| if (Reverse) |
| ReachableWrites = ReachableWrites.lexmin(); |
| else |
| ReachableWrites = ReachableWrites.lexmax(); |
| |
| // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } |
| isl::union_map SelfUse = WriteAction.range_map(); |
| |
| if (InclPrevDef && InclNextDef) { |
| // Add the Def itself to the solution. |
| ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); |
| } else if (!InclPrevDef && !InclNextDef) { |
| // Remove Def itself from the solution. |
| ReachableWrites = ReachableWrites.subtract(SelfUse); |
| } |
| |
| // { [Element[] -> ScatterRead[]] -> Domain[] } |
| return ReachableWrites.apply_range(Schedule.reverse()); |
| } |
| |
| isl::union_map |
| polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, |
| isl::union_map Reads, bool ReadEltInSameInst, |
| bool IncludeLastRead, bool IncludeWrite) { |
| // { Element[] -> Scatter[] } |
| isl::union_map ReadActions = Schedule.apply_domain(Reads); |
| isl::union_map WriteActions = Schedule.apply_domain(Writes); |
| |
| // { [Element[] -> DomainWrite[]] -> Scatter[] } |
| isl::union_map EltDomWrites = |
| Writes.reverse().range_map().apply_range(Schedule); |
| |
| // { [Element[] -> Scatter[]] -> DomainWrite[] } |
| isl::union_map ReachingOverwrite = computeReachingWrite( |
| Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); |
| |
| // { [Element[] -> Scatter[]] -> DomainWrite[] } |
| isl::union_map ReadsOverwritten = |
| ReachingOverwrite.intersect_domain(ReadActions.wrap()); |
| |
| // { [Element[] -> DomainWrite[]] -> Scatter[] } |
| isl::union_map ReadsOverwrittenRotated = |
| reverseDomain(ReadsOverwritten).curry().reverse(); |
| isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax(); |
| |
| // { [Element[] -> DomainWrite[]] -> Scatter[] } |
| isl::union_map BetweenLastReadOverwrite = betweenScatter( |
| LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); |
| |
| // { [Element[] -> Scatter[]] -> DomainWrite[] } |
| isl::union_map ReachingOverwriteZone = computeReachingWrite( |
| Schedule, Writes, true, IncludeLastRead, IncludeWrite); |
| |
| // { [Element[] -> DomainWrite[]] -> Scatter[] } |
| isl::union_map ReachingOverwriteRotated = |
| reverseDomain(ReachingOverwriteZone).curry().reverse(); |
| |
| // { [Element[] -> DomainWrite[]] -> Scatter[] } |
| isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( |
| ReadsOverwrittenRotated.domain()); |
| |
| return BetweenLastReadOverwrite.unite(WritesWithoutReads) |
| .domain_factor_domain(); |
| } |
| |
| isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, |
| bool InclStart, bool InclEnd) { |
| if (!InclStart && InclEnd) |
| return Zone; |
| |
| auto ShiftedZone = shiftDim(Zone, -1, -1); |
| if (InclStart && !InclEnd) |
| return ShiftedZone; |
| else if (!InclStart && !InclEnd) |
| return Zone.intersect(ShiftedZone); |
| |
| assert(InclStart && InclEnd); |
| return Zone.unite(ShiftedZone); |
| } |
| |
| isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, |
| bool InclStart, bool InclEnd) { |
| if (!InclStart && InclEnd) |
| return Zone; |
| |
| auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); |
| if (InclStart && !InclEnd) |
| return ShiftedZone; |
| else if (!InclStart && !InclEnd) |
| return Zone.intersect(ShiftedZone); |
| |
| assert(InclStart && InclEnd); |
| return Zone.unite(ShiftedZone); |
| } |
| |
| isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, |
| bool InclStart, bool InclEnd) { |
| if (!InclStart && InclEnd) |
| return Zone; |
| |
| auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); |
| if (InclStart && !InclEnd) |
| return ShiftedZone; |
| else if (!InclStart && !InclEnd) |
| return Zone.intersect(ShiftedZone); |
| |
| assert(InclStart && InclEnd); |
| return Zone.unite(ShiftedZone); |
| } |
| |
| isl::map polly::distributeDomain(isl::map Map) { |
| // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { |
| // Domain[] -> Range2[] } and combine again. We would loose any relation |
| // between Range1[] and Range2[] that is not also a constraint to Domain[]. |
| |
| isl::space Space = Map.get_space(); |
| isl::space DomainSpace = Space.domain(); |
| unsigned DomainDims = DomainSpace.dim(isl::dim::set); |
| isl::space RangeSpace = Space.range().unwrap(); |
| isl::space Range1Space = RangeSpace.domain(); |
| unsigned Range1Dims = Range1Space.dim(isl::dim::set); |
| isl::space Range2Space = RangeSpace.range(); |
| unsigned Range2Dims = Range2Space.dim(isl::dim::set); |
| |
| isl::space OutputSpace = |
| DomainSpace.map_from_domain_and_range(Range1Space) |
| .wrap() |
| .map_from_domain_and_range( |
| DomainSpace.map_from_domain_and_range(Range2Space).wrap()); |
| |
| isl::basic_map Translator = isl::basic_map::universe( |
| Space.wrap().map_from_domain_and_range(OutputSpace.wrap())); |
| |
| for (unsigned i = 0; i < DomainDims; i += 1) { |
| Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i); |
| Translator = Translator.equate(isl::dim::in, i, isl::dim::out, |
| DomainDims + Range1Dims + i); |
| } |
| for (unsigned i = 0; i < Range1Dims; i += 1) |
| Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out, |
| DomainDims + i); |
| for (unsigned i = 0; i < Range2Dims; i += 1) |
| Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i, |
| isl::dim::out, |
| DomainDims + Range1Dims + DomainDims + i); |
| |
| return Map.wrap().apply(Translator).unwrap(); |
| } |
| |
| isl::union_map polly::distributeDomain(isl::union_map UMap) { |
| isl::union_map Result = isl::union_map::empty(UMap.get_space()); |
| for (isl::map Map : UMap.get_map_list()) { |
| auto Distributed = distributeDomain(Map); |
| Result = Result.add_map(Distributed); |
| } |
| return Result; |
| } |
| |
| isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { |
| |
| // { Factor[] -> Factor[] } |
| isl::union_map Factors = makeIdentityMap(Factor, true); |
| |
| return Factors.product(UMap); |
| } |
| |
| isl::union_map polly::applyDomainRange(isl::union_map UMap, |
| isl::union_map Func) { |
| // This implementation creates unnecessary cross products of the |
| // DomainDomain[] and Func. An alternative implementation could reverse |
| // domain+uncurry,apply Func to what now is the domain, then undo the |
| // preparing transformation. Another alternative implementation could create a |
| // translator map for each piece. |
| |
| // { DomainDomain[] } |
| isl::union_set DomainDomain = UMap.domain().unwrap().domain(); |
| |
| // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] |
| // } |
| isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain); |
| |
| return UMap.apply_domain(LifetedFunc); |
| } |
| |
| isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { |
| isl::set RangeSet = Range.extract_set(Map.get_space().range()); |
| return Map.intersect_range(RangeSet); |
| } |
| |
| isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { |
| assert(!Max || !Min); // Cannot return min and max at the same time. |
| isl::val Result; |
| isl::stat Stat = PwAff.foreach_piece( |
| [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { |
| if (Result && Result.is_nan()) |
| return isl::stat::ok(); |
| |
| // TODO: If Min/Max, we can also determine a minimum/maximum value if |
| // Set is constant-bounded. |
| if (!Aff.is_cst()) { |
| Result = isl::val::nan(Aff.get_ctx()); |
| return isl::stat::error(); |
| } |
| |
| isl::val ThisVal = Aff.get_constant_val(); |
| if (!Result) { |
| Result = ThisVal; |
| return isl::stat::ok(); |
| } |
| |
| if (Result.eq(ThisVal)) |
| return isl::stat::ok(); |
| |
| if (Max && ThisVal.gt(Result)) { |
| Result = ThisVal; |
| return isl::stat::ok(); |
| } |
| |
| if (Min && ThisVal.lt(Result)) { |
| Result = ThisVal; |
| return isl::stat::ok(); |
| } |
| |
| // Not compatible |
| Result = isl::val::nan(Aff.get_ctx()); |
| return isl::stat::error(); |
| }); |
| |
| if (Stat.is_error()) |
| return {}; |
| |
| return Result; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| static void foreachPoint(const isl::set &Set, |
| const std::function<void(isl::point P)> &F) { |
| Set.foreach_point([&](isl::point P) -> isl::stat { |
| F(P); |
| return isl::stat::ok(); |
| }); |
| } |
| |
| static void foreachPoint(isl::basic_set BSet, |
| const std::function<void(isl::point P)> &F) { |
| foreachPoint(isl::set(BSet), F); |
| } |
| |
| /// Determine the sorting order of the sets @p A and @p B without considering |
| /// the space structure. |
| /// |
| /// Ordering is based on the lower bounds of the set's dimensions. First |
| /// dimensions are considered first. |
| static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { |
| unsigned ALen = A.dim(isl::dim::set); |
| unsigned BLen = B.dim(isl::dim::set); |
| unsigned Len = std::min(ALen, BLen); |
| |
| for (unsigned i = 0; i < Len; i += 1) { |
| isl::basic_set ADim = |
| A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) |
| .project_out(isl::dim::set, i + 1, ALen - i - 1) |
| .project_out(isl::dim::set, 0, i); |
| isl::basic_set BDim = |
| B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) |
| .project_out(isl::dim::set, i + 1, BLen - i - 1) |
| .project_out(isl::dim::set, 0, i); |
| |
| isl::basic_set AHull = isl::set(ADim).convex_hull(); |
| isl::basic_set BHull = isl::set(BDim).convex_hull(); |
| |
| bool ALowerBounded = |
| bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); |
| bool BLowerBounded = |
| bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); |
| |
| int BoundedCompare = BLowerBounded - ALowerBounded; |
| if (BoundedCompare != 0) |
| return BoundedCompare; |
| |
| if (!ALowerBounded || !BLowerBounded) |
| continue; |
| |
| isl::pw_aff AMin = isl::set(ADim).dim_min(0); |
| isl::pw_aff BMin = isl::set(BDim).dim_min(0); |
| |
| isl::val AMinVal = polly::getConstant(AMin, false, true); |
| isl::val BMinVal = polly::getConstant(BMin, false, true); |
| |
| int MinCompare = AMinVal.sub(BMinVal).sgn(); |
| if (MinCompare != 0) |
| return MinCompare; |
| } |
| |
| // If all the dimensions' lower bounds are equal or incomparable, sort based |
| // on the number of dimensions. |
| return ALen - BLen; |
| } |
| |
| /// Compare the sets @p A and @p B according to their nested space structure. |
| /// Returns 0 if the structure is considered equal. |
| /// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are |
| /// ignored, i.e. a tuple with the same name but different number of dimensions |
| /// are considered equal. |
| static int structureCompare(const isl::space &ASpace, const isl::space &BSpace, |
| bool ConsiderTupleLen) { |
| int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); |
| if (WrappingCompare != 0) |
| return WrappingCompare; |
| |
| if (ASpace.is_wrapping() && BSpace.is_wrapping()) { |
| isl::space AMap = ASpace.unwrap(); |
| isl::space BMap = BSpace.unwrap(); |
| |
| int FirstResult = |
| structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen); |
| if (FirstResult != 0) |
| return FirstResult; |
| |
| return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen); |
| } |
| |
| std::string AName; |
| if (ASpace.has_tuple_name(isl::dim::set)) |
| AName = ASpace.get_tuple_name(isl::dim::set); |
| |
| std::string BName; |
| if (BSpace.has_tuple_name(isl::dim::set)) |
| BName = BSpace.get_tuple_name(isl::dim::set); |
| |
| int NameCompare = AName.compare(BName); |
| if (NameCompare != 0) |
| return NameCompare; |
| |
| if (ConsiderTupleLen) { |
| int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set); |
| if (LenCompare != 0) |
| return LenCompare; |
| } |
| |
| return 0; |
| } |
| |
| /// Compare the sets @p A and @p B according to their nested space structure. If |
| /// the structure is the same, sort using the dimension lower bounds. |
| /// Returns an std::sort compatible bool. |
| static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { |
| isl::space ASpace = A.get_space(); |
| isl::space BSpace = B.get_space(); |
| |
| // Ignoring number of dimensions first ensures that structures with same tuple |
| // names, but different number of dimensions are still sorted close together. |
| int TupleNestingCompare = structureCompare(ASpace, BSpace, false); |
| if (TupleNestingCompare != 0) |
| return TupleNestingCompare < 0; |
| |
| int TupleCompare = structureCompare(ASpace, BSpace, true); |
| if (TupleCompare != 0) |
| return TupleCompare < 0; |
| |
| return flatCompare(A, B) < 0; |
| } |
| |
| /// Print a string representation of @p USet to @p OS. |
| /// |
| /// The pieces of @p USet are printed in a sorted order. Spaces with equal or |
| /// similar nesting structure are printed together. Compared to isl's own |
| /// printing function the uses the structure itself as base of the sorting, not |
| /// a hash of it. It ensures that e.g. maps spaces with same domain structure |
| /// are printed together. Set pieces with same structure are printed in order of |
| /// their lower bounds. |
| /// |
| /// @param USet Polyhedra to print. |
| /// @param OS Target stream. |
| /// @param Simplify Whether to simplify the polyhedron before printing. |
| /// @param IsMap Whether @p USet is a wrapped map. If true, sets are |
| /// unwrapped before printing to again appear as a map. |
| static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, |
| bool Simplify, bool IsMap) { |
| if (!USet) { |
| OS << "<null>\n"; |
| return; |
| } |
| |
| if (Simplify) |
| simplify(USet); |
| |
| // Get all the polyhedra. |
| std::vector<isl::basic_set> BSets; |
| |
| for (isl::set Set : USet.get_set_list()) { |
| for (isl::basic_set BSet : Set.get_basic_set_list()) { |
| BSets.push_back(BSet); |
| } |
| } |
| |
| if (BSets.empty()) { |
| OS << "{\n}\n"; |
| return; |
| } |
| |
| // Sort the polyhedra. |
| llvm::sort(BSets.begin(), BSets.end(), orderComparer); |
| |
| // Print the polyhedra. |
| bool First = true; |
| for (const isl::basic_set &BSet : BSets) { |
| std::string Str; |
| if (IsMap) |
| Str = isl::map(BSet.unwrap()).to_str(); |
| else |
| Str = isl::set(BSet).to_str(); |
| size_t OpenPos = Str.find_first_of('{'); |
| assert(OpenPos != std::string::npos); |
| size_t ClosePos = Str.find_last_of('}'); |
| assert(ClosePos != std::string::npos); |
| |
| if (First) |
| OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; |
| else |
| OS << ";\n "; |
| |
| OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); |
| First = false; |
| } |
| assert(!First); |
| OS << "\n}\n"; |
| } |
| |
| static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { |
| int Dims = BSet.dim(isl::dim::set); |
| if (Dim >= Dims) { |
| Expanded = Expanded.unite(BSet); |
| return; |
| } |
| |
| isl::basic_set DimOnly = |
| BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) |
| .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) |
| .project_out(isl::dim::set, 0, Dim); |
| if (!DimOnly.is_bounded()) { |
| recursiveExpand(BSet, Dim + 1, Expanded); |
| return; |
| } |
| |
| foreachPoint(DimOnly, [&, Dim](isl::point P) { |
| isl::val Val = P.get_coordinate_val(isl::dim::set, 0); |
| isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); |
| recursiveExpand(FixBSet, Dim + 1, Expanded); |
| }); |
| } |
| |
| /// Make each point of a set explicit. |
| /// |
| /// "Expanding" makes each point a set contains explicit. That is, the result is |
| /// a set of singleton polyhedra. Unbounded dimensions are not expanded. |
| /// |
| /// Example: |
| /// { [i] : 0 <= i < 2 } |
| /// is expanded to: |
| /// { [0]; [1] } |
| static isl::set expand(const isl::set &Set) { |
| isl::set Expanded = isl::set::empty(Set.get_space()); |
| for (isl::basic_set BSet : Set.get_basic_set_list()) |
| recursiveExpand(BSet, 0, Expanded); |
| return Expanded; |
| } |
| |
| /// Expand all points of a union set explicit. |
| /// |
| /// @see expand(const isl::set) |
| static isl::union_set expand(const isl::union_set &USet) { |
| isl::union_set Expanded = isl::union_set::empty(USet.get_space()); |
| for (isl::set Set : USet.get_set_list()) { |
| isl::set SetExpanded = expand(Set); |
| Expanded = Expanded.add_set(SetExpanded); |
| } |
| return Expanded; |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { |
| printSortedPolyhedra(Set, llvm::errs(), true, false); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { |
| printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { |
| printSortedPolyhedra(USet, llvm::errs(), true, false); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { |
| printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { |
| dumpPw(isl::manage_copy(Set)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { |
| dumpPw(isl::manage_copy(Map)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { |
| dumpPw(isl::manage_copy(USet)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { |
| dumpPw(isl::manage_copy(UMap)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { |
| printSortedPolyhedra(expand(Set), llvm::errs(), false, false); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { |
| printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { |
| printSortedPolyhedra(expand(USet), llvm::errs(), false, false); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { |
| printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { |
| dumpExpanded(isl::manage_copy(Set)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { |
| dumpExpanded(isl::manage_copy(Map)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { |
| dumpExpanded(isl::manage_copy(USet)); |
| } |
| |
| LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { |
| dumpExpanded(isl::manage_copy(UMap)); |
| } |
| #endif |