blob: f041f3d150a133d2cde8867060de2fda30c66ff1 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/execution/arm/simulator-arm.h"
#if defined(USE_SIMULATOR)
#include <stdarg.h>
#include <stdlib.h>
#include <cmath>
#include "src/base/bits.h"
#include "src/base/lazy-instance.h"
#include "src/base/memory.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/wrappers.h"
#include "src/codegen/arm/constants-arm.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/diagnostics/disasm.h"
#include "src/heap/combined-heap.h"
#include "src/heap/heap-inl.h" // For CodeSpaceMemoryModificationScope.
#include "src/objects/objects-inl.h"
#include "src/runtime/runtime-utils.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"
#include "src/utils/vector.h"
// Only build the simulator if not compiling for real ARM hardware.
namespace v8 {
namespace internal {
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
Simulator::GlobalMonitor::Get)
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The ArmDebugger class is used by the simulator while debugging simulated ARM
// code.
class ArmDebugger {
public:
explicit ArmDebugger(Simulator* sim) : sim_(sim) {}
void Debug();
private:
static const Instr kBreakpointInstr =
(al | (7 * B25) | (1 * B24) | kBreakpoint);
static const Instr kNopInstr = (al | (13 * B21));
Simulator* sim_;
int32_t GetRegisterValue(int regnum);
double GetRegisterPairDoubleValue(int regnum);
double GetVFPDoubleRegisterValue(int regnum);
bool GetValue(const char* desc, int32_t* value);
bool GetVFPSingleValue(const char* desc, float* value);
bool GetVFPDoubleValue(const char* desc, double* value);
// Set or delete breakpoint (there can be only one).
bool SetBreakpoint(Instruction* breakpc);
void DeleteBreakpoint();
// Undo and redo the breakpoint. This is needed to bracket disassembly and
// execution to skip past the breakpoint when run from the debugger.
void UndoBreakpoint();
void RedoBreakpoint();
};
void Simulator::DebugAtNextPC() {
PrintF("Starting debugger on the next instruction:\n");
set_pc(get_pc() + kInstrSize);
ArmDebugger(this).Debug();
}
int32_t ArmDebugger::GetRegisterValue(int regnum) {
if (regnum == kPCRegister) {
return sim_->get_pc();
} else {
return sim_->get_register(regnum);
}
}
double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
return sim_->get_double_from_register_pair(regnum);
}
double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
return sim_->get_double_from_d_register(regnum).get_scalar();
}
bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
int regnum = Registers::Number(desc);
if (regnum != kNoRegister) {
*value = GetRegisterValue(regnum);
return true;
} else {
if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
} else {
return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
}
}
return false;
}
bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
bool is_double;
int regnum = VFPRegisters::Number(desc, &is_double);
if (regnum != kNoRegister && !is_double) {
*value = sim_->get_float_from_s_register(regnum).get_scalar();
return true;
}
return false;
}
bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
bool is_double;
int regnum = VFPRegisters::Number(desc, &is_double);
if (regnum != kNoRegister && is_double) {
*value = sim_->get_double_from_d_register(regnum).get_scalar();
return true;
}
return false;
}
bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != nullptr) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
namespace {
// This function is dangerous, but it's only available in non-production
// (simulator) builds.
void SetInstructionBitsInCodeSpace(Instruction* instr, Instr value,
Heap* heap) {
CodeSpaceMemoryModificationScope scope(heap);
instr->SetInstructionBits(value);
}
} // namespace
void ArmDebugger::DeleteBreakpoint() {
UndoBreakpoint();
sim_->break_pc_ = nullptr;
sim_->break_instr_ = 0;
}
void ArmDebugger::UndoBreakpoint() {
if (sim_->break_pc_ != nullptr) {
SetInstructionBitsInCodeSpace(sim_->break_pc_, sim_->break_instr_,
sim_->isolate_->heap());
}
}
void ArmDebugger::RedoBreakpoint() {
if (sim_->break_pc_ != nullptr) {
SetInstructionBitsInCodeSpace(sim_->break_pc_, kBreakpointInstr,
sim_->isolate_->heap());
}
}
void ArmDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = {cmd, arg1, arg2};
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Unset breakpoint while running in the debugger shell, making it invisible
// to all commands.
UndoBreakpoint();
while (!done && !sim_->has_bad_pc()) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.begin());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == nullptr) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
int32_t value;
float svalue;
double dvalue;
if (strcmp(arg1, "all") == 0) {
for (int i = 0; i < kNumRegisters; i++) {
value = GetRegisterValue(i);
PrintF("%3s: 0x%08x %10d", RegisterName(Register::from_code(i)),
value, value);
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
(i % 2) == 0) {
dvalue = GetRegisterPairDoubleValue(i);
PrintF(" (%f)\n", dvalue);
} else {
PrintF("\n");
}
}
for (int i = 0; i < DwVfpRegister::SupportedRegisterCount(); i++) {
dvalue = GetVFPDoubleRegisterValue(i);
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true),
dvalue, static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
}
} else {
if (GetValue(arg1, &value)) {
PrintF("%s: 0x%08x %d \n", arg1, value, value);
} else if (GetVFPSingleValue(arg1, &svalue)) {
uint32_t as_word = bit_cast<uint32_t>(svalue);
PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
} else if (GetVFPDoubleValue(arg1, &dvalue)) {
uint64_t as_words = bit_cast<uint64_t>(dvalue);
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
static_cast<uint32_t>(as_words >> 32),
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF("print <register>\n");
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
int32_t value;
StdoutStream os;
if (GetValue(arg1, &value)) {
Object obj(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj.Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 ||
strcmp(cmd, "dump") == 0) {
int32_t* cur = nullptr;
int32_t* end = nullptr;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
} else { // "mem"
int32_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int32_t*>(value);
next_arg++;
}
int32_t words;
if (argc == next_arg) {
words = 10;
} else {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
bool skip_obj_print = (strcmp(cmd, "dump") == 0);
while (cur < end) {
PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
Object obj(*cur);
Heap* current_heap = sim_->isolate_->heap();
if (!skip_obj_print) {
if (obj.IsSmi() ||
IsValidHeapObject(current_heap, HeapObject::cast(obj))) {
PrintF(" (");
if (obj.IsSmi()) {
PrintF("smi %d", Smi::ToInt(obj));
} else {
obj.ShortPrint();
}
PrintF(")");
}
}
PrintF("\n");
cur++;
}
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
byte* prev = nullptr;
byte* cur = nullptr;
byte* end = nullptr;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * kInstrSize);
}
} else {
// The argument is the number of instructions.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * kInstrSize);
}
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * kInstrSize);
}
}
while (cur < end) {
prev = cur;
cur += dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
buffer.begin());
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::base::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
DeleteBreakpoint();
} else if (strcmp(cmd, "flags") == 0) {
PrintF("N flag: %d; ", sim_->n_flag_);
PrintF("Z flag: %d; ", sim_->z_flag_);
PrintF("C flag: %d; ", sim_->c_flag_);
PrintF("V flag: %d\n", sim_->v_flag_);
PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
} else if (strcmp(cmd, "stop") == 0) {
int32_t value;
intptr_t stop_pc = sim_->get_pc() - kInstrSize;
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (stop_instr->IsStop()) {
SetInstructionBitsInCodeSpace(stop_instr, kNopInstr,
sim_->isolate_->heap());
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
PrintF("Trace of executed instructions is %s\n",
::v8::internal::FLAG_trace_sim ? "on" : "off");
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi\n");
PrintF(" step one instruction (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to print all registers\n");
PrintF(" add argument 'fp' to print register pair double values\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("stack [<words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("dump [<words>]\n");
PrintF(
" dump memory content without pretty printing JS objects, default "
"dump 10 words)\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("trace (alias 't')\n");
PrintF(" toogle the tracing of all executed statements\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and give control to the ArmDebugger.\n");
PrintF(" The first %d stop codes are watched:\n",
Simulator::kNumOfWatchedStops);
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Reinstall breakpoint to stop execution and enter the debugger shell when
// hit.
RedoBreakpoint();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
bool Simulator::ICacheMatch(void* one, void* two) {
DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::SetRedirectInstruction(Instruction* instruction) {
instruction->SetInstructionBits(al | (0xF * B24) | kCallRtRedirected);
}
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
void* start_addr, size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
DCHECK_EQ(0, start & CachePage::kPageMask);
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page) {
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
if (entry->value == nullptr) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
intptr_t start, int size) {
DCHECK_LE(size, CachePage::kPageSize);
DCHECK(AllOnOnePage(start, size - 1));
DCHECK_EQ(start & CachePage::kLineMask, 0);
DCHECK_EQ(size & CachePage::kLineMask, 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset), kInstrSize));
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
stack_ = reinterpret_cast<char*>(base::Malloc(stack_size));
pc_modified_ = false;
icount_ = 0;
break_pc_ = nullptr;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < num_registers; i++) {
registers_[i] = 0;
}
n_flag_ = false;
z_flag_ = false;
c_flag_ = false;
v_flag_ = false;
// Initializing VFP registers.
// All registers are initialized to zero to start with
// even though s_registers_ & d_registers_ share the same
// physical registers in the target.
for (int i = 0; i < num_d_registers * 2; i++) {
vfp_registers_[i] = 0;
}
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
FPSCR_rounding_mode_ = RN;
FPSCR_default_NaN_mode_ = false;
inv_op_vfp_flag_ = false;
div_zero_vfp_flag_ = false;
overflow_vfp_flag_ = false;
underflow_vfp_flag_ = false;
inexact_vfp_flag_ = false;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
// The lr and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_lr;
registers_[lr] = bad_lr;
last_debugger_input_ = nullptr;
}
Simulator::~Simulator() {
GlobalMonitor::Get()->RemoveProcessor(&global_monitor_processor_);
base::Free(stack_);
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK_NOT_NULL(isolate_data);
Simulator* sim = isolate_data->simulator();
if (sim == nullptr) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
DCHECK((reg >= 0) && (reg < num_registers));
if (reg == pc) {
pc_modified_ = true;
}
registers_[reg] = value;
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
DCHECK((reg >= 0) && (reg < num_registers));
// Stupid code added to avoid bug in GCC.
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
if (reg >= num_registers) return 0;
// End stupid code.
return registers_[reg] + ((reg == pc) ? Instruction::kPcLoadDelta : 0);
}
double Simulator::get_double_from_register_pair(int reg) {
DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
double dm_val = 0.0;
// Read the bits from the unsigned integer register_[] array
// into the double precision floating point value and return it.
char buffer[2 * sizeof(vfp_registers_[0])];
memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
return (dm_val);
}
void Simulator::set_register_pair_from_double(int reg, double* value) {
DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
memcpy(registers_ + reg, value, sizeof(*value));
}
void Simulator::set_dw_register(int dreg, const int* dbl) {
DCHECK((dreg >= 0) && (dreg < num_d_registers));
registers_[dreg] = dbl[0];
registers_[dreg + 1] = dbl[1];
}
void Simulator::get_d_register(int dreg, uint64_t* value) {
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount()));
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
}
void Simulator::set_d_register(int dreg, const uint64_t* value) {
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount()));
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
}
void Simulator::get_d_register(int dreg, uint32_t* value) {
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount()));
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
}
void Simulator::set_d_register(int dreg, const uint32_t* value) {
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount()));
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
}
template <typename T, int SIZE>
void Simulator::get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]) {
DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
DCHECK_LE(0, reg);
DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
memcpy(value, vfp_registers_ + reg * (SIZE / 4), SIZE);
}
template <typename T, int SIZE>
void Simulator::set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]) {
DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
DCHECK_LE(0, reg);
DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
memcpy(vfp_registers_ + reg * (SIZE / 4), value, SIZE);
}
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const { return registers_[pc]; }
// Getting from and setting into VFP registers.
void Simulator::set_s_register(int sreg, unsigned int value) {
DCHECK((sreg >= 0) && (sreg < num_s_registers));
vfp_registers_[sreg] = value;
}
unsigned int Simulator::get_s_register(int sreg) const {
DCHECK((sreg >= 0) && (sreg < num_s_registers));
return vfp_registers_[sreg];
}
template <class InputType, int register_size>
void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
unsigned bytes = register_size * sizeof(vfp_registers_[0]);
DCHECK_EQ(sizeof(InputType), bytes);
DCHECK_GE(reg_index, 0);
if (register_size == 1) DCHECK(reg_index < num_s_registers);
if (register_size == 2)
DCHECK(reg_index < DwVfpRegister::SupportedRegisterCount());
memcpy(&vfp_registers_[reg_index * register_size], &value, bytes);
}
template <class ReturnType, int register_size>
ReturnType Simulator::GetFromVFPRegister(int reg_index) {
unsigned bytes = register_size * sizeof(vfp_registers_[0]);
DCHECK_EQ(sizeof(ReturnType), bytes);
DCHECK_GE(reg_index, 0);
if (register_size == 1) DCHECK(reg_index < num_s_registers);
if (register_size == 2)
DCHECK(reg_index < DwVfpRegister::SupportedRegisterCount());
ReturnType value;
memcpy(&value, &vfp_registers_[register_size * reg_index], bytes);
return value;
}
void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask,
uint32_t value) {
// Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented.
if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) {
n_flag_ = ((value & (1 << 31)) != 0);
z_flag_ = ((value & (1 << 30)) != 0);
c_flag_ = ((value & (1 << 29)) != 0);
v_flag_ = ((value & (1 << 28)) != 0);
} else {
UNIMPLEMENTED();
}
}
uint32_t Simulator::GetFromSpecialRegister(SRegister reg) {
uint32_t result = 0;
// Only CPSR_f is implemented.
if (reg == CPSR) {
if (n_flag_) result |= (1 << 31);
if (z_flag_) result |= (1 << 30);
if (c_flag_) result |= (1 << 29);
if (v_flag_) result |= (1 << 28);
} else {
UNIMPLEMENTED();
}
return result;
}
// Runtime FP routines take:
// - two double arguments
// - one double argument and zero or one integer arguments.
// All are consructed here from r0-r3 or d0, d1 and r0.
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
if (use_eabi_hardfloat()) {
*x = get_double_from_d_register(0).get_scalar();
*y = get_double_from_d_register(1).get_scalar();
*z = get_register(0);
} else {
// Registers 0 and 1 -> x.
*x = get_double_from_register_pair(0);
// Register 2 and 3 -> y.
*y = get_double_from_register_pair(2);
// Register 2 -> z
*z = get_register(2);
}
}
// The return value is either in r0/r1 or d0.
void Simulator::SetFpResult(const double& result) {
if (use_eabi_hardfloat()) {
char buffer[2 * sizeof(vfp_registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to d0.
memcpy(vfp_registers_, buffer, sizeof(buffer));
} else {
char buffer[2 * sizeof(registers_[0])];
memcpy(buffer, &result, sizeof(buffer));
// Copy result to r0 and r1.
memcpy(registers_, buffer, sizeof(buffer));
}
}
void Simulator::TrashCallerSaveRegisters() {
// Return registers.
registers_[0] = 0x50BAD4U;
registers_[1] = 0x50BAD4U;
// Caller-saved registers.
registers_[2] = 0x50BAD4U;
registers_[3] = 0x50BAD4U;
registers_[12] = 0x50BAD4U;
// This value is a NaN in both 32-bit and 64-bit FP.
static const uint64_t v = 0x7ff000007f801000UL;
// d0 - d7 are caller-saved.
for (int i = 0; i < 8; i++) {
set_d_register(i, &v);
}
if (DoubleRegister::SupportedRegisterCount() > 16) {
// d16 - d31 (if supported) are caller-saved.
for (int i = 16; i < 32; i++) {
set_d_register(i, &v);
}
}
}
int Simulator::ReadW(int32_t addr) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return base::ReadUnalignedValue<intptr_t>(addr);
}
int Simulator::ReadExW(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word);
GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
return base::ReadUnalignedValue<intptr_t>(addr);
}
void Simulator::WriteW(int32_t addr, int value) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue<intptr_t>(addr, value);
}
int Simulator::WriteExW(int32_t addr, int value) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) &&
GlobalMonitor::Get()->NotifyStoreExcl_Locked(
addr, &global_monitor_processor_)) {
base::WriteUnalignedValue<intptr_t>(addr, value);
return 0;
} else {
return 1;
}
}
uint16_t Simulator::ReadHU(int32_t addr) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return base::ReadUnalignedValue<uint16_t>(addr);
}
int16_t Simulator::ReadH(int32_t addr) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return base::ReadUnalignedValue<int16_t>(addr);
}
uint16_t Simulator::ReadExHU(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord);
GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
return base::ReadUnalignedValue<uint16_t>(addr);
}
void Simulator::WriteH(int32_t addr, uint16_t value) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue(addr, value);
}
void Simulator::WriteH(int32_t addr, int16_t value) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue(addr, value);
}
int Simulator::WriteExH(int32_t addr, uint16_t value) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) &&
GlobalMonitor::Get()->NotifyStoreExcl_Locked(
addr, &global_monitor_processor_)) {
base::WriteUnalignedValue(addr, value);
return 0;
} else {
return 1;
}
}
uint8_t Simulator::ReadBU(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return base::ReadUnalignedValue<uint8_t>(addr);
}
int8_t Simulator::ReadB(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return base::ReadUnalignedValue<int8_t>(addr);
}
uint8_t Simulator::ReadExBU(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte);
GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
return base::ReadUnalignedValue<uint8_t>(addr);
}
void Simulator::WriteB(int32_t addr, uint8_t value) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue(addr, value);
}
void Simulator::WriteB(int32_t addr, int8_t value) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue(addr, value);
}
int Simulator::WriteExB(int32_t addr, uint8_t value) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) &&
GlobalMonitor::Get()->NotifyStoreExcl_Locked(
addr, &global_monitor_processor_)) {
base::WriteUnalignedValue(addr, value);
return 0;
} else {
return 1;
}
}
int32_t* Simulator::ReadDW(int32_t addr) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoad(addr);
return reinterpret_cast<int32_t*>(addr);
}
int32_t* Simulator::ReadExDW(int32_t addr) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyLoadExcl(addr, TransactionSize::DoubleWord);
GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
return reinterpret_cast<int32_t*>(addr);
}
void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
// All supported ARM targets allow unaligned accesses, so we don't need to
// check the alignment here.
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
local_monitor_.NotifyStore(addr);
GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
base::WriteUnalignedValue(addr, value1);
base::WriteUnalignedValue(addr + sizeof(value1), value2);
}
int Simulator::WriteExDW(int32_t addr, int32_t value1, int32_t value2) {
base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::DoubleWord) &&
GlobalMonitor::Get()->NotifyStoreExcl_Locked(
addr, &global_monitor_processor_)) {
base::WriteUnalignedValue(addr, value1);
base::WriteUnalignedValue(addr + sizeof(value1), value2);
return 0;
} else {
return 1;
}
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
// The simulator uses a separate JS stack. If we have exhausted the C stack,
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
if (base::Stack::GetCurrentStackPosition() < c_limit) {
return reinterpret_cast<uintptr_t>(get_sp());
}
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
// to prevent overrunning the stack when pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED();
}
// Checks if the current instruction should be executed based on its
// condition bits.
bool Simulator::ConditionallyExecute(Instruction* instr) {
switch (instr->ConditionField()) {
case eq:
return z_flag_;
case ne:
return !z_flag_;
case cs:
return c_flag_;
case cc:
return !c_flag_;
case mi:
return n_flag_;
case pl:
return !n_flag_;
case vs:
return v_flag_;
case vc:
return !v_flag_;
case hi:
return c_flag_ && !z_flag_;
case ls:
return !c_flag_ || z_flag_;
case ge:
return n_flag_ == v_flag_;
case lt:
return n_flag_ != v_flag_;
case gt:
return !z_flag_ && (n_flag_ == v_flag_);
case le:
return z_flag_ || (n_flag_ != v_flag_);
case al:
return true;
default:
UNREACHABLE();
}
return false;
}
// Calculate and set the Negative and Zero flags.
void Simulator::SetNZFlags(int32_t val) {
n_flag_ = (val < 0);
z_flag_ = (val == 0);
}
// Set the Carry flag.
void Simulator::SetCFlag(bool val) { c_flag_ = val; }
// Set the oVerflow flag.
void Simulator::SetVFlag(bool val) { v_flag_ = val; }
// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
uint32_t urest = 0xFFFFFFFFU - uleft;
return (uright > urest) ||
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}
// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) {
uint32_t uleft = static_cast<uint32_t>(left);
uint32_t uright = static_cast<uint32_t>(right);
return (uright > uleft) ||
(!carry && (((uright + 1) > uleft) || (uright > (uleft - 1))));
}
// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition) {
bool overflow;
if (addition) {
// operands have the same sign
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
// and operands and result have different sign
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
} else {
// operands have different signs
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
// and first operand and result have different signs
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
}
return overflow;
}
// Support for VFP comparisons.
void Simulator::Compute_FPSCR_Flags(float val1, float val2) {
if (std::isnan(val1) || std::isnan(val2)) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = true;
// All non-NaN cases.
} else if (val1 == val2) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = true;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
} else if (val1 < val2) {
n_flag_FPSCR_ = true;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
} else {
// Case when (val1 > val2).
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
}
}
void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
if (std::isnan(val1) || std::isnan(val2)) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = true;
// All non-NaN cases.
} else if (val1 == val2) {
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = true;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
} else if (val1 < val2) {
n_flag_FPSCR_ = true;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = false;
v_flag_FPSCR_ = false;
} else {
// Case when (val1 > val2).
n_flag_FPSCR_ = false;
z_flag_FPSCR_ = false;
c_flag_FPSCR_ = true;
v_flag_FPSCR_ = false;
}
}
void Simulator::Copy_FPSCR_to_APSR() {
n_flag_ = n_flag_FPSCR_;
z_flag_ = z_flag_FPSCR_;
c_flag_ = c_flag_FPSCR_;
v_flag_ = v_flag_FPSCR_;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with register.
int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
ShiftOp shift = instr->ShiftField();
int shift_amount = instr->ShiftAmountValue();
int32_t result = get_register(instr->RmValue());
if (instr->Bit(4) == 0) {
// by immediate
if ((shift == ROR) && (shift_amount == 0)) {
UNIMPLEMENTED();
return result;
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
shift_amount = 32;
}
switch (shift) {
case ASR: {
if (shift_amount == 0) {
if (result < 0) {
result = 0xFFFFFFFF;
*carry_out = true;
} else {
result = 0;
*carry_out = false;
}
} else {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
result = static_cast<uint32_t>(result) << (shift_amount - 1);
*carry_out = (result < 0);
result = static_cast<uint32_t>(result) << 1;
}
break;
}
case LSR: {
if (shift_amount == 0) {
result = 0;
*carry_out = c_flag_;
} else {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
}
break;
}
case ROR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
result = base::bits::RotateRight32(result, shift_amount);
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
}
break;
}
default: {
UNREACHABLE();
break;
}
}
} else {
// by register
int rs = instr->RsValue();
shift_amount = get_register(rs) & 0xFF;
switch (shift) {
case ASR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result >>= (shift_amount - 1);
*carry_out = (result & 1) == 1;
result >>= 1;
} else {
DCHECK_GE(shift_amount, 32);
if (result < 0) {
*carry_out = true;
result = 0xFFFFFFFF;
} else {
*carry_out = false;
result = 0;
}
}
break;
}
case LSL: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
result = static_cast<uint32_t>(result) << (shift_amount - 1);
*carry_out = (result < 0);
result = static_cast<uint32_t>(result) << 1;
} else if (shift_amount == 32) {
*carry_out = (result & 1) == 1;
result = 0;
} else {
DCHECK_GT(shift_amount, 32);
*carry_out = false;
result = 0;
}
break;
}
case LSR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else if (shift_amount < 32) {
uint32_t uresult = static_cast<uint32_t>(result);
uresult >>= (shift_amount - 1);
*carry_out = (uresult & 1) == 1;
uresult >>= 1;
result = static_cast<int32_t>(uresult);
} else if (shift_amount == 32) {
*carry_out = (result < 0);
result = 0;
} else {
*carry_out = false;
result = 0;
}
break;
}
case ROR: {
if (shift_amount == 0) {
*carry_out = c_flag_;
} else {
// Avoid undefined behavior. Rotating by multiples of 32 is no-op.
result = base::bits::RotateRight32(result, shift_amount & 31);
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
}
break;
}
default: {
UNREACHABLE();
break;
}
}
}
return result;
}
// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with immediate.
int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
int rotate = instr->RotateValue() * 2;
int immed8 = instr->Immed8Value();
int imm = base::bits::RotateRight32(immed8, rotate);
*carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
return imm;
}
static int count_bits(int bit_vector) {
int count = 0;
while (bit_vector != 0) {
if ((bit_vector & 1) != 0) {
count++;
}
bit_vector >>= 1;
}
return count;
}
int32_t Simulator::ProcessPU(Instruction* instr, int num_regs, int reg_size,
intptr_t* start_address, intptr_t* end_address) {
int rn = instr->RnValue();
int32_t rn_val = get_register(rn);
switch (instr->PUField()) {
case da_x: {
UNIMPLEMENTED();
break;
}
case ia_x: {
*start_address = rn_val;
*end_address = rn_val + (num_regs * reg_size) - reg_size;
rn_val = rn_val + (num_regs * reg_size);
break;
}
case db_x: {
*start_address = rn_val - (num_regs * reg_size);
*end_address = rn_val - reg_size;
rn_val = *start_address;
break;
}
case ib_x: {
*start_address = rn_val + reg_size;
*end_address = rn_val + (num_regs * reg_size);
rn_val = *end_address;
break;
}
default: {
UNREACHABLE();
}
}
return rn_val;
}
// Addressing Mode 4 - Load and Store Multiple
void Simulator::HandleRList(Instruction* instr, bool load) {
int rlist = instr->RlistValue();
int num_regs = count_bits(rlist);
intptr_t start_address = 0;
intptr_t end_address = 0;
int32_t rn_val =
ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
// Catch null pointers a little earlier.
DCHECK(start_address > 8191 || start_address < 0);
int reg = 0;
while (rlist != 0) {
if ((rlist & 1) != 0) {
if (load) {
set_register(reg, *address);
} else {
*address = get_register(reg);
}
address += 1;
}
reg++;
rlist >>= 1;
}
DCHECK(end_address == ((intptr_t)address) - 4);
if (instr->HasW()) {
set_register(instr->RnValue(), rn_val);
}
}
// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
void Simulator::HandleVList(Instruction* instr) {
VFPRegPrecision precision =
(instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
int operand_size = (precision == kSinglePrecision) ? 4 : 8;
bool load = (instr->VLValue() == 0x1);
int vd;
int num_regs;
vd = instr->VFPDRegValue(precision);
if (precision == kSinglePrecision) {
num_regs = instr->Immed8Value();
} else {
num_regs = instr->Immed8Value() / 2;
}
intptr_t start_address = 0;
intptr_t end_address = 0;
int32_t rn_val =
ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
for (int reg = vd; reg < vd + num_regs; reg++) {
if (precision == kSinglePrecision) {
if (load) {
set_s_register_from_sinteger(reg,
ReadW(reinterpret_cast<int32_t>(address)));
} else {
WriteW(reinterpret_cast<int32_t>(address),
get_sinteger_from_s_register(reg));
}
address += 1;
} else {
if (load) {
int32_t data[] = {ReadW(reinterpret_cast<int32_t>(address)),
ReadW(reinterpret_cast<int32_t>(address + 1))};
set_d_register(reg, reinterpret_cast<uint32_t*>(data));
} else {
uint32_t data[2];
get_d_register(reg, data);
WriteW(reinterpret_cast<int32_t>(address), data[0]);
WriteW(reinterpret_cast<int32_t>(address + 1), data[1]);
}
address += 2;
}
}
DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
if (instr->HasW()) {
set_register(instr->RnValue(), rn_val);
}
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the r1 result register contains a bogus
// value, which is fine because it is caller-saved.
using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3,
int32_t arg4, int32_t arg5,
int32_t arg6, int32_t arg7,
int32_t arg8, int32_t arg9);
// These prototypes handle the four types of FP calls.
using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1);
using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1);
using SimulatorRuntimeFPCall = double (*)(double darg0);
using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0);
using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1);
using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1,
void* arg2);
// Separate for fine-grained UBSan blocklisting. Casting any given C++
// function to {SimulatorRuntimeCall} is undefined behavior; but since
// the target function can indeed be any function that's exposed via
// the "fast C call" mechanism, we can't reconstruct its signature here.
int64_t UnsafeGenericFunctionCall(intptr_t function, int32_t arg0, int32_t arg1,
int32_t arg2, int32_t arg3, int32_t arg4,
int32_t arg5, int32_t arg6, int32_t arg7,
int32_t arg8, int32_t arg9) {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(function);
return target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
}
void UnsafeDirectApiCall(intptr_t function, int32_t arg0) {
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(function);
target(arg0);
}
void UnsafeProfilingApiCall(intptr_t function, int32_t arg0, int32_t arg1) {
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(function);
target(arg0, Redirection::ReverseRedirection(arg1));
}
void UnsafeDirectGetterCall(intptr_t function, int32_t arg0, int32_t arg1) {
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(function);
target(arg0, arg1);
}
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
int svc = instr->SvcValue();
switch (svc) {
case kCallRtRedirected: {
// Check if stack is aligned. Error if not aligned is reported below to
// include information on the function called.
bool stack_aligned =
(get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
0;
Redirection* redirection = Redirection::FromInstruction(instr);
int32_t arg0 = get_register(r0);
int32_t arg1 = get_register(r1);
int32_t arg2 = get_register(r2);
int32_t arg3 = get_register(r3);
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
int32_t arg4 = stack_pointer[0];
int32_t arg5 = stack_pointer[1];
int32_t arg6 = stack_pointer[2];
int32_t arg7 = stack_pointer[3];
int32_t arg8 = stack_pointer[4];
int32_t arg9 = stack_pointer[5];
STATIC_ASSERT(kMaxCParameters == 10);
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int32_t saved_lr = get_register(lr);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
if (fp_call) {
double dval0, dval1; // one or two double parameters
int32_t ival; // zero or one integer parameters
int64_t iresult = 0; // integer return value
double dresult = 0; // double return value
GetFpArgs(&dval0, &dval1, &ival);
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
SimulatorRuntimeCall generic_target =
reinterpret_cast<SimulatorRuntimeCall>(external);
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Call to host function at %p with args %f, %f",
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0, dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
PrintF("Call to host function at %p with arg %f",
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Call to host function at %p with args %f, %d",
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
dval0, ival);
break;
default:
UNREACHABLE();
break;
}
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL: {
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
iresult = target(dval0, dval1);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
set_register(r0, static_cast<int32_t>(iresult));
set_register(r1, static_cast<int32_t>(iresult >> 32));
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
dresult = target(dval0, dval1);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
dresult = target(dval0);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
SetFpResult(dresult);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
dresult = target(dval0, ival);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
SetFpResult(dresult);
break;
}
default:
UNREACHABLE();
break;
}
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
switch (redirection->type()) {
case ExternalReference::BUILTIN_COMPARE_CALL:
PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
break;
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_FP_CALL:
case ExternalReference::BUILTIN_FP_INT_CALL:
PrintF("Returned %f\n", dresult);
break;
default:
UNREACHABLE();
break;
}
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08x",
reinterpret_cast<void*>(external), arg0);
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
UnsafeDirectApiCall(external, arg0);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
} else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08x %08x",
reinterpret_cast<void*>(external), arg0, arg1);
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
UnsafeProfilingApiCall(external, arg0, arg1);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08x %08x",
reinterpret_cast<void*>(external), arg0, arg1);
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
UnsafeDirectGetterCall(external, arg0, arg1);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
} else if (redirection->type() ==
ExternalReference::PROFILING_GETTER_CALL) {
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF("Call to host function at %p args %08x %08x %08x",
reinterpret_cast<void*>(external), arg0, arg1, arg2);
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
target(arg0, arg1, Redirection::ReverseRedirection(arg2));
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
} else {
// builtin call.
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
PrintF(
"Call to host function at %p "
"args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x",
reinterpret_cast<void*>(external), arg0, arg1, arg2, arg3, arg4,
arg5, arg6, arg7, arg8, arg9);
if (!stack_aligned) {
PrintF(" with unaligned stack %08x\n", get_register(sp));
}
PrintF("\n");
}
CHECK(stack_aligned);
int64_t result =
UnsafeGenericFunctionCall(external, arg0, arg1, arg2, arg3, arg4,
arg5, arg6, arg7, arg8, arg9);
#ifdef DEBUG
TrashCallerSaveRegisters();
#endif
int32_t lo_res = static_cast<int32_t>(result);
int32_t hi_res = static_cast<int32_t>(result >> 32);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x\n", lo_res);
}
set_register(r0, lo_res);
set_register(r1, hi_res);
}
set_register(lr, saved_lr);
set_pc(get_register(lr));
break;
}
case kBreakpoint:
ArmDebugger(this).Debug();
break;
// stop uses all codes greater than 1 << 23.
default:
if (svc >= (1 << 23)) {
uint32_t code = svc & kStopCodeMask;
if (isWatchedStop(code)) {
IncreaseStopCounter(code);
}
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (isEnabledStop(code)) {
if (code != kMaxStopCode) {
PrintF("Simulator hit stop %u. ", code);
} else {
PrintF("Simulator hit stop. ");
}
DebugAtNextPC();
}
} else {
// This is not a valid svc code.
UNREACHABLE();
}
}
}
float Simulator::canonicalizeNaN(float value) {
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
// choices" of the ARM Reference Manual.
constexpr uint32_t kDefaultNaN = 0x7FC00000u;
if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
value = bit_cast<float>(kDefaultNaN);
}
return value;
}
Float32 Simulator::canonicalizeNaN(Float32 value) {
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
// choices" of the ARM Reference Manual.
constexpr Float32 kDefaultNaN = Float32::FromBits(0x7FC00000u);
return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
}
double Simulator::canonicalizeNaN(double value) {
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
// choices" of the ARM Reference Manual.
constexpr uint64_t kDefaultNaN = uint64_t{0x7FF8000000000000};
if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
value = bit_cast<double>(kDefaultNaN);
}
return value;
}
Float64 Simulator::canonicalizeNaN(Float64 value) {
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
// choices" of the ARM Reference Manual.
constexpr Float64 kDefaultNaN =
Float64::FromBits(uint64_t{0x7FF8000000000000});
return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
}
// Stop helper functions.
bool Simulator::isWatchedStop(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
return code < kNumOfWatchedStops;
}
bool Simulator::isEnabledStop(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
// Unwatched stops are always enabled.
return !isWatchedStop(code) ||
!(watched_stops_[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (!isEnabledStop(code)) {
watched_stops_[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
DCHECK(isWatchedStop(code));
if (isEnabledStop(code)) {
watched_stops_[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
DCHECK(isWatchedStop(code));
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
PrintF(
"Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n",
code);
watched_stops_[code].count = 0;
EnableStop(code);
} else {
watched_stops_[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
DCHECK_LE(code, kMaxStopCode);
if (!isWatchedStop(code)) {
PrintF("Stop not watched.");
} else {
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops_[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
state, count, watched_stops_[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
count);
}
}
}
}
// Handle execution based on instruction types.
// Instruction types 0 and 1 are both rolled into one function because they
// only differ in the handling of the shifter_operand.
void Simulator::DecodeType01(Instruction* instr) {
int type = instr->TypeValue();
if ((type == 0) && instr->IsSpecialType0()) {
// multiply instruction or extra loads and stores
if (instr->Bits(7, 4) == 9) {
if (instr->Bit(24) == 0) {
// Raw field decoding here. Multiply instructions have their Rd in
// funny places.
int rn = instr->RnValue();
int rm = instr->RmValue();
int rs = instr->RsValue();
int32_t rs_val = get_register(rs);
int32_t rm_val = get_register(rm);
if (instr->Bit(23) == 0) {
if (instr->Bit(21) == 0) {
// The MUL instruction description (A 4.1.33) refers to Rd as being
// the destination for the operation, but it confusingly uses the
// Rn field to encode it.
// Format(instr, "mul'cond's 'rn, 'rm, 'rs");
int rd = rn; // Remap the rn field to the Rd register.
int32_t alu_out = base::MulWithWraparound(rm_val, rs_val);
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
}
} else {
int rd = instr->RdValue();
int32_t acc_value = get_register(rd);
if (instr->Bit(22) == 0) {
// The MLA instruction description (A 4.1.28) refers to the order
// of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
// Rn field to encode the Rd register and the Rd field to encode
// the Rn register.
// Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
int32_t mul_out = base::MulWithWraparound(rm_val, rs_val);
int32_t result = base::AddWithWraparound(acc_value, mul_out);
set_register(rn, result);
} else {
// Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
int32_t mul_out = base::MulWithWraparound(rm_val, rs_val);
int32_t result = base::SubWithWraparound(acc_value, mul_out);
set_register(rn, result);
}
}
} else {
// The signed/long multiply instructions use the terms RdHi and RdLo
// when referring to the target registers. They are mapped to the Rn
// and Rd fields as follows:
// RdLo == Rd
// RdHi == Rn (This is confusingly stored in variable rd here
// because the mul instruction from above uses the
// Rn field to encode the Rd register. Good luck figuring
// this out without reading the ARM instruction manual
// at a very detailed level.)
// Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
int rd_hi = rn; // Remap the rn field to the RdHi register.
int rd_lo = instr->RdValue();
int32_t hi_res = 0;
int32_t lo_res = 0;
if (instr->Bit(22) == 1) {
int64_t left_op = static_cast<int32_t>(rm_val);
int64_t right_op = static_cast<int32_t>(rs_val);
uint64_t result = left_op * right_op;
hi_res = static_cast<int32_t>(result >> 32);
lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
} else {
// unsigned multiply
uint64_t left_op = static_cast<uint32_t>(rm_val);
uint64_t right_op = static_cast<uint32_t>(rs_val);
uint64_t result = left_op * right_op;
hi_res = static_cast<int32_t>(result >> 32);
lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
}
set_register(rd_lo, lo_res);
set_register(rd_hi, hi_res);
if (instr->HasS()) {
UNIMPLEMENTED();
}
}
} else {
if (instr->Bits(24, 23) == 3) {
if (instr->Bit(20) == 1) {
// ldrex
int rt = instr->RtValue();
int rn = instr->RnValue();
int32_t addr = get_register(rn);
switch (instr->Bits(22, 21)) {
case 0: {
// Format(instr, "ldrex'cond 'rt, ['rn]");
int value = ReadExW(addr);
set_register(rt, value);
break;
}
case 1: {
// Format(instr, "ldrexd'cond 'rt, ['rn]");
int* rn_data = ReadExDW(addr);
set_dw_register(rt, rn_data);
break;
}
case 2: {
// Format(instr, "ldrexb'cond 'rt, ['rn]");
uint8_t value = ReadExBU(addr);
set_register(rt, value);
break;
}
case 3: {
// Format(instr, "ldrexh'cond 'rt, ['rn]");
uint16_t value = ReadExHU(addr);
set_register(rt, value);
break;
}
default:
UNREACHABLE();
break;
}
} else {
// The instruction is documented as strex rd, rt, [rn], but the
// "rt" register is using the rm bits.
int rd = instr->RdValue();
int rt = instr->RmValue();
int rn = instr->RnValue();
DCHECK_NE(rd, rn);
DCHECK_NE(rd, rt);
int32_t addr = get_register(rn);
switch (instr->Bits(22, 21)) {
case 0: {
// Format(instr, "strex'cond 'rd, 'rm, ['rn]");
int value = get_register(rt);
int status = WriteExW(addr, value);
set_register(rd, status);
break;
}
case 1: {
// Format(instr, "strexd'cond 'rd, 'rm, ['rn]");
DCHECK_EQ(rt % 2, 0);
int32_t value1 = get_register(rt);
int32_t value2 = get_register(rt + 1);
int status = WriteExDW(addr, value1, value2);
set_register(rd, status);
break;
}
case 2: {
// Format(instr, "strexb'cond 'rd, 'rm, ['rn]");
uint8_t value = get_register(rt);
int status = WriteExB(addr, value);
set_register(rd, status);
break;
}
case 3: {
// Format(instr, "strexh'cond 'rd, 'rm, ['rn]");
uint16_t value = get_register(rt);
int status = WriteExH(addr, value);
set_register(rd, status);
break;
}
default:
UNREACHABLE();
break;
}
}
} else {
UNIMPLEMENTED(); // Not used by V8.
}
}
} else {
// extra load/store instructions
int rd = instr->RdValue();
int rn = instr->RnValue();
int32_t rn_val = get_register(rn);
int32_t addr = 0;
if (instr->Bit(22) == 0) {
int rm = instr->RmValue();
int32_t rm_val = get_register(rm);
switch (instr->PUField()) {
case da_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val = base::SubWithWraparound(rn_val, rm_val);
set_register(rn, rn_val);
break;
}
case ia_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val = base::AddWithWraparound(rn_val, rm_val);
set_register(rn, rn_val);
break;
}
case db_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
rn_val = base::SubWithWraparound(rn_val, rm_val);
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case ib_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
rn_val = base::AddWithWraparound(rn_val, rm_val);
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
} else {
int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
switch (instr->PUField()) {
case da_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val = base::SubWithWraparound(rn_val, imm_val);
set_register(rn, rn_val);
break;
}
case ia_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val = base::AddWithWraparound(rn_val, imm_val);
set_register(rn, rn_val);
break;
}
case db_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
rn_val = base::SubWithWraparound(rn_val, imm_val);
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case ib_x: {
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
rn_val = base::AddWithWraparound(rn_val, imm_val);
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
// The PU field is a 2-bit field.
UNREACHABLE();
break;
}
}
}
if (((instr->Bits(7, 4) & 0xD) == 0xD) && (instr->Bit(20) == 0)) {
DCHECK_EQ(rd % 2, 0);
if (instr->HasH()) {
// The strd instruction.
int32_t value1 = get_register(rd);
int32_t value2 = get_register(rd + 1);
WriteDW(addr, value1, value2);
} else {
// The ldrd instruction.
int* rn_data = ReadDW(addr);
set_dw_register(rd, rn_data);
}
} else if (instr->HasH()) {
if (instr->HasSign()) {
if (instr->HasL()) {
int16_t val = ReadH(addr);
set_register(rd, val);
} else {
int16_t val = get_register(rd);
WriteH(addr, val);
}
} else {
if (instr->HasL()) {
uint16_t val = ReadHU(addr);
set_register(rd, val);
} else {
uint16_t val = get_register(rd);
WriteH(addr, val);
}
}
} else {
// signed byte loads
DCHECK(instr->HasSign());
DCHECK(instr->HasL());
int8_t val = ReadB(addr);
set_register(rd, val);
}
return;
}
} else if ((type == 0) && instr->IsMiscType0()) {
if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) &&
(instr->Bits(15, 4) == 0xF00)) {
// MSR
int rm = instr->RmValue();
DCHECK_NE(pc, rm); // UNPREDICTABLE
SRegisterFieldMask sreg_and_mask =
instr->BitField(22, 22) | instr->BitField(19, 16);
SetSpecialRegister(sreg_and_mask, get_register(rm));
} else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) &&
(instr->Bits(11, 0) == 0)) {
// MRS
int rd = instr->RdValue();
DCHECK_NE(pc, rd); // UNPREDICTABLE
SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22));
set_register(rd, GetFromSpecialRegister(sreg));
} else if (instr->Bits(22, 21) == 1) {
int rm = instr->RmValue();
switch (instr->BitField(7, 4)) {
case BX:
set_pc(get_register(rm));
break;
case BLX: {
uint32_t old_pc = get_pc();
set_pc(get_register(rm));
set_register(lr, old_pc + kInstrSize);
break;
}
case BKPT:
PrintF("Simulator hit BKPT. ");
DebugAtNextPC();
break;
default:
UNIMPLEMENTED();
}
} else if (instr->Bits(22, 21) == 3) {
int rm = instr->RmValue();
int rd = instr->RdValue();
switch (instr->BitField(7, 4)) {
case CLZ: {
uint32_t bits = get_register(rm);
int leading_zeros = 0;
if (bits == 0) {
leading_zeros = 32;
} else {
while ((bits & 0x80000000u) == 0) {
bits <<= 1;
leading_zeros++;
}
}
set_register(rd, leading_zeros);
break;
}
default:
UNIMPLEMENTED();
}
} else {
PrintF("%08x\n", instr->InstructionBits());
UNIMPLEMENTED();
}
} else if ((type == 1) && instr->IsNopLikeType1()) {
if (instr->BitField(7, 0) == 0) {
// NOP.
} else if (instr->BitField(7, 0) == 20) {
// CSDB.
} else {
PrintF("%08x\n", instr->InstructionBits());
UNIMPLEMENTED();
}
} else {
int rd = instr->RdValue();
int rn = instr->RnValue();
int32_t rn_val = get_register(rn);
int32_t shifter_operand = 0;
bool shifter_carry_out = 0;
if (type == 0) {
shifter_operand = GetShiftRm(instr, &shifter_carry_out);
} else {
DCHECK_EQ(instr->TypeValue(), 1);
shifter_operand = GetImm(instr, &shifter_carry_out);
}
int32_t alu_out;
switch (instr->OpcodeField()) {
case AND: {
// Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "and'cond's 'rd, 'rn, 'imm");
alu_out = rn_val & shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case EOR: {
// Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "eor'cond's 'rd, 'rn, 'imm");
alu_out = rn_val ^ shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case SUB: {
// Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "sub'cond's 'rd, 'rn, 'imm");
alu_out = base::SubWithWraparound(rn_val, shifter_operand);
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
}
break;
}
case RSB: {
// Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
alu_out = base::SubWithWraparound(shifter_operand, rn_val);
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(shifter_operand, rn_val));
SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
}
break;
}
case ADD: {
// Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "add'cond's 'rd, 'rn, 'imm");
alu_out = base::AddWithWraparound(rn_val, shifter_operand);
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(CarryFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
}
break;
}
case ADC: {
// Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "adc'cond's 'rd, 'rn, 'imm");
alu_out = base::AddWithWraparound(
base::AddWithWraparound(rn_val, shifter_operand), GetCarry());
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
}
break;
}
case SBC: {
// Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
alu_out = base::SubWithWraparound(
base::SubWithWraparound(rn_val, shifter_operand),
(GetCarry() ? 0 : 1));
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry()));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
}
break;
}
case RSC: {
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
break;
}
case TST: {
if (instr->HasS()) {
// Format(instr, "tst'cond 'rn, 'shift_rm");
// Format(instr, "tst'cond 'rn, 'imm");
alu_out = rn_val & shifter_operand;
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
} else {
// Format(instr, "movw'cond 'rd, 'imm").
alu_out = instr->ImmedMovwMovtValue();
set_register(rd, alu_out);
}
break;
}
case TEQ: {
if (instr->HasS()) {
// Format(instr, "teq'cond 'rn, 'shift_rm");
// Format(instr, "teq'cond 'rn, 'imm");
alu_out = rn_val ^ shifter_operand;
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
} else {
// Other instructions matching this pattern are handled in the
// miscellaneous instructions part above.
UNREACHABLE();
}
break;
}
case CMP: {
if (instr->HasS()) {
// Format(instr, "cmp'cond 'rn, 'shift_rm");
// Format(instr, "cmp'cond 'rn, 'imm");
alu_out = base::SubWithWraparound(rn_val, shifter_operand);
SetNZFlags(alu_out);
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
} else {
// Format(instr, "movt'cond 'rd, 'imm").
alu_out =
(get_register(rd) & 0xFFFF) | (instr->ImmedMovwMovtValue() << 16);
set_register(rd, alu_out);
}
break;
}
case CMN: {
if (instr->HasS()) {
// Format(instr, "cmn'cond 'rn, 'shift_rm");
// Format(instr, "cmn'cond 'rn, 'imm");
alu_out = base::AddWithWraparound(rn_val, shifter_operand);
SetNZFlags(alu_out);
SetCFlag(CarryFrom(rn_val, shifter_operand));
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
} else {
// Other instructions matching this pattern are handled in the
// miscellaneous instructions part above.
UNREACHABLE();
}
break;
}
case ORR: {
// Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "orr'cond's 'rd, 'rn, 'imm");
alu_out = rn_val | shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case MOV: {
// Format(instr, "mov'cond's 'rd, 'shift_rm");
// Format(instr, "mov'cond's 'rd, 'imm");
alu_out = shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case BIC: {
// Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
// Format(instr, "bic'cond's 'rd, 'rn, 'imm");
alu_out = rn_val & ~shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
case MVN: {
// Format(instr, "mvn'cond's 'rd, 'shift_rm");
// Format(instr, "mvn'cond's 'rd, 'imm");
alu_out = ~shifter_operand;
set_register(rd, alu_out);
if (instr->HasS()) {
SetNZFlags(alu_out);
SetCFlag(shifter_carry_out);
}
break;
}
default: {
UNREACHABLE();
break;
}
}
}
}
void Simulator::DecodeType2(Instruction* instr) {
int rd = instr->RdValue();
int rn = instr->RnValue();
int32_t rn_val = get_register(rn);
int32_t im_val = instr->Offset12Value();
int32_t addr = 0;
switch (instr->PUField()) {
case da_x: {
// Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val -= im_val;
set_register(rn, rn_val);
break;
}
case ia_x: {
// Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
DCHECK(!instr->HasW());
addr = rn_val;
rn_val += im_val;
set_register(rn, rn_val);
break;
}
case db_x: {
// Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
rn_val -= im_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
case ib_x: {
// Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
rn_val += im_val;
addr = rn_val;
if (instr->HasW()) {
set_register(rn, rn_val);
}
break;
}
default: {
UNREACHABLE();
}
}
if (instr->HasB()) {
if (instr->HasL()) {
byte val = ReadBU(addr);
set_register(rd, val);
} else {
byte val = get_register(rd);
WriteB(addr, val);
}
} else {
if (instr->HasL()) {
set_register(rd, ReadW(addr));
} else {
WriteW(addr, get_register(rd));
}
}
}
void Simulator::DecodeType3(Instruction* instr) {
int rd = instr->RdValue();
int rn = instr->RnValue();
int32_t rn_val = get_register(rn);
bool shifter_carry_out = 0;
int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
int32_t addr = 0;
switch (instr->PUField()) {
case da_x: {
DCHECK(!instr->HasW());
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
UNIMPLEMENTED();
break;
}
case ia_x: {
if (instr->Bit(4) == 0) {
// Memop.
} else {
if (instr->Bit(5) == 0) {
switch (instr->Bits(22, 21)) {
case 0:
if (instr->Bit(20) == 0) {
if (instr->Bit(6) == 0) {
// Pkhbt.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = get_register(instr->RmValue());
int32_t shift = instr->Bits(11, 7);
rm_val <<= shift;
set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
} else {
// Pkhtb.
uint32_t rn_val = get_register(rn);
int32_t rm_val = get_register(instr->RmValue());
int32_t shift = instr->Bits(11, 7);
if (shift == 0) {
shift = 32;
}
rm_val >>= shift;
set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
}
} else {
UNIMPLEMENTED();
}
break;
case 1:
UNIMPLEMENTED();
break;
case 2:
UNIMPLEMENTED();
break;
case 3: {
// Usat.
int32_t sat_pos = instr->Bits(20, 16);
int32_t sat_val = (1 << sat_pos) - 1;
int32_t shift = instr->Bits(11, 7);
int32_t shift_type = instr->Bit(6);
int32_t rm_val = get_register(instr->RmValue());
if (shift_type == 0) { // LSL
rm_val <<= shift;
} else { // ASR
rm_val >>= shift;
}
// If saturation occurs, the Q flag should be set in the CPSR.
// There is no Q flag yet, and no instruction (MRS) to read the
// CPSR directly.
if (rm_val > sat_val) {
rm_val = sat_val;
} else if (rm_val < 0) {
rm_val = 0;
}
set_register(rd, rm_val);
break;
}
}
} else {
switch (instr->Bits(22, 21)) {
case 0:
UNIMPLEMENTED();
break;
case 1:
if (instr->Bits(9, 6) == 1) {
if (instr->Bit(20) == 0) {
if (instr->Bits(19, 16) == 0xF) {
// Sxtb.
int32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, static_cast<int8_t>(rm_val));
} else {
// Sxtab.
int32_t rn_val = get_register(rn);
int32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, rn_val + static_cast<int8_t>(rm_val));
}
} else {
if (instr->Bits(19, 16) == 0xF) {
// Sxth.
int32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, static_cast<int16_t>(rm_val));
} else {
// Sxtah.
int32_t rn_val = get_register(rn);
int32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, rn_val + static_cast<int16_t>(rm_val));
}
}
} else if (instr->Bits(27, 16) == 0x6BF &&
instr->Bits(11, 4) == 0xF3) {
// Rev.
uint32_t rm_val = get_register(instr->RmValue());
set_register(rd, ByteReverse(rm_val));
} else {
UNREACHABLE();
}
break;
case 2:
if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
if (instr->Bits(19, 16) == 0xF) {
// Uxtb16.
uint32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000));
} else {
UNIMPLEMENTED();
}
} else {
UNIMPLEMENTED();
}
break;
case 3:
if ((instr->Bits(9, 6) == 1)) {
if (instr->Bit(20) == 0) {
if (instr->Bits(19, 16) == 0xF) {
// Uxtb.
uint32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, (rm_val & 0xFF));
} else {
// Uxtab.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, rn_val + (rm_val & 0xFF));
}
} else {
if (instr->Bits(19, 16) == 0xF) {
// Uxth.
uint32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, (rm_val & 0xFFFF));
} else {
// Uxtah.
uint32_t rn_val = get_register(rn);
uint32_t rm_val = get_register(instr->RmValue());
int32_t rotate = instr->Bits(11, 10);
switch (rotate) {
case 0:
break;
case 1:
rm_val = (rm_val >> 8) | (rm_val << 24);
break;
case 2:
rm_val = (rm_val >> 16) | (rm_val << 16);
break;
case 3:
rm_val = (rm_val >> 24) | (rm_val << 8);
break;
}
set_register(rd, rn_val + (rm_val & 0xFFFF));
}
}
} else {
// PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001
if ((instr->Bits(20, 16) == 0x1F) &&
(instr->Bits(11, 4) == 0xF3)) {
// Rbit.
uint32_t rm_val = get_register(instr->RmValue());
set_register(rd, base::bits::ReverseBits(rm_val));
} else {
UNIMPLEMENTED();
}
}
break;
}
}
return;
}
break;
}
case db_x: {
if (instr->Bits(22, 20) == 0x5) {
if (instr->Bits(7, 4) == 0x1) {
int rm = instr->RmValue();
int32_t rm_val = get_register(rm);
int rs = instr->RsValue();
int32_t rs_val = get_register(rs);
if (instr->Bits(15, 12) == 0xF) {
// SMMUL (in V8 notation matching ARM ISA format)
// Format(instr, "smmul'cond 'rn, 'rm, 'rs");
rn_val = base::bits::SignedMulHigh32(rm_val, rs_val);
} else {
// SMMLA (in V8 notation matching ARM ISA format)
// Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd");
int rd = instr->RdValue();
int32_t rd_val = get_register(rd);
rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val);
}
set_register(rn, rn_val);
return;
}
}
if (instr->Bits(5, 4) == 0x1) {
if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
// (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs
// Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs);
int rm = instr->RmValue();
int32_t rm_val = get_register(rm);
int rs = instr->RsValue();
int32_t rs_val = get_register(rs);
int32_t ret_val = 0;
// udiv
if (instr->Bit(21) == 0x1) {
ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32(
bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val)));
} else {
ret_val = base::bits::SignedDiv32(rm_val, rs_val);
}
set_register(rn, ret_val);
return;
}
}
// Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
addr = rn_val - shifter_operand;
if (instr->HasW()) {
set_register(rn, addr);
}
break;
}
case ib_x: {
if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
uint32_t msbit = widthminus1 + lsbit;
if (msbit <= 31) {
if (instr->Bit(22)) {
// ubfx - unsigned bitfield extract.
uint32_t rm_val =
static_cast<uint32_t>(get_register(instr->RmValue()));
uint32_t extr_val = rm_val << (31 - msbit);
extr_val = extr_val >> (31 - widthminus1);
set_register(instr->RdValue(), extr_val);
} else {
// sbfx - signed bitfield extract.
int32_t rm_val = get_register(instr->RmValue());
int32_t extr_val = static_cast<uint32_t>(rm_val) << (31 - msbit);
extr_val = extr_val >> (31 - widthminus1);
set_register(instr->RdValue(), extr_val);
}
} else {
UNREACHABLE();
}
return;
} else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
if (msbit >= lsbit) {
// bfc or bfi - bitfield clear/insert.
uint32_t rd_val =
static_cast<uint32_t>(get_register(instr->RdValue()));
uint32_t bitcount = msbit - lsbit + 1;
uint32_t mask = 0xFFFFFFFFu >> (32 - bitcount);
rd_val &= ~(mask << lsbit);
if (instr->RmValue() != 15) {
// bfi - bitfield insert.
uint32_t rm_val =
static_cast<uint32_t>(get_register(instr->RmValue()));
rm_val &= mask;
rd_val |= rm_val << lsbit;
}
set_register(instr->RdValue(), rd_val);
} else {
UNREACHABLE();
}
return;
} else {
// Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
addr = base::AddWithWraparound(rn_val, shifter_operand);
if (instr->HasW()) {
set_register(rn, addr);
}
}
break;
}
default: {
UNREACHABLE();
}
}
if (instr->HasB()) {
if (instr->HasL()) {
uint8_t byte = ReadB(addr);
set_register(rd, byte);
} else {
uint8_t byte = get_register(rd);
WriteB(addr, byte);
}
} else {
if (instr->HasL()) {
set_register(rd, ReadW(addr));
} else {
WriteW(addr, get_register(rd));
}
}
}
void Simulator::DecodeType4(Instruction* instr) {
DCHECK_EQ(instr->Bit(22), 0); // only allowed to be set in privileged mode
if (instr->HasL()) {
// Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
HandleRList(instr, true);
} else {
// Format(instr, "stm'cond'pu 'rn'w, 'rlist");
HandleRList(instr, false);
}
}
void Simulator::DecodeType5(Instruction* instr) {
// Format(instr, "b'l'cond 'target");
int off =
static_cast<int>(static_cast<uint32_t>(instr->SImmed24Value()) << 2);
intptr_t pc_address = get_pc();
if (instr->HasLink()) {
set_register(lr, pc_address + kInstrSize);
}
int pc_reg = get_register(pc);
set_pc(pc_reg + off);
}
void Simulator::DecodeType6(Instruction* instr) {
DecodeType6CoprocessorIns(instr);
}
void Simulator::DecodeType7(Instruction* instr) {
if (instr->Bit(24) == 1) {
SoftwareInterrupt(instr);
} else {
switch (instr->CoprocessorValue()) {
case 10: // Fall through.
case 11:
DecodeTypeVFP(instr);
break;
case 15:
DecodeTypeCP15(instr);
break;
default:
UNIMPLEMENTED();
}
}
}
// void Simulator::DecodeTypeVFP(Instruction* instr)
// The Following ARMv7 VFPv instructions are currently supported.
// vmov :Sn = Rt
// vmov :Rt = Sn
// vcvt: Dd = Sm
// vcvt: Sd = Dm
// vcvt.f64.s32 Dd, Dd, #<fbits>
// Dd = vabs(Dm)
// Sd = vabs(Sm)
// Dd = vneg(Dm)
// Sd = vneg(Sm)
// Dd = vadd(Dn, Dm)
// Sd = vadd(Sn, Sm)
// Dd = vsub(Dn, Dm)
// Sd = vsub(Sn, Sm)
// Dd = vmul(Dn, Dm)
// Sd = vmul(Sn, Sm)
// Dd = vdiv(Dn, Dm)
// Sd = vdiv(Sn, Sm)
// vcmp(Dd, Dm)
// vcmp(Sd, Sm)
// Dd = vsqrt(Dm)
// Sd = vsqrt(Sm)
// vmrs
// vdup.size Qd, Rt.
void Simulator::DecodeTypeVFP(Instruction* instr) {
DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
DCHECK_EQ(instr->Bits(11, 9), 0x5);
// Obtain single precision register codes.
int m = instr->VFPMRegValue(kSinglePrecision);
int d = instr->VFPDRegValue(kSinglePrecision);
int n = instr->VFPNRegValue(kSinglePrecision);
// Obtain double precision register codes.
int vm = instr->VFPMRegValue(kDoublePrecision);
int vd = instr->VFPDRegValue(kDoublePrecision);
int vn = instr->VFPNRegValue(kDoublePrecision);
if (instr->Bit(4) == 0) {
if (instr->Opc1Value() == 0x7) {
// Other data processing instructions
if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
// vmov register to register.
if (instr->SzValue() == 0x1) {
uint32_t data[2];
get_d_register(vm, data);
set_d_register(vd, data);
} else {
set_s_register(d, get_s_register(m));
}
} else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
// vabs
if (instr->SzValue() == 0x1) {
Float64 dm = get_double_from_d_register(vm);
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
Float64 dd = Float64::FromBits(dm.get_bits() & ~kSignBit64);
dd = canonicalizeNaN(dd);
set_d_register_from_double(vd, dd);
} else {
Float32 sm = get_float_from_s_register(m);
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
Float32 sd = Float32::FromBits(sm.get_bits() & ~kSignBit32);
sd = canonicalizeNaN(sd);
set_s_register_from_float(d, sd);
}
} else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
// vneg
if (instr->SzValue() == 0x1) {
Float64 dm = get_double_from_d_register(vm);
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
Float64 dd = Float64::FromBits(dm.get_bits() ^ kSignBit64);
dd = canonicalizeNaN(dd);
set_d_register_from_double(vd, dd);
} else {
Float32 sm = get_float_from_s_register(m);
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
Float32 sd = Float32::FromBits(sm.get_bits() ^ kSignBit32);
sd = canonicalizeNaN(sd);
set_s_register_from_float(d, sd);
}
} else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
DecodeVCVTBetweenDoubleAndSingle(instr);
} else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
DecodeVCVTBetweenFloatingPointAndInteger(instr);
} else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
(instr->Bit(8) == 1)) {
// vcvt.f64.s32 Dd, Dd, #<fbits>
int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
int fixed_value = get_sinteger_from_s_register(vd * 2);
double divide = 1 << fraction_bits;
set_d_register_from_double(vd, fixed_value / divide);
} else if (((instr->Opc2Value() >> 1) == 0x6) &&
(instr->Opc3Value() & 0x1)) {
DecodeVCVTBetweenFloatingPointAndInteger(instr);
} else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
(instr->Opc3Value() & 0x1)) {
DecodeVCMP(instr);
} else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
// vsqrt
if (instr->SzValue() == 0x1) {
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = std::sqrt(dm_value);
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = std::sqrt(sm_value);
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else if (instr->Opc3Value() == 0x0) {
// vmov immediate.
if (instr->SzValue() == 0x1) {
set_d_register_from_double(vd, instr->DoubleImmedVmov());
} else {
// Cast double to float.
float value = instr->DoubleImmedVmov().get_scalar();
set_s_register_from_float(d, value);
}
} else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) {
// vrintz - truncate
if (instr->SzValue() == 0x1) {
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = trunc(dm_value);
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = truncf(sm_value);
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else {
UNREACHABLE(); // Not used by V8.
}
} else if (instr->Opc1Value() == 0x3) {
if (instr->Opc3Value() & 0x1) {
// vsub
if (instr->SzValue() == 0x1) {
double dn_value = get_double_from_d_register(vn).get_scalar();
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = dn_value - dm_value;
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sn_value = get_float_from_s_register(n).get_scalar();
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = sn_value - sm_value;
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else {
// vadd
if (instr->SzValue() == 0x1) {
double dn_value = get_double_from_d_register(vn).get_scalar();
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = dn_value + dm_value;
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sn_value = get_float_from_s_register(n).get_scalar();
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = sn_value + sm_value;
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
}
} else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
// vmul
if (instr->SzValue() == 0x1) {
double dn_value = get_double_from_d_register(vn).get_scalar();
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = dn_value * dm_value;
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sn_value = get_float_from_s_register(n).get_scalar();
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = sn_value * sm_value;
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else if ((instr->Opc1Value() == 0x0)) {
// vmla, vmls
const bool is_vmls = (instr->Opc3Value() & 0x1);
if (instr->SzValue() == 0x1) {
const double dd_val = get_double_from_d_register(vd).get_scalar();
const double dn_val = get_double_from_d_register(vn).get_scalar();
const double dm_val = get_double_from_d_register(vm).get_scalar();
// Note: we do the mul and add/sub in separate steps to avoid getting a
// result with too high precision.
const double res = dn_val * dm_val;
set_d_register_from_double(vd, res);
if (is_vmls) {
set_d_register_from_double(vd, canonicalizeNaN(dd_val - res));
} else {
set_d_register_from_double(vd, canonicalizeNaN(dd_val + res));
}
} else {
const float sd_val = get_float_from_s_register(d).get_scalar();
const float sn_val = get_float_from_s_register(n).get_scalar();
const float sm_val = get_float_from_s_register(m).get_scalar();
// Note: we do the mul and add/sub in separate steps to avoid getting a
// result with too high precision.
const float res = sn_val * sm_val;
set_s_register_from_float(d, res);
if (is_vmls) {
set_s_register_from_float(d, canonicalizeNaN(sd_val - res));
} else {
set_s_register_from_float(d, canonicalizeNaN(sd_val + res));
}
}
} else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
// vdiv
if (instr->SzValue() == 0x1) {
double dn_value = get_double_from_d_register(vn).get_scalar();
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = base::Divide(dn_value, dm_value);
div_zero_vfp_flag_ = (dm_value == 0);
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
float sn_value = get_float_from_s_register(n).get_scalar();
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = base::Divide(sn_value, sm_value);
div_zero_vfp_flag_ = (sm_value == 0);
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else {
UNIMPLEMENTED(); // Not used by V8.
}
} else {
if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) {
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) {
if (instr->Bit(23) == 0) {
// vmov (ARM core register to scalar)
int vd = instr->VFPNRegValue(kDoublePrecision);
int rt = instr->RtValue();
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
if ((opc1_opc2 & 0xB) == 0) {
// NeonS32/NeonU32
uint32_t data[2];
get_d_register(vd, data);
data[instr->Bit(21)] = get_register(rt);
set_d_register(vd, data);
} else {
uint64_t data;
get_d_register(vd, &data);
uint64_t rt_value = get_register(rt);
if ((opc1_opc2 & 0x8) != 0) {
// NeonS8 / NeonU8
int i = opc1_opc2 & 0x7;
int shift = i * kBitsPerByte;
const uint64_t mask = 0xFF;
data &= ~(mask << shift);
data |= (rt_value & mask) << shift;
set_d_register(vd, &data);
} else if ((opc1_opc2 & 0x1) != 0) {
// NeonS16 / NeonU16
int i = (opc1_opc2 >> 1) & 0x3;
int shift = i * kBitsPerByte * kShortSize;
const uint64_t mask = 0xFFFF;
data &= ~(mask << shift);
data |= (rt_value & mask) << shift;
set_d_register(vd, &data);
} else {
UNREACHABLE(); // Not used by V8.
}
}
} else {
// vdup.size Qd, Rt.
NeonSize size = Neon32;
if (instr->Bit(5) != 0)
size = Neon16;
else if (instr->Bit(22) != 0)
size = Neon8;
int vd = instr->VFPNRegValue(kSimd128Precision);
int rt = instr->RtValue();
uint32_t rt_value = get_register(rt);
uint32_t q_data[4];
switch (size) {
case Neon8: {
rt_value &= 0xFF;
uint8_t* dst = reinterpret_cast<uint8_t*>(q_data);
for (int i = 0; i < 16; i++) {
dst[i] = rt_value;
}
break;
}
case Neon16: {
// Perform pairwise op.
rt_value &= 0xFFFFu;
uint32_t rt_rt = (rt_value << 16) | (rt_value & 0xFFFFu);
for (int i = 0; i < 4; i++) {
q_data[i] = rt_rt;
}
break;
}
case Neon32: {
for (int i = 0; i < 4; i++) {
q_data[i] = rt_value;
}
break;
}
default:
UNREACHABLE();
break;
}
set_neon_register(vd, q_data);
}
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) {
// vmov (scalar to ARM core register)
int vn = instr->VFPNRegValue(kDoublePrecision);
int rt = instr->RtValue();
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
uint64_t data;
get_d_register(vn, &data);
if ((opc1_opc2 & 0xB) == 0) {
// NeonS32 / NeonU32
int32_t int_data[2];
memcpy(int_data, &data, sizeof(int_data));
set_register(rt, int_data[instr->Bit(21)]);
} else {
uint64_t data;
get_d_register(vn, &data);
bool u = instr->Bit(23) != 0;
if ((opc1_opc2 & 0x8) != 0) {
// NeonS8 / NeonU8
int i = opc1_opc2 & 0x7;
int shift = i * kBitsPerByte;
uint32_t scalar = (data >> shift) & 0xFFu;
if (!u && (scalar & 0x80) != 0) scalar |= 0xFFFFFF00;
set_register(rt, scalar);
} else if ((opc1_opc2 & 0x1) != 0) {
// NeonS16 / NeonU16
int i = (opc1_opc2 >> 1) & 0x3;
int shift = i * kBitsPerByte * kShortSize;
uint32_t scalar = (data >> shift) & 0xFFFFu;
if (!u && (scalar & 0x8000) != 0) scalar |= 0xFFFF0000;
set_register(rt, scalar);
} else {
UNREACHABLE(); // Not used by V8.
}
}
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) &&
(instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) {
// vmrs
uint32_t rt = instr->RtValue();
if (rt == 0xF) {
Copy_FPSCR_to_APSR();
} else {
// Emulate FPSCR from the Simulator flags.
uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) |
(c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) |
(FPSCR_default_NaN_mode_ << 25) |
(inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) |
(overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) |
(inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_);
set_register(rt, fpscr);
}
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) &&
(instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) {
// vmsr
uint32_t rt = instr->RtValue();
if (rt == pc) {
UNREACHABLE();
} else {
uint32_t rt_value = get_register(rt);
n_flag_FPSCR_ = (rt_value >> 31) & 1;
z_flag_FPSCR_ = (rt_value >> 30) & 1;
c_flag_FPSCR_ = (rt_value >> 29) & 1;
v_flag_FPSCR_ = (rt_value >> 28) & 1;
FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
inexact_vfp_flag_ = (rt_value >> 4) & 1;
underflow_vfp_flag_ = (rt_value >> 3) & 1;
overflow_vfp_flag_ = (rt_value >> 2) & 1;
div_zero_vfp_flag_ = (rt_value >> 1) & 1;
inv_op_vfp_flag_ = (rt_value >> 0) & 1;
FPSCR_rounding_mode_ =
static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask);
}
} else {
UNIMPLEMENTED(); // Not used by V8.
}
}
}
void Simulator::DecodeTypeCP15(Instruction* instr) {
DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
DCHECK_EQ(instr->CoprocessorValue(), 15);
if (instr->Bit(4) == 1) {
// mcr
int crn = instr->Bits(19, 16);
int crm = instr->Bits(3, 0);
int opc1 = instr->Bits(23, 21);
int opc2 = instr->Bits(7, 5);
if ((opc1 == 0) && (crn == 7)) {
// ARMv6 memory barrier operations.
// Details available in ARM DDI 0406C.b, B3-1750.
if (((crm == 10) && (opc2 == 5)) || // CP15DMB
((crm == 10) && (opc2 == 4)) || // CP15DSB
((crm == 5) && (opc2 == 4))) { // CP15ISB
// These are ignored by the simulator for now.
} else {
UNIMPLEMENTED();
}
}
} else {
UNIMPLEMENTED();
}
}
void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
Instruction* instr) {
DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
(instr->VAValue() == 0x0));
int t = instr->RtValue();
int n = instr->VFPNRegValue(kSinglePrecision);
bool to_arm_register = (instr->VLValue() == 0x1);
if (to_arm_register) {
int32_t int_value = get_sinteger_from_s_register(n);
set_register(t, int_value);
} else {
int32_t rs_val = get_register(t);
set_s_register_from_sinteger(n, rs_val);
}
}
void Simulator::DecodeVCMP(Instruction* instr) {
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
(instr->Opc3Value() & 0x1));
// Comparison.
VFPRegPrecision precision = kSinglePrecision;
if (instr->SzValue() == 0x1) {
precision = kDoublePrecision;
}
int d = instr->VFPDRegValue(precision);
int m = 0;
if (instr->Opc2Value() == 0x4) {
m = instr->VFPMRegValue(precision);
}
if (precision == kDoublePrecision) {
double dd_value = get_double_from_d_register(d).get_scalar();
double dm_value = 0.0;
if (instr->Opc2Value() == 0x4) {
dm_value = get_double_from_d_register(m).get_scalar();
}
// Raise exceptions for quiet NaNs if necessary.
if (instr->Bit(7) == 1) {
if (std::isnan(dd_value)) {
inv_op_vfp_flag_ = true;
}
}
Compute_FPSCR_Flags(dd_value, dm_value);
} else {
float sd_value = get_float_from_s_register(d).get_scalar();
float sm_value = 0.0;
if (instr->Opc2Value() == 0x4) {
sm_value = get_float_from_s_register(m).get_scalar();
}
// Raise exceptions for quiet NaNs if necessary.
if (instr->Bit(7) == 1) {
if (std::isnan(sd_value)) {
inv_op_vfp_flag_ = true;
}
}
Compute_FPSCR_Flags(sd_value, sm_value);
}
}
void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
VFPRegPrecision dst_precision = kDoublePrecision;
VFPRegPrecision src_precision = kSinglePrecision;
if (instr->SzValue() == 1) {
dst_precision = kSinglePrecision;
src_precision = kDoublePrecision;
}
int dst = instr->VFPDRegValue(dst_precision);
int src = instr->VFPMRegValue(src_precision);
if (dst_precision == kSinglePrecision) {
double val = get_double_from_d_register(src).get_scalar();
set_s_register_from_float(dst, static_cast<float>(val));
} else {
float val = get_float_from_s_register(src).get_scalar();
set_d_register_from_double(dst, static_cast<double>(val));
}
}
bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, bool unsigned_) {
DCHECK((mode == RN) || (mode == RM) || (mode == RZ));
double max_uint = static_cast<double>(0xFFFFFFFFu);
double max_int = static_cast<double>(kMaxInt);
double min_int = static_cast<double>(kMinInt);
// Check for NaN.
if (val != val) {
return true;
}
// Check for overflow. This code works because 32bit integers can be
// exactly represented by ieee-754 64bit floating-point values.
switch (mode) {
case RN:
return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5)
: (val >= (max_int + 0.5)) || (val < (min_int - 0.5));
case RM:
return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0)
: (val >= (max_int + 1.0)) || (val < min_int);
case RZ:
return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1)
: (val >= (max_int + 1.0)) || (val <= (min_int - 1.0));
default:
UNREACHABLE();
}
}
// We call this function only if we had a vfp invalid exception.
// It returns the correct saturated value.
int VFPConversionSaturate(double val, bool unsigned_res) {
if (val != val) {
return 0;
} else {
if (unsigned_res) {
return (val < 0) ? 0 : 0xFFFFFFFFu;
} else {
return (val < 0) ? kMinInt : kMaxInt;
}
}
}
int32_t Simulator::ConvertDoubleToInt(double val, bool unsigned_integer,
VFPRoundingMode mode) {
int32_t result;
if (unsigned_integer) {
// The FastD2UI helper does not have the rounding behavior we want here
// (it doesn't guarantee any particular rounding, and it doesn't check
// for or handle overflow), so do the conversion by hand.
using limits = std::numeric_limits<uint32_t>;
if (val > limits::max()) {
result = limits::max();
} else if (!(val >= 0)) { // Negation to catch NaNs.
result = 0;
} else {
result = static_cast<uint32_t>(val);
}
} else {
result = FastD2IChecked(val);
}
inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
double abs_diff = unsigned_integer
? std::fabs(val - static_cast<uint32_t>(result))
: std::fabs(val - result);
inexact_vfp_flag_ = (abs_diff != 0);
if (inv_op_vfp_flag_) {
result = VFPConversionSaturate(val, unsigned_integer);
} else {
switch (mode) {
case RN: {
int val_sign = (val > 0) ? 1 : -1;
if (abs_diff > 0.5) {
result += val_sign;
} else if (abs_diff == 0.5) {
// Round to even if exactly halfway.
result = ((result % 2) == 0)
? result
: base::AddWithWraparound(result, val_sign);
}
break;
}
case RM:
result = result > val ? result - 1 : result;
break;
case RZ:
// Nothing to do.
break;
default:
UNREACHABLE();
}
}
return result;
}
void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
(instr->Bits(27, 23) == 0x1D));
DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
(((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
// Conversion between floating-point and integer.
bool to_integer = (instr->Bit(18) == 1);
VFPRegPrecision src_precision =
(instr->SzValue() == 1) ? kDoublePrecision : kSinglePrecision;
if (to_integer) {
// We are playing with code close to the C++ standard's limits below,
// hence the very simple code and heavy checks.
//
// Note:
// C++ defines default type casting from floating point to integer as
// (close to) rounding toward zero ("fractional part discarded").
int dst = instr->VFPDRegValue(kSinglePrecision);
int src = instr->VFPMRegValue(src_precision);
// Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
// mode or the default Round to Zero mode.
VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ : RZ;
DCHECK((mode == RM) || (mode == RZ) || (mode == RN));
bool unsigned_integer = (instr->Bit(16) == 0);
bool double_precision = (src_precision == kDoublePrecision);
double val = double_precision ? get_double_from_d_register(src).get_scalar()
: get_float_from_s_register(src).get_scalar();
int32_t temp = ConvertDoubleToInt(val, unsigned_integer, mode);
// Update the destination register.
set_s_register_from_sinteger(dst, temp);
} else {
bool unsigned_integer = (instr->Bit(7) == 0);
int dst = instr->VFPDRegValue(src_precision);
int src = instr->VFPMRegValue(kSinglePrecision);
int val = get_sinteger_from_s_register(src);
if (src_precision == kDoublePrecision) {
if (unsigned_integer) {
set_d_register_from_double(
dst, static_cast<double>(static_cast<uint32_t>(val)));
} else {
set_d_register_from_double(dst, static_cast<double>(val));
}
} else {
if (unsigned_integer) {
set_s_register_from_float(
dst, static_cast<float>(static_cast<uint32_t>(val)));
} else {
set_s_register_from_float(dst, static_cast<float>(val));
}
}
}
}
// void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
// Decode Type 6 coprocessor instructions.
// Dm = vmov(Rt, Rt2)
// <Rt, Rt2> = vmov(Dm)
// Ddst = MEM(Rbase + 4*offset).
// MEM(Rbase + 4*offset) = Dsrc.
void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
DCHECK_EQ(instr->TypeValue(), 6);
if (instr->CoprocessorValue() == 0xA) {
switch (instr->OpcodeValue()) {
case 0x8:
case 0xA:
case 0xC:
case 0xE: { // Load and store single precision float to memory.
int rn = instr->RnValue();
int vd = instr->VFPDRegValue(kSinglePrecision);
int offset = instr->Immed8Value();
if (!instr->HasU()) {
offset = -offset;
}
int32_t address = get_register(rn) + 4 * offset;
// Load and store address for singles must be at least four-byte
// aligned.
DCHECK_EQ(address % 4, 0);
if (instr->HasL()) {
// Load single from memory: vldr.
set_s_register_from_sinteger(vd, ReadW(address));
} else {
// Store single to memory: vstr.
WriteW(address, get_sinteger_from_s_register(vd));
}
break;
}
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x9:
case 0xB:
// Load/store multiple single from memory: vldm/vstm.
HandleVList(instr);
break;
default:
UNIMPLEMENTED(); // Not used by V8.
}
} else if (instr->CoprocessorValue() == 0xB) {
switch (instr->OpcodeValue()) {
case 0x2:
// Load and store double to two GP registers
if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
UNIMPLEMENTED(); // Not used by V8.
} else {
int rt = instr->RtValue();
int rn = instr->RnValue();
int vm = instr->VFPMRegValue(kDoublePrecision);
if (instr->HasL()) {
uint32_t data[2];
get_d_register(vm, data);
set_register(rt, data[0]);
set_register(rn, data[1]);
} else {
int32_t data[] = {get_register(rt), get_register(rn)};
set_d_register(vm, reinterpret_cast<uint32_t*>(data));
}
}
break;
case 0x8:
case 0xA:
case 0xC:
case 0xE: { // Load and store double to memory.
int rn = instr->RnValue();
int vd = instr->VFPDRegValue(kDoublePrecision);
int offset = instr->Immed8Value();
if (!instr->HasU()) {
offset = -offset;
}
int32_t address = get_register(rn) + 4 * offset;
// Load and store address for doubles must be at least four-byte
// aligned.
DCHECK_EQ(address % 4, 0);
if (instr->HasL()) {
// Load double from memory: vldr.
int32_t data[] = {ReadW(address), ReadW(address + 4)};
set_d_register(vd, reinterpret_cast<uint32_t*>(data));
} else {
// Store double to memory: vstr.
uint32_t data[2];
get_d_register(vd, data);
WriteW(address, data[0]);
WriteW(address + 4, data[1]);
}
break;
}
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x9:
case 0xB:
// Load/store multiple double from memory: vldm/vstm.
HandleVList(instr);
break;
default:
UNIMPLEMENTED(); // Not used by V8.
}
} else {
UNIMPLEMENTED(); // Not used by V8.
}
}
// Helper functions for implementing NEON ops. Unop applies a unary op to each
// lane. Binop applies a binary operation to matching input lanes.
template <typename T>
void Unop(Simulator* simulator, int Vd, int Vm, std::function<T(T)> unop) {
static const int kLanes = 16 / sizeof(T);
T src[kLanes];
simulator->get_neon_register(Vm, src);
for (int i = 0; i < kLanes; i++) {
src[i] = unop(src[i]);
}
simulator->set_neon_register(Vd, src);
}
template <typename T>
void Binop(Simulator* simulator, int Vd, int Vm, int Vn,
std::function<T(T, T)> binop) {
static const int kLanes = 16 / sizeof(T);
T src1[kLanes], src2[kLanes];
simulator->get_neon_register(Vn, src1);
simulator->get_neon_register(Vm, src2);
for (int i = 0; i < kLanes; i++) {
src1[i] = binop(src1[i], src2[i]);
}
simulator->set_neon_register(Vd, src1);
}
// Templated operations for NEON instructions.
template <typename T, typename U>
U Widen(T value) {
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
static_assert(sizeof(U) > sizeof(T), "T must smaller than U");
return static_cast<U>(value);
}
template <typename T, typename U>
U Narrow(T value) {
static_assert(sizeof(int8_t) < sizeof(T), "T must be int16_t or larger");
static_assert(sizeof(U) < sizeof(T), "T must larger than U");
static_assert(std::is_unsigned<T>() == std::is_unsigned<U>(),
"Signed-ness of T and U must match");
// Make sure value can be expressed in the smaller type; otherwise, the
// casted result is implementation defined.
DCHECK_LE(std::numeric_limits<T>::min(), value);
DCHECK_GE(std::numeric_limits<T>::max(), value);
return static_cast<U>(value);
}
template <typename T, typename U>
void Widen(Simulator* simulator, int Vd, int Vm) {
static const int kLanes = 8 / sizeof(T);
T src[kLanes];
U dst[kLanes];
simulator->get_neon_register<T, kDoubleSize>(Vm, src);
for (int i = 0; i < kLanes; i++) {
dst[i] = Widen<T, U>(src[i]);
}
simulator->set_neon_register(Vd, dst);
}
template <typename T, int SIZE>
void Abs(Simulator* simulator, int Vd, int Vm) {
Unop<T>(simulator, Vd, Vm, [](T x) { return std::abs(x); });
}
template <typename T, int SIZE>
void Neg(Simulator* simulator, int Vd, int Vm) {
Unop<T>(simulator, Vd, Vm, [](T x) {
// The respective minimum (negative) value maps to itself.
return x == std::numeric_limits<T>::min() ? x : -x;
});
}
template <typename T, typename U>
void SaturatingNarrow(Simulator* simulator, int Vd, int Vm) {
static const int kLanes = 16 / sizeof(T);
T src[kLanes];
U dst[kLanes];
simulator->get_neon_register(Vm, src);
for (int i = 0; i < kLanes; i++) {
dst[i] = Narrow<T, U>(Saturate<U>(src[i]));
}
simulator->set_neon_register<U, kDoubleSize>(Vd, dst);
}
template <typename T, typename U>
void SaturatingUnsignedNarrow(Simulator* simulator, int Vd, int Vm) {
static const int kLanes = 16 / sizeof(T);
T src[kLanes];
U dst[kLanes];
simulator->get_neon_register(Vm, src);
for (int i = 0; i < kLanes; i++) {
dst[i] = Saturate<U>(src[i]);
}
simulator->set_neon_register<U, kDoubleSize>(Vd, dst);
}
template <typename T>
void AddSat(Simulator* simulator, int Vd, int Vm, int Vn) {
Binop<T>(simulator, Vd, Vm, Vn, SaturateAdd<T>);
}
template <typename T>
void SubSat(Simulator* simulator, int Vd, int Vm, int Vn) {
Binop<T>(simulator, Vd, Vm, Vn, SaturateSub<T>);
}
template <typename T, int SIZE>
void Zip(Simulator* simulator, int Vd, int Vm) {
static const int kElems = SIZE / sizeof(T);
static const int kPairs = kElems / 2;
T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
simulator->get_neon_register<T, SIZE>(Vd, src1);
simulator->get_neon_register<T, SIZE>(Vm, src2);
for (int i = 0; i < kPairs; i++) {
dst1[i * 2] = src1[i];
dst1[i * 2 + 1] = src2[i];
dst2[i * 2] = src1[i + kPairs];
dst2[i * 2 + 1] = src2[i + kPairs];
}
simulator->set_neon_register<T, SIZE>(Vd, dst1);
simulator->set_neon_register<T, SIZE>(Vm, dst2);
}
template <typename T, int SIZE>
void Unzip(Simulator* simulator, int Vd, int Vm) {
static const int kElems = SIZE / sizeof(T);
static const int kPairs = kElems / 2;
T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
simulator->get_neon_register<T, SIZE>(Vd, src1);
simulator->get_neon_register<T, SIZE>(Vm, src2);
for (int i = 0; i < kPairs; i++) {
dst1[i] = src1[i * 2];
dst1[i + kPairs] = src2[i * 2];
dst2[i] = src1[i * 2 + 1];
dst2[i + kPairs] = src2[i * 2 + 1];
}
simulator->set_neon_register<T, SIZE>(Vd, dst1);
simulator->set_neon_register<T, SIZE>(Vm, dst2);
}
template <typename T, int SIZE>
void Transpose(Simulator* simulator, int Vd, int Vm) {
static const int kElems = SIZE / sizeof(T);
static const int kPairs = kElems / 2;
T src1[kElems], src2[kElems];
simulator->get_neon_register<T, SIZE>(Vd, src1);
simulator->get_neon_register<T, SIZE>(Vm, src2);
for (int i = 0; i < kPairs; i++) {
std::swap(src1[2 * i + 1], src2[2 * i]);
}
simulator->set_neon_register<T, SIZE>(Vd, src1);
simulator->set_neon_register<T, SIZE>(Vm, src2);
}
template <typename T, int SIZE>
void Test(Simulator* simulator, int Vd, int Vm, int Vn) {
auto test = [](T x, T y) { return (x & y) ? -1 : 0; };
Binop<T>(simulator, Vd, Vm, Vn, test);
}
template <typename T, int SIZE>
void Add(Simulator* simulator, int Vd, int Vm, int Vn) {
Binop<T>(simulator, Vd, Vm, Vn, std::plus<T>());
}
template <typename T, int SIZE>
void Sub(Simulator* simulator, int Vd, int Vm, int Vn) {
Binop<T>(simulator, Vd, Vm, Vn, std::minus<T>());
}
namespace {
uint32_t Multiply(uint32_t a, uint32_t b) { return a * b; }
uint8_t Multiply(uint8_t a, uint8_t b) { return a * b; }
// 16-bit integers are special due to C++'s implicit conversion rules.
// See https://bugs.llvm.org/show_bug.cgi?id=25580.
uint16_t Multiply(uint16_t a, uint16_t b) {
uint32_t result = static_cast<uint32_t>(a) * static_cast<uint32_t>(b);
return static_cast<uint16_t>(result);
}
void VmovImmediate(Simulator* simulator, Instruction* instr) {
byte cmode = instr->Bits(11, 8);
int vd = instr->VFPDRegValue(kDoublePrecision);
int q = instr->Bit(6);
int regs = q ? 2 : 1;
uint8_t imm = instr->Bit(24) << 7; // i
imm |= instr->Bits(18, 16) << 4; // imm3
imm |= instr->Bits(3, 0); // imm4
switch (cmode) {
case 0: {
// Set the LSB of each 64-bit halves.
uint64_t imm64 = imm;
for (int r = 0; r < regs; r++) {
simulator->set_d_register(vd + r, &imm64);
}
break;
}
case 0xe: {
uint8_t imms[kSimd128Size];
// Set all bytes of register.
std::fill_n(imms, kSimd128Size, imm);
uint64_t imm64;
memcpy(&imm64, imms, 8);
for (int r = 0; r < regs; r++) {
simulator->set_d_register(vd + r, &imm64);
}
break;
}
default: {
UNIMPLEMENTED();
}
}
}
} // namespace
template <typename T, int SIZE>
void Mul(Simulator* simulator, int Vd, int Vm, int Vn) {
static const int kElems = SIZE / sizeof(T);
T src1[kElems], src2[kElems];
simulator->get_neon_register<T, SIZE>(Vn, src1);
simulator->get_neon_register<T, SIZE>(Vm, src2);
for (int i = 0; i < kElems; i++) {
src1[i] = Multiply(src1[i], src2[i]);
}
simulator->set_neon_register<T, SIZE>(Vd, src1);
}
template <typename T, int SIZE>
void ShiftLeft(Simulator* simulator, int Vd, int Vm, int shift) {
Unop<T>(simulator, Vd, Vm, [shift](T x) { return x << shift; });
}
template <typename T, int SIZE>
void ShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
Unop<T>(simulator, Vd, Vm, [shift](T x) { return x >> shift; });
}
template <typename T, int SIZE>
void ArithmeticShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
auto shift_fn =
std::bind(ArithmeticShiftRight<T>, std::placeholders::_1, shift);
Unop<T>(simulator, Vd, Vm, shift_fn);
}
template <typename T, int SIZE>
void ShiftLeftAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
static const int kElems = SIZE / sizeof(T);
T src[kElems];
T dst[kElems];
simulator->get_neon_register<T, SIZE>(Vm, src);
simulator->get_neon_register<T, SIZE>(Vd, dst);
uint64_t mask = (1llu << shift) - 1llu;
for (int i = 0; i < kElems; i++) {
dst[i] = (src[i] << shift) | (dst[i] & mask);
}
simulator->set_neon_register<T, SIZE>(Vd, dst);
}
template <typename T, int SIZE>
void ShiftRightAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
static const int kElems = SIZE / sizeof(T);
T src[kElems];
T dst[kElems];
simulator->get_neon_register<T, SIZE>(Vm, src);
simulator->get_neon_register<T, SIZE>(Vd, dst);
uint64_t mask = ~((1llu << (kBitsPerByte * SIZE - shift)) - 1llu);
for (int i = 0; i < kElems; i++) {
dst[i] = (src[i] >> shift) | (dst[i] & mask);
}
simulator->set_neon_register<T, SIZE>(Vd, dst);
}
template <typename T, typename S_T, int SIZE>
void ShiftByRegister(Simulator* simulator, int Vd, int Vm, int Vn) {
static const int kElems = SIZE / sizeof(T);
T src[kElems];
S_T shift[kElems];
simulator->get_neon_register<T, SIZE>(Vm, src);
simulator->get_neon_register<S_T, SIZE>(Vn, shift);
for (int i = 0; i < kElems; i++) {
// Take lowest 8 bits of shift value (see F6.1.217 of ARM Architecture
// Reference Manual ARMv8), as signed 8-bit value.
int8_t shift_value = static_cast<int8_t>(shift[i]);
int size = static_cast<int>(sizeof(T) * 8);
// When shift value is greater/equal than size, we end up relying on
// undefined behavior, handle that and emulate what the hardware does.
if ((shift_value) >= 0) {
// If the shift value is greater/equal than size, zero out the result.
if (shift_value >= size) {
src[i] = 0;
} else {
using unsignedT = typename std::make_unsigned<T>::type;
src[i] = static_cast<unsignedT>(src[i]) << shift_value;
}
} else {
// If the shift value is greater/equal than size, always end up with -1.
if (-shift_value >= size) {
src[i] = -1;
} else {
src[i] = ArithmeticShiftRight(src[i], -shift_value);
}
}
}
simulator->set_neon_register<T, SIZE>(Vd, src);
}
template <typename T, int SIZE>
void CompareEqual(Simulator* simulator, int Vd, int Vm, int Vn) {
Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x == y ? -1 : 0; });
}
template <typename T, int SIZE>
void CompareGreater(Simulator* simulator, int Vd, int Vm, int Vn, bool ge) {
if (ge) {
Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x >= y ? -1 : 0; });
} else {
Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x > y ? -1 : 0; });
}
}
float MinMax(float a, float b, bool is_min) {
return is_min ? JSMin(a, b) : JSMax(a, b);
}
template <typename T>
T MinMax(T a, T b, bool is_min) {
return is_min ? std::min(a, b) : std::max(a, b);
}
template <typename T, int SIZE>
void MinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
if (min) {
Binop<T>(simulator, Vd, Vm, Vn,
[](auto x, auto y) { return std::min<T>(x, y); });
} else {
Binop<T>(simulator, Vd, Vm, Vn,
[](auto x, auto y) { return std::max<T>(x, y); });
}
}
template <typename T>
void PairwiseMinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
static const int kElems = kDoubleSize / sizeof(T);
static const int kPairs = kElems / 2;
T dst[kElems], src1[kElems], src2[kElems];
simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
for (int i = 0; i < kPairs; i++) {
dst[i] = MinMax(src1[i * 2], src1[i * 2 + 1], min);
dst[i + kPairs] = MinMax(src2[i * 2], src2[i * 2 + 1], min);
}
simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
}
template <typename T>
void PairwiseAdd(Simulator* simulator, int Vd, int Vm, int Vn) {
static const int kElems = kDoubleSize / sizeof(T);
static const int kPairs = kElems / 2;
T dst[kElems], src1[kElems], src2[kElems];
simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
for (int i = 0; i < kPairs; i++) {
dst[i] = src1[i * 2] + src1[i * 2 + 1];
dst[i + kPairs] = src2[i * 2] + src2[i * 2 + 1];
}
simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
}
template <typename T, int SIZE = kSimd128Size>
void RoundingAverageUnsigned(Simulator* simulator, int Vd, int Vm, int Vn) {
static_assert(std::is_unsigned<T>::value,
"Implemented only for unsigned types.");
Binop<T>(simulator, Vd, Vm, Vn, base::RoundingAverageUnsigned<T>);
}
template <typename NarrowType, typename WideType>
void MultiplyLong(Simulator* simulator, int Vd, int Vn, int Vm) {
DCHECK_EQ(sizeof(WideType), 2 * sizeof(NarrowType));
static const int kElems = kSimd128Size / sizeof(WideType);
NarrowType src1[kElems], src2[kElems];
WideType dst[kElems];
// Get the entire d reg, then memcpy it to an array so we can address the
// underlying datatype easily.
uint64_t tmp;
simulator->get_d_register(Vn, &tmp);
memcpy(src1, &tmp, sizeof(tmp));
simulator->get_d_register(Vm, &tmp);
memcpy(src2, &tmp, sizeof(tmp));
for (int i = 0; i < kElems; i++) {
dst[i] = WideType{src1[i]} * WideType{src2[i]};
}
simulator->set_neon_register<WideType>(Vd, dst);
}
void Simulator::DecodeUnconditional(Instruction* instr) {
// This follows the decoding in F4.1.18 Unconditional instructions.
int op0 = instr->Bits(26, 25);
int op1 = instr->Bit(20);
// Four classes of decoding:
// - Miscellaneous (omitted, no instructions used in V8).
// - Advanced SIMD data-processing.
// - Memory hints and barriers.
// - Advanced SIMD element or structure load/store.
if (op0 == 0b01) {
DecodeAdvancedSIMDDataProcessing(instr);
} else if ((op0 & 0b10) == 0b10 && op1) {
DecodeMemoryHintsAndBarriers(instr);
} else if (op0 == 0b10 && !op1) {
DecodeAdvancedSIMDElementOrStructureLoadStore(instr);
} else {
UNIMPLEMENTED();
}
}
void Simulator::DecodeAdvancedSIMDTwoOrThreeRegisters(Instruction* instr) {
// Advanced SIMD two registers, or three registers of different lengths.
int op0 = instr->Bit(24);
int op1 = instr->Bits(21, 20);
int op2 = instr->Bits(11, 10);
int op3 = instr->Bit(6);
if (!op0 && op1 == 0b11) {
// vext.8 Qd, Qm, Qn, imm4
int imm4 = instr->Bits(11, 8);
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
int Vn = instr->VFPNRegValue(kSimd128Precision);
uint8_t src1[16], src2[16], dst[16];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
int boundary = kSimd128Size - imm4;
int i = 0;
for (; i < boundary; i++) {
dst[i] = src1[i + imm4];
}
for (; i < 16; i++) {
dst[i] = src2[i - boundary];
}
set_neon_register(Vd, dst);
} else if (op0 && op1 == 0b11 && ((op2 >> 1) == 0)) {
// Advanced SIMD two registers misc
int size = instr->Bits(19, 18);
int opc1 = instr->Bits(17, 16);
int opc2 = instr->Bits(10, 7);
int q = instr->Bit(6);
if (opc1 == 0 && (opc2 >> 2) == 0) {
// vrev<op>.size Qd, Qm
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
NeonSize op =
static_cast<NeonSize>(static_cast<int>(Neon64) - instr->Bits(8, 7));
switch (op) {
case Neon16: {
DCHECK_EQ(Neon8, size);
uint8_t src[16];
get_neon_register(Vm, src);
for (int i = 0; i < 16; i += 2) {
std::swap(src[i], src[i + 1]);
}
set_neon_register(Vd, src);
break;
}
case Neon32: {
switch (size) {
case Neon16: {
uint16_t src[8];
get_neon_register(Vm, src);
for (int i = 0; i < 8; i += 2) {
std::swap(src[i], src[i + 1]);
}
set_neon_register(Vd, src);
break;
}
case Neon8: {
uint8_t src[16];
get_neon_register(Vm, src);
for (int i = 0; i < 4; i++) {
std::swap(src[i * 4], src[i * 4 + 3]);
std::swap(src[i * 4 + 1], src[i * 4 + 2]);
}
set_neon_register(Vd, src);
break;
}
default:
UNREACHABLE();
break;
}
break;
}
case Neon64: {
switch (size) {
case Neon32: {
uint32_t src[4];
get_neon_register(Vm, src);
std::swap(src[0], src[1]);
std::swap(src[2], src[3]);
set_neon_register(Vd, src);
break;
}
case Neon16: {
uint16_t src[8];
get_neon_register(Vm, src);
for (int i = 0; i < 2; i++) {
std::swap(src[i * 4], src[i * 4 + 3]);
std::swap(src[i * 4 + 1], src[i * 4 + 2]);
}
set_neon_register(Vd, src);
break;
}
case Neon8: {
uint8_t src[16];
get_neon_register(Vm, src);
for (int i = 0; i < 4; i++) {
std::swap(src[i], src[7 - i]);
std::swap(src[i + 8], src[15 - i]);
}
set_neon_register(Vd, src);
break;
}
default:
UNREACHABLE();
break;
}
break;
}
default:
UNREACHABLE();
break;
}
} else if (size == 0 && opc1 == 0b10 && opc2 == 0) {
if (instr->Bit(6) == 0) {
// vswp Dd, Dm.
uint64_t dval, mval;
int vd = instr->VFPDRegValue(kDoublePrecision);
int vm = instr->VFPMRegValue(kDoublePrecision);
get_d_register(vd, &dval);
get_d_register(vm, &mval);
set_d_register(vm, &dval);
set_d_register(vd, &mval);
} else {
// vswp Qd, Qm.
uint32_t dval[4], mval[4];
int vd = instr->VFPDRegValue(kSimd128Precision);
int vm = instr->VFPMRegValue(kSimd128Precision);
get_neon_register(vd, dval);
get_neon_register(vm, mval);
set_neon_register(vm, dval);
set_neon_register(vd, mval);
}
} else if (opc1 == 0 && opc2 == 0b1011) {
// vmvn Qd, Qm.
int vd = instr->VFPDRegValue(kSimd128Precision);
int vm = instr->VFPMRegValue(kSimd128Precision);
uint32_t q_data[4];
get_neon_register(vm, q_data);
for (int i = 0; i < 4; i++) q_data[i] = ~q_data[i];
set_neon_register(vd, q_data);
} else if (opc1 == 0b01 && (opc2 & 0b0111) == 0b110) {
// vabs<type>.<size> Qd, Qm
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
if (instr->Bit(10) != 0) {
// floating point (clear sign bits)
uint32_t src[4];
get_neon_register(Vm, src);
for (int i = 0; i < 4; i++) {
src[i] &= ~0x80000000;
}
set_neon_register(Vd, src);
} else {
// signed integer
switch (size) {
case Neon8:
Abs<int8_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon16:
Abs<int16_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon32:
Abs<int32_t, kSimd128Size>(this, Vd, Vm);
break;
default:
UNIMPLEMENTED();
break;
}
}
} else if (opc1 == 0b01 && (opc2 & 0b0111) == 0b111) {
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
// vneg<type>.<size> Qd, Qm (signed integer)
if (instr->Bit(10) != 0) {
// floating point (toggle sign bits)
uint32_t src[4];
get_neon_register(Vm, src);
for (int i = 0; i < 4; i++) {
src[i] ^= 0x80000000;
}
set_neon_register(Vd, src);
} else {
// signed integer
switch (size) {
case Neon8:
Neg<int8_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon16:
Neg<int16_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon32:
Neg<int32_t, kSimd128Size>(this, Vd, Vm);
break;
default:
UNIMPLEMENTED();
break;
}
}
} else if (opc1 == 0b10 && opc2 == 0b0001) {
if (q) {
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
// vtrn.<size> Qd, Qm.
switch (size) {
case Neon8:
Transpose<uint8_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon16:
Transpose<uint16_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon32:
Transpose<uint32_t, kSimd128Size>(this, Vd, Vm);
break;
default:
UNREACHABLE();
break;
}
} else {
int Vd = instr->VFPDRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
// vtrn.<size> Dd, Dm.
switch (size) {
case Neon8:
Transpose<uint8_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon16:
Transpose<uint16_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon32:
Transpose<uint32_t, kDoubleSize>(this, Vd, Vm);
break;
default:
UNREACHABLE();
break;
}
}
} else if (opc1 == 0b10 && (opc2 & 0b1110) == 0b0010) {
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
if (q) {
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
if (instr->Bit(7) == 1) {
// vzip.<size> Qd, Qm.
switch (size) {
case Neon8:
Zip<uint8_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon16:
Zip<uint16_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon32:
Zip<uint32_t, kSimd128Size>(this, Vd, Vm);
break;
default:
UNREACHABLE();
break;
}
} else {
// vuzp.<size> Qd, Qm.
switch (size) {
case Neon8:
Unzip<uint8_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon16:
Unzip<uint16_t, kSimd128Size>(this, Vd, Vm);
break;
case Neon32:
Unzip<uint32_t, kSimd128Size>(this, Vd, Vm);
break;
default:
UNREACHABLE();
break;
}
}
} else {
int Vd = instr->VFPDRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
if (instr->Bit(7) == 1) {
// vzip.<size> Dd, Dm.
switch (size) {
case Neon8:
Zip<uint8_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon16:
Zip<uint16_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon32:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
break;
}
} else {
// vuzp.<size> Dd, Dm.
switch (size) {
case Neon8:
Unzip<uint8_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon16:
Unzip<uint16_t, kDoubleSize>(this, Vd, Vm);
break;
case Neon32:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
break;
}
}
}
} else if (opc1 == 0b10 && (opc2 & 0b1110) == 0b0100) {
// vqmovn.<type><size> Dd, Qm.
int Vd = instr->VFPDRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
bool dst_unsigned = instr->Bit(6) != 0;
bool src_unsigned = instr->Bits(7, 6) == 0b11;
DCHECK_IMPLIES(src_unsigned, dst_unsigned);
switch (size) {
case Neon8: {
if (src_unsigned) {
SaturatingNarrow<uint16_t, uint8_t>(this, Vd, Vm);
} else if (dst_unsigned) {
SaturatingUnsignedNarrow<int16_t, uint8_t>(this, Vd, Vm);
} else {
SaturatingNarrow<int16_t, int8_t>(this, Vd, Vm);
}
break;
}
case Neon16: {
if (src_unsigned) {
SaturatingNarrow<uint32_t, uint16_t>(this, Vd, Vm);
} else if (dst_unsigned) {
SaturatingUnsignedNarrow<int32_t, uint16_t>(this, Vd, Vm);
} else {
SaturatingNarrow<int32_t, int16_t>(this, Vd, Vm);
}
break;
}
case Neon32: {
if (src_unsigned) {
SaturatingNarrow<uint64_t, uint32_t>(this, Vd, Vm);
} else if (dst_unsigned) {
SaturatingUnsignedNarrow<int64_t, uint32_t>(this, Vd, Vm);
} else {
SaturatingNarrow<int64_t, int32_t>(this, Vd, Vm);
}
break;
}
default:
UNIMPLEMENTED();
break;
}
} else if (opc1 == 0b10 && instr->Bit(10) == 1) {
// vrint<q>.<dt> <Dd>, <Dm>
// vrint<q>.<dt> <Qd>, <Qm>
// See F6.1.205
int regs = instr->Bit(6) + 1;
int rounding_mode = instr->Bits(9, 7);
float (*fproundint)(float) = nullptr;
switch (rounding_mode) {
case 0:
fproundint = &nearbyintf;
break;
case 3:
fproundint = &truncf;
break;
case 5:
fproundint = &floorf;
break;
case 7:
fproundint = &ceilf;
break;
default:
UNIMPLEMENTED();
}
int vm = instr->VFPMRegValue(kDoublePrecision);
int vd = instr->VFPDRegValue(kDoublePrecision);
float floats[2];
for (int r = 0; r < regs; r++) {
// We cannot simply use GetVFPSingleValue since our Q registers
// might not map to any S registers at all.
get_neon_register<float, kDoubleSize>(vm + r, floats);
for (int e = 0; e < 2; e++) {
floats[e] = canonicalizeNaN(fproundint(floats[e]));
}
set_neon_register<float, kDoubleSize>(vd + r, floats);
}
} else if (opc1 == 0b11 && (opc2 & 0b1100) == 0b1000) {
// vrecpe/vrsqrte.f32 Qd, Qm.
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
uint32_t src[4];
get_neon_register(Vm, src);
if (instr->Bit(7) == 0) {
for (int i = 0; i < 4; i++) {
float denom = bit_cast<float>(src[i]);
div_zero_vfp_flag_ = (denom == 0);
float result = 1.0f / denom;
result = canonicalizeNaN(result);
src[i] = bit_cast<uint32_t>(result);
}
} else {
for (int i = 0; i < 4; i++) {
float radicand = bit_cast<float>(src[i]);
float result = 1.0f / std::sqrt(radicand);
result = canonicalizeNaN(result);
src[i] = bit_cast<uint32_t>(result);
}
}
set_neon_register(Vd, src);
} else if (opc1 == 0b11 && (opc2 & 0b1100) == 0b1100) {
// vcvt.<Td>.<Tm> Qd, Qm.
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
uint32_t q_data[4];
get_neon_register(Vm, q_data);
int op = instr->Bits(8, 7);
for (int i = 0; i < 4; i++) {
switch (op) {
case 0:
// f32 <- s32, round towards nearest.
q_data[i] = bit_cast<uint32_t>(
std::round(static_cast<float>(bit_cast<int32_t>(q_data[i]))));
break;
case 1:
// f32 <- u32, round towards nearest.
q_data[i] =
bit_cast<uint32_t>(std::round(static_cast<float>(q_data[i])));
break;
case 2:
// s32 <- f32, round to zero.
q_data[i] = static_cast<uint32_t>(
ConvertDoubleToInt(bit_cast<float>(q_data[i]), false, RZ));
break;
case 3:
// u32 <- f32, round to zero.
q_data[i] = static_cast<uint32_t>(
ConvertDoubleToInt(bit_cast<float>(q_data[i]), true, RZ));
break;
}
}
set_neon_register(Vd, q_data);
}
} else if (op0 && op1 == 0b11 && op2 == 0b10) {
// vtb[l,x] Dd, <list>, Dm.
int vd = instr->VFPDRegValue(kDoublePrecision);
int vn = instr->VFPNRegValue(kDoublePrecision);
int vm = instr->VFPMRegValue(kDoublePrecision);
int table_len = (instr->Bits(9, 8) + 1) * kDoubleSize;
bool vtbx = instr->Bit(6) != 0; // vtbl / vtbx
uint64_t destination = 0, indices = 0, result = 0;
get_d_register(vd, &destination);
get_d_register(vm, &indices);
for (int i = 0; i < kDoubleSize; i++) {
int shift = i * kBitsPerByte;
int index = (indices >> shift) & 0xFF;
if (index < table_len) {
uint64_t table;
get_d_register(vn + index / kDoubleSize, &table);
result |= ((table >> ((index % kDoubleSize) * kBitsPerByte)) & 0xFF)
<< shift;
} else if (vtbx) {
result |= destination & (0xFFull << shift);
}
}
set_d_register(vd, &result);
} else if (op0 && op1 == 0b11 && op2 == 0b11) {
// Advanced SIMD duplicate (scalar)
if (instr->Bits(9, 7) == 0) {
// vdup.<size> Dd, Dm[index].
// vdup.<size> Qd, Dm[index].
int vm = instr->VFPMRegValue(kDoublePrecision);
int imm4 = instr->Bits(19, 16);
int size = 0, index = 0, mask = 0;
if ((imm4 & 0x1) != 0) {
size = 8;
index = imm4 >> 1;
mask = 0xFFu;
} else if ((imm4 & 0x2) != 0) {
size = 16;
index = imm4 >> 2;
mask = 0xFFFFu;
} else {
size = 32;
index = imm4 >> 3;
mask = 0xFFFFFFFFu;
}
uint64_t d_data;
get_d_register(vm, &d_data);
uint32_t scalar = (d_data >> (size * index)) & mask;
uint32_t duped = scalar;
for (int i = 1; i < 32 / size; i++) {
scalar <<= size;
duped |= scalar;
}
uint32_t result[4] = {duped, duped, duped, duped};
if (instr->Bit(6) == 0) {
int vd = instr->VFPDRegValue(kDoublePrecision);
set_d_register(vd, result);
} else {
int vd = instr->VFPDRegValue(kSimd128Precision);
set_neon_register(vd, result);
}
} else {
UNIMPLEMENTED();
}
} else if (op1 != 0b11 && !op3) {
// Advanced SIMD three registers of different lengths.
int u = instr->Bit(24);
int opc = instr->Bits(11, 8);
if (opc == 0b1000) {
// vmlal.u<size> Qd, Dn, Dm
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
if (size != Neon32) UNIMPLEMENTED();
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vn = instr->VFPNRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
uint64_t src1, src2, dst[2];
get_neon_register<uint64_t>(Vd, dst);
get_d_register(Vn, &src1);
get_d_register(Vm, &src2);
dst[0] += (src1 & 0xFFFFFFFFULL) * (src2 & 0xFFFFFFFFULL);
dst[1] += (src1 >> 32) * (src2 >> 32);
set_neon_register<uint64_t>(Vd, dst);
} else if (opc == 0b1100) {
if (u) {
// vmull.u<size> Qd, Dn, Dm
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vn = instr->VFPNRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
switch (size) {
case Neon32: {
MultiplyLong<uint32_t, uint64_t>(this, Vd, Vn, Vm);
break;
}
default:
UNIMPLEMENTED();
}
} else {
// vmull.s<size> Qd, Dn, Dm
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vn = instr->VFPNRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
switch (size) {
case Neon16: {
MultiplyLong<int16_t, int32_t>(this, Vd, Vn, Vm);
break;
}
default:
UNIMPLEMENTED();
}
}
}
} else if (op1 != 0b11 && op3) {
// The instructions specified by this encoding are not used in V8.
UNIMPLEMENTED();
} else {
UNIMPLEMENTED();
}
}
void Simulator::DecodeAdvancedSIMDDataProcessing(Instruction* instr) {
int op0 = instr->Bit(23);
int op1 = instr->Bit(4);
if (op0 == 0) {
// Advanced SIMD three registers of same length.
int u = instr->Bit(24);
int opc = instr->Bits(11, 8);
int q = instr->Bit(6);
int sz = instr->Bits(21, 20);
int Vd, Vm, Vn;
if (q) {
Vd = instr->VFPDRegValue(kSimd128Precision);
Vm = instr->VFPMRegValue(kSimd128Precision);
Vn = instr->VFPNRegValue(kSimd128Precision);
} else {
Vd = instr->VFPDRegValue(kDoublePrecision);
Vm = instr->VFPMRegValue(kDoublePrecision);
Vn = instr->VFPNRegValue(kDoublePrecision);
}
if (!u && opc == 0 && op1) {
// vqadd.s<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
AddSat<int8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
AddSat<int16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
AddSat<int32_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 1 && sz == 2 && q && op1) {
// vmov Qd, Qm.
// vorr, Qd, Qm, Qn.
uint32_t src1[4];
get_neon_register(Vm, src1);
if (Vm != Vn) {
uint32_t src2[4];
get_neon_register(Vn, src2);
for (int i = 0; i < 4; i++) {
src1[i] = src1[i] | src2[i];
}
}
set_neon_register(Vd, src1);
} else if (!u && opc == 1 && sz == 0 && q && op1) {
// vand Qd, Qm, Qn.
uint32_t src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) {
src1[i] = src1[i] & src2[i];
}
set_neon_register(Vd, src1);
} else if (!u && opc == 1 && sz == 1 && q && op1) {
// vbic Qd, Qm, Qn.
uint32_t src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) {
src1[i] = src1[i] & ~src2[i];
}
set_neon_register(Vd, src1);
} else if (!u && opc == 2 && op1) {
// vqsub.s<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
SubSat<int8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
SubSat<int16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
SubSat<int32_t>(this, Vd, Vm, Vn);
break;
case Neon64:
SubSat<int64_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 3) {
// vcge/vcgt.s<size> Qd, Qm, Qn.
bool ge = instr->Bit(4) == 1;
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
CompareGreater<int8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
case Neon16:
CompareGreater<int16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
case Neon32:
CompareGreater<int32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 4 && !op1) {
// vshl s<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
ShiftByRegister<int8_t, int8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
ShiftByRegister<int16_t, int16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
ShiftByRegister<int32_t, int32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon64:
ShiftByRegister<int64_t, int64_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 6) {
// vmin/vmax.s<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
bool min = instr->Bit(4) != 0;
switch (size) {
case Neon8:
MinMax<int8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
case Neon16:
MinMax<int16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
case Neon32:
MinMax<int32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 8 && op1) {
// vtst.i<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
Test<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
Test<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
Test<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 8 && !op1) {
// vadd.i<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
Add<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
Add<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
Add<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon64:
Add<uint64_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
}
} else if (opc == 9 && op1) {
// vmul.i<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
Mul<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
Mul<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
Mul<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 0xA) {
// vpmin/vpmax.s<size> Dd, Dm, Dn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
bool min = instr->Bit(4) != 0;
switch (size) {
case Neon8:
PairwiseMinMax<int8_t>(this, Vd, Vm, Vn, min);
break;
case Neon16:
PairwiseMinMax<int16_t>(this, Vd, Vm, Vn, min);
break;
case Neon32:
PairwiseMinMax<int32_t>(this, Vd, Vm, Vn, min);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 0xB) {
// vpadd.i<size> Dd, Dm, Dn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
PairwiseAdd<int8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
PairwiseAdd<int16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
PairwiseAdd<int32_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (!u && opc == 0xD && !op1) {
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) {
if (instr->Bit(21) == 0) {
// vadd.f32 Qd, Qm, Qn.
src1[i] = src1[i] + src2[i];
} else {
// vsub.f32 Qd, Qm, Qn.
src1[i] = src1[i] - src2[i];
}
}
set_neon_register(Vd, src1);
} else if (!u && opc == 0xE && !sz && !op1) {
// vceq.f32.
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
uint32_t dst[4];
for (int i = 0; i < 4; i++) {
dst[i] = (src1[i] == src2[i]) ? 0xFFFFFFFF : 0;
}
set_neon_register(Vd, dst);
} else if (!u && opc == 0xF && op1) {
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
if (instr->Bit(21) == 0) {
// vrecps.f32 Qd, Qm, Qn.
for (int i = 0; i < 4; i++) {
src1[i] = 2.0f - src1[i] * src2[i];
}
} else {
// vrsqrts.f32 Qd, Qm, Qn.
for (int i = 0; i < 4; i++) {
src1[i] = (3.0f - src1[i] * src2[i]) * 0.5f;
}
}
set_neon_register(Vd, src1);
} else if (!u && opc == 0xF && !op1) {
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
// vmin/vmax.f32 Qd, Qm, Qn.
bool min = instr->Bit(21) == 1;
bool saved = FPSCR_default_NaN_mode_;
FPSCR_default_NaN_mode_ = true;
for (int i = 0; i < 4; i++) {
// vmin returns default NaN if any input is NaN.
src1[i] = canonicalizeNaN(MinMax(src1[i], src2[i], min));
}
FPSCR_default_NaN_mode_ = saved;
set_neon_register(Vd, src1);
} else if (u && opc == 0 && op1) {
// vqadd.u<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
AddSat<uint8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
AddSat<uint16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
AddSat<uint32_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 1 && sz == 1 && op1) {
// vbsl.size Qd, Qm, Qn.
uint32_t dst[4], src1[4], src2[4];
get_neon_register(Vd, dst);
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) {
dst[i] = (dst[i] & src1[i]) | (~dst[i] & src2[i]);
}
set_neon_register(Vd, dst);
} else if (u && opc == 1 && sz == 0 && !q && op1) {
// veor Dd, Dn, Dm
uint64_t src1, src2;
get_d_register(Vn, &src1);
get_d_register(Vm, &src2);
src1 ^= src2;
set_d_register(Vd, &src1);
} else if (u && opc == 1 && sz == 0 && q && op1) {
// veor Qd, Qn, Qm
uint32_t src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) src1[i] ^= src2[i];
set_neon_register(Vd, src1);
} else if (u && opc == 1 && !op1) {
// vrhadd.u<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
RoundingAverageUnsigned<uint8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
RoundingAverageUnsigned<uint16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
RoundingAverageUnsigned<uint32_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 2 && op1) {
// vqsub.u<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
SubSat<uint8_t>(this, Vd, Vm, Vn);
break;
case Neon16:
SubSat<uint16_t>(this, Vd, Vm, Vn);
break;
case Neon32:
SubSat<uint32_t>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 3) {
// vcge/vcgt.u<size> Qd, Qm, Qn.
bool ge = instr->Bit(4) == 1;
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
CompareGreater<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
case Neon16:
CompareGreater<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
case Neon32:
CompareGreater<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 4 && !op1) {
// vshl u<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
ShiftByRegister<uint8_t, int8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
ShiftByRegister<uint16_t, int16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
ShiftByRegister<uint32_t, int32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon64:
ShiftByRegister<uint64_t, int64_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 6) {
// vmin/vmax.u<size> Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
bool min = instr->Bit(4) != 0;
switch (size) {
case Neon8:
MinMax<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
case Neon16:
MinMax<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
case Neon32:
MinMax<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 8 && !op1) {
// vsub.size Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
Sub<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
Sub<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
Sub<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon64:
Sub<uint64_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
}
} else if (u && opc == 8 && op1) {
// vceq.size Qd, Qm, Qn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
switch (size) {
case Neon8:
CompareEqual<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon16:
CompareEqual<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
case Neon32:
CompareEqual<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 0xA) {
// vpmin/vpmax.u<size> Dd, Dm, Dn.
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
bool min = instr->Bit(4) != 0;
switch (size) {
case Neon8:
PairwiseMinMax<uint8_t>(this, Vd, Vm, Vn, min);
break;
case Neon16:
PairwiseMinMax<uint16_t>(this, Vd, Vm, Vn, min);
break;
case Neon32:
PairwiseMinMax<uint32_t>(this, Vd, Vm, Vn, min);
break;
default:
UNREACHABLE();
break;
}
} else if (u && opc == 0xD && sz == 0 && q && op1) {
// vmul.f32 Qd, Qn, Qm
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
for (int i = 0; i < 4; i++) {
src1[i] = src1[i] * src2[i];
}
set_neon_register(Vd, src1);
} else if (u && opc == 0xD && sz == 0 && !q && !op1) {
// vpadd.f32 Dd, Dn, Dm
PairwiseAdd<float>(this, Vd, Vm, Vn);
} else if (u && opc == 0xE && !op1) {
// vcge/vcgt.f32 Qd, Qm, Qn
bool ge = instr->Bit(21) == 0;
float src1[4], src2[4];
get_neon_register(Vn, src1);
get_neon_register(Vm, src2);
uint32_t dst[4];
for (int i = 0; i < 4; i++) {
if (ge) {
dst[i] = src1[i] >= src2[i] ? 0xFFFFFFFFu : 0;
} else {
dst[i] = src1[i] > src2[i] ? 0xFFFFFFFFu : 0;
}
}
set_neon_register(Vd, dst);
} else {
UNIMPLEMENTED();
}
return;
} else if (op0 == 1 && op1 == 0) {
DecodeAdvancedSIMDTwoOrThreeRegisters(instr);
} else if (op0 == 1 && op1 == 1) {
// Advanced SIMD shifts and immediate generation.
if (instr->Bits(21, 19) == 0 && instr->Bit(7) == 0) {
VmovImmediate(this, instr);
} else {
// Advanced SIMD two registers and shift amount.
int u = instr->Bit(24);
int imm3H = instr->Bits(21, 19);
int imm3L = instr->Bits(18, 16);
int opc = instr->Bits(11, 8);
int l = instr->Bit(7);
int q = instr->Bit(6);
int imm3H_L = imm3H << 1 | l;
if (imm3H_L != 0 && opc == 0) {
// vshr.s<size> Qd, Qm, shift
int imm7 = instr->Bits(21, 16);
if (instr->Bit(7) != 0) imm7 += 64;
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
int shift = 2 * size - imm7;
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
NeonSize ns =
static_cast<NeonSize>(base::bits::WhichPowerOfTwo(size >> 3));
if (u) {
switch (ns) {
case Neon8:
ShiftRight<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon16:
ShiftRight<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon32:
ShiftRight<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon64:
ShiftRight<uint64_t, kSimd128Size>(this, Vd, Vm, shift);
break;
}
} else {
switch (ns) {
case Neon8:
ArithmeticShiftRight<int8_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon16:
ArithmeticShiftRight<int16_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon32:
ArithmeticShiftRight<int32_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon64:
ArithmeticShiftRight<int64_t, kSimd128Size>(this, Vd, Vm, shift);
break;
}
}
} else if (imm3H_L != 0 && imm3L == 0 && opc == 0b1010 && !q) {
if (u) {
// vmovl unsigned
if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
int imm3 = instr->Bits(21, 19);
switch (imm3) {
case 1:
Widen<uint8_t, uint16_t>(this, Vd, Vm);
break;
case 2:
Widen<uint16_t, uint32_t>(this, Vd, Vm);
break;
case 4:
Widen<uint32_t, uint64_t>(this, Vd, Vm);
break;
default:
UNIMPLEMENTED();
break;
}
} else {
// vmovl signed
if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
int imm3 = instr->Bits(21, 19);
switch (imm3) {
case 1:
Widen<int8_t, int16_t>(this, Vd, Vm);
break;
case 2:
Widen<int16_t, int32_t>(this, Vd, Vm);
break;
case 4:
Widen<int32_t, int64_t>(this, Vd, Vm);
break;
default:
UNIMPLEMENTED();
break;
}
}
} else if (!u && imm3H_L != 0 && opc == 0b0101) {
// vshl.i<size> Qd, Qm, shift
int imm7 = instr->Bits(21, 16);
if (instr->Bit(7) != 0) imm7 += 64;
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
int shift = imm7 - size;
int Vd = instr->VFPDRegValue(kSimd128Precision);
int Vm = instr->VFPMRegValue(kSimd128Precision);
NeonSize ns =
static_cast<NeonSize>(base::bits::WhichPowerOfTwo(size >> 3));
switch (ns) {
case Neon8:
ShiftLeft<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon16:
ShiftLeft<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon32:
ShiftLeft<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
break;
case Neon64:
ShiftLeft<uint64_t, kSimd128Size>(this, Vd, Vm, shift);
break;
}
} else if (u && imm3H_L != 0 && opc == 0b0100) {
// vsri.<size> Dd, Dm, shift
int imm7 = instr->Bits(21, 16);
if (instr->Bit(7) != 0) imm7 += 64;
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
int shift = 2 * size - imm7;
int Vd = instr->VFPDRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
switch (size) {
case 8:
ShiftRightAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 16:
ShiftRightAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 32:
ShiftRightAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 64:
ShiftRightAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
break;
default:
UNREACHABLE();
break;
}
} else if (u && imm3H_L != 0 && opc == 0b0101) {
// vsli.<size> Dd, Dm, shift
int imm7 = instr->Bits(21, 16);
if (instr->Bit(7) != 0) imm7 += 64;
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
int shift = imm7 - size;
int Vd = instr->VFPDRegValue(kDoublePrecision);
int Vm = instr->VFPMRegValue(kDoublePrecision);
switch (size) {
case 8:
ShiftLeftAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 16:
ShiftLeftAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 32:
ShiftLeftAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
break;
case 64:
ShiftLeftAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
break;
default:
UNREACHABLE();
break;
}
}
}
return;
}
}
void Simulator::DecodeMemoryHintsAndBarriers(Instruction* instr) {
switch (instr->SpecialValue()) {
case 0xA:
case 0xB:
if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) {
// pld: ignore instruction.
} else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) {
// dsb, dmb, isb: ignore instruction for now.
// TODO(binji): implement
// Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15.
} else {
UNIMPLEMENTED();
}
break;
default:
UNIMPLEMENTED();
}
}
void Simulator::DecodeAdvancedSIMDElementOrStructureLoadStore(
Instruction* instr) {
switch (instr->SpecialValue()) {
case 8:
if (instr->Bits(21, 20) == 0) {
// vst1
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
int Rn = instr->VnValue();
int type = instr->Bits(11, 8);
int Rm = instr->VmValue();
int32_t address = get_register(Rn);
int regs = 0;
switch (type) {
case nlt_1:
regs = 1;
break;
case nlt_2:
regs = 2;
break;
case nlt_3:
regs = 3;
break;
case nlt_4:
regs = 4;
break;
default:
UNIMPLEMENTED();
break;
}
int r = 0;
while (r < regs) {
uint32_t data[2];
get_d_register(Vd + r, data);
WriteW(address, data[0]);
WriteW(address + 4, data[1]);
address += 8;
r++;
}
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else if (instr->Bits(21, 20) == 2) {
// vld1
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
int Rn = instr->VnValue();
int type = instr->Bits(11, 8);
int Rm = instr->VmValue();
int32_t address = get_register(Rn);
int regs = 0;
switch (type) {
case nlt_1:
regs = 1;
break;
case nlt_2:
regs = 2;
break;
case nlt_3:
regs = 3;
break;
case nlt_4:
regs = 4;
break;
default:
UNIMPLEMENTED();
break;
}
int r = 0;
while (r < regs) {
uint32_t data[2];
data[0] = ReadW(address);
data[1] = ReadW(address + 4);
set_d_register(Vd + r, data);
address += 8;
r++;
}
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else {
UNIMPLEMENTED();
}
break;
case 9: {
if (instr->Bits(21, 20) == 2) {
// Bits(11, 8) is the B field in A7.7 Advanced SIMD element or structure
// load/store instructions. See table A7-21.
if (instr->Bits(11, 8) == 0xC) {
// vld1 (single element to all lanes).
DCHECK_EQ(instr->Bits(11, 8), 0b1100); // Type field.
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
int Rn = instr->VnValue();
int Rm = instr->VmValue();
int32_t address = get_register(Rn);
int regs = instr->Bit(5) + 1;
int size = instr->Bits(7, 6);
uint32_t q_data[2];
switch (size) {
case Neon8: {
uint8_t data = ReadBU(address);
uint8_t* dst = reinterpret_cast<uint8_t*>(q_data);
for (int i = 0; i < 8; i++) {
dst[i] = data;
}
break;
}
case Neon16: {
uint16_t data = ReadHU(address);
uint16_t* dst = reinterpret_cast<uint16_t*>(q_data);
for (int i = 0; i < 4; i++) {
dst[i] = data;
}
break;
}
case Neon32: {
uint32_t data = ReadW(address);
for (int i = 0; i < 2; i++) {
q_data[i] = data;
}
break;
}
}
for (int r = 0; r < regs; r++) {
set_neon_register<uint32_t, kDoubleSize>(Vd + r, q_data);
}
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else if (instr->Bits(11, 8) == 8 ||
((instr->Bits(11, 8) & 0b1011) == 0)) {
// vld1 (single element to one lane)
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
int Rn = instr->VnValue();
int Rm = instr->VmValue();
int32_t address = get_register(Rn);
int size = instr->Bits(11, 10);
uint64_t dreg;
get_d_register(Vd, &dreg);
switch (size) {
case Neon8: {
uint64_t data = ReadBU(address);
DCHECK_EQ(0, instr->Bit(4));
int i = instr->Bits(7, 5) * 8;
dreg = (dreg & ~(uint64_t{0xff} << i)) | (data << i);
break;
}
case Neon16: {
DCHECK_EQ(0, instr->Bits(5, 4)); // Alignment not supported.
uint64_t data = ReadHU(address);
int i = instr->Bits(7, 6) * 16;
dreg = (dreg & ~(uint64_t{0xffff} << i)) | (data << i);
break;
}
case Neon32: {
DCHECK_EQ(0, instr->Bits(6, 4)); // Alignment not supported.
uint64_t data = static_cast<unsigned>(ReadW(address));
int i = instr->Bit(7) * 32;
dreg = (dreg & ~(uint64_t{0xffffffff} << i)) | (data << i);
break;
}
case Neon64: {
// Should have been handled by vld1 (single element to all lanes).
UNREACHABLE();
}
}
set_d_register(Vd, &dreg);
// write back
if (Rm != 15) {
if (Rm == 13) {
set_register(Rn, address);
} else {
set_register(Rn, get_register(Rn) + get_register(Rm));
}
}
} else {
UNIMPLEMENTED();
}
} else {
UNIMPLEMENTED();
}
break;
}
default:
UNIMPLEMENTED();
}
}
void Simulator::DecodeFloatingPointDataProcessing(Instruction* instr) {
switch (instr->SpecialValue()) {
case 0x1D:
if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 &&
instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) {
if (instr->SzValue() == 0x1) {
int vm = instr->VFPMRegValue(kDoublePrecision);
int vd = instr->VFPDRegValue(kDoublePrecision);
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = 0.0;
int rounding_mode = instr->Bits(17, 16);
switch (rounding_mode) {
case 0x0: // vrinta - round with ties to away from zero
dd_value = round(dm_value);
break;
case 0x1: { // vrintn - round with ties to even
dd_value = nearbyint(dm_value);
break;
}
case 0x2: // vrintp - ceil
dd_value = ceil(dm_value);
break;
case 0x3: // vrintm - floor
dd_value = floor(dm_value);
break;
default:
UNREACHABLE(); // Case analysis is exhaustive.
break;
}
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
} else {
int m = instr->VFPMRegValue(kSinglePrecision);
int d = instr->VFPDRegValue(kSinglePrecision);
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = 0.0;
int rounding_mode = instr->Bits(17, 16);
switch (rounding_mode) {
case 0x0: // vrinta - round with ties to away from zero
sd_value = roundf(sm_value);
break;
case 0x1: { // vrintn - round with ties to even
sd_value = nearbyintf(sm_value);
break;
}
case 0x2: // vrintp - ceil
sd_value = ceilf(sm_value);
break;
case 0x3: // vrintm - floor
sd_value = floorf(sm_value);
break;
default:
UNREACHABLE(); // Case analysis is exhaustive.
break;
}
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) &&
(instr->Bit(4) == 0x0)) {
if (instr->SzValue() == 0x1) {
int m = instr->VFPMRegValue(kDoublePrecision);
int n = instr->VFPNRegValue(kDoublePrecision);
int d = instr->VFPDRegValue(kDoublePrecision);
double dn_value = get_double_from_d_register(n).get_scalar();
double dm_value = get_double_from_d_register(m).get_scalar();
double dd_value;
if (instr->Bit(6) == 0x1) { // vminnm
if ((dn_value < dm_value) || std::isnan(dm_value)) {
dd_value = dn_value;
} else if ((dm_value < dn_value) || std::isnan(dn_value)) {
dd_value = dm_value;
} else {
DCHECK_EQ(dn_value, dm_value);
// Make sure that we pick the most negative sign for +/-0.
dd_value = std::signbit(dn_value) ? dn_value : dm_value;
}
} else { // vmaxnm
if ((dn_value > dm_value) || std::isnan(dm_value)) {
dd_value = dn_value;
} else if ((dm_value > dn_value) || std::isnan(dn_value)) {
dd_value = dm_value;
} else {
DCHECK_EQ(dn_value, dm_value);
// Make sure that we pick the most positive sign for +/-0.
dd_value = std::signbit(dn_value) ? dm_value : dn_value;
}
}
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(d, dd_value);
} else {
int m = instr->VFPMRegValue(kSinglePrecision);
int n = instr->VFPNRegValue(kSinglePrecision);
int d = instr->VFPDRegValue(kSinglePrecision);
float sn_value = get_float_from_s_register(n).get_scalar();
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value;
if (instr->Bit(6) == 0x1) { // vminnm
if ((sn_value < sm_value) || std::isnan(sm_value)) {
sd_value = sn_value;
} else if ((sm_value < sn_value) || std::isnan(sn_value)) {
sd_value = sm_value;
} else {
DCHECK_EQ(sn_value, sm_value);
// Make sure that we pick the most negative sign for +/-0.
sd_value = std::signbit(sn_value) ? sn_value : sm_value;
}
} else { // vmaxnm
if ((sn_value > sm_value) || std::isnan(sm_value)) {
sd_value = sn_value;
} else if ((sm_value > sn_value) || std::isnan(sn_value)) {
sd_value = sm_value;
} else {
DCHECK_EQ(sn_value, sm_value);
// Make sure that we pick the most positive sign for +/-0.
sd_value = std::signbit(sn_value) ? sm_value : sn_value;
}
}
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
}
} else {
UNIMPLEMENTED();
}
break;
case 0x1C:
if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) &&
(instr->Bit(4) == 0)) {
// VSEL* (floating-point)
bool condition_holds;
switch (instr->Bits(21, 20)) {
case 0x0: // VSELEQ
condition_holds = (z_flag_ == 1);
break;
case 0x1: // VSELVS
condition_holds = (v_flag_ == 1);
break;
case 0x2: // VSELGE
condition_holds = (n_flag_ == v_flag_);
break;
case 0x3: // VSELGT
condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_));
break;
default:
UNREACHABLE(); // Case analysis is exhaustive.
break;
}
if (instr->SzValue() == 0x1) {
int n = instr->VFPNRegValue(kDoublePrecision);
int m = instr->VFPMRegValue(kDoublePrecision);
int d = instr->VFPDRegValue(kDoublePrecision);
Float64 result = get_double_from_d_register(condition_holds ? n : m);
set_d_register_from_double(d, result);
} else {
int n = instr->VFPNRegValue(kSinglePrecision);
int m = instr->VFPMRegValue(kSinglePrecision);
int d = instr->VFPDRegValue(kSinglePrecision);
Float32 result = get_float_from_s_register(condition_holds ? n : m);
set_s_register_from_float(d, result);
}
} else {
UNIMPLEMENTED();
}
break;
default:
UNIMPLEMENTED();
break;
}
}
void Simulator::DecodeSpecialCondition(Instruction* instr) {
int op0 = instr->Bits(25, 24);
int op1 = instr->Bits(11, 9);
int op2 = instr->Bit(4);
if (instr->Bit(27) == 0) {
DecodeUnconditional(instr);
} else if ((instr->Bits(27, 26) == 0b11) && (op0 == 0b10) &&
((op1 >> 1) == 0b10) && !op2) {
DecodeFloatingPointDataProcessing(instr);
} else {
UNIMPLEMENTED();
}
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
if (v8::internal::FLAG_check_icache) {
CheckICache(i_cache(), instr);
}
pc_modified_ = false;
if (::v8::internal::FLAG_trace_sim) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// use a reasonably large buffer
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr),
buffer.begin());
}
if (instr->ConditionField() == kSpecialCondition) {
DecodeSpecialCondition(instr);
} else if (ConditionallyExecute(instr)) {
switch (instr->TypeValue()) {
case 0:
case 1: {
DecodeType01(instr);
break;
}
case 2: {
DecodeType2(instr);
break;
}
case 3: {
DecodeType3(instr);
break;
}
case 4: {
DecodeType4(instr);
break;
}
case 5: {
DecodeType5(instr);
break;
}
case 6: {
DecodeType6(instr);
break;
}
case 7: {
DecodeType7(instr);
break;
}
default: {
UNIMPLEMENTED();
break;
}
}
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize);
}
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int program_counter = get_pc();
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_ = base::AddWithWraparound(icount_, 1);
InstructionDecode(instr);
program_counter = get_pc();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instruction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_ = base::AddWithWraparound(icount_, 1);
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
ArmDebugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
}
program_counter = get_pc();
}
}
}
void Simulator::CallInternal(Address entry) {
// Adjust JS-based stack limit to C-based stack limit.
isolate_->stack_guard()->AdjustStackLimitForSimulator();
// Prepare to execute the code at entry
set_register(pc, static_cast<int32_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(lr, end_sim_pc);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int32_t r4_val = get_register(r4);
int32_t r5_val = get_register(r5);
int32_t r6_val = get_register(r6);
int32_t r7_val = get_register(r7);
int32_t r8_val = get_register(r8);
int32_t r9_val = get_register(r9);
int32_t r10_val = get_register(r10);
int32_t r11_val = get_register(r11);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int32_t callee_saved_value = icount_;
set_register(r4, callee_saved_value);
set_register(r5, callee_saved_value);
set_register(r6, callee_saved_value);
set_register(r7, callee_saved_value);
set_register(r8, callee_saved_value);
set_register(r9, callee_saved_value);
set_register(r10, callee_saved_value);
set_register(r11, callee_saved_value);
// Start the simulation
Execute();
// Check that the callee-saved registers have been preserved.
CHECK_EQ(callee_saved_value, get_register(r4));
CHECK_EQ(callee_saved_value, get_register(r5));
CHECK_EQ(callee_saved_value, get_register(r6));
CHECK_EQ(callee_saved_value, get_register(r7));
CHECK_EQ(callee_saved_value, get_register(r8));
CHECK_EQ(callee_saved_value, get_register(r9));
CHECK_EQ(callee_saved_value, get_register(r10));
CHECK_EQ(callee_saved_value, get_register(r11));
// Restore callee-saved registers with the original value.
set_register(r4, r4_val);
set_register(r5, r5_val);
set_register(r6, r6_val);
set_register(r7, r7_val);
set_register(r8, r8_val);
set_register(r9, r9_val);
set_register(r10, r10_val);
set_register(r11, r11_val);
}
intptr_t Simulator::CallImpl(Address entry, int argument_count,
const intptr_t* arguments) {
// Set up arguments
// First four arguments passed in registers.
int reg_arg_count = std::min(4, argument_count);
if (reg_arg_count > 0) set_register(r0, arguments[0]);
if (reg_arg_count > 1) set_register(r1, arguments[1]);
if (reg_arg_count > 2) set_register(r2, arguments[2]);
if (reg_arg_count > 3) set_register(r3, arguments[3]);
// Remaining arguments passed on stack.
int original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
memcpy(reinterpret_cast<intptr_t*>(entry_stack),
arguments + reg_arg_count,
(argument_count - reg_arg_count) * sizeof(*arguments));
set_register(sp, entry_stack);
CallInternal(entry);
// Pop stack passed arguments.
CHECK_EQ(entry_stack, get_register(sp));
set_register(sp, original_stack);
return get_register(r0);
}
intptr_t Simulator::CallFPImpl(Address entry, double d0, double d1) {
if (use_eabi_hardfloat()) {
set_d_register_from_double(0, d0);
set_d_register_from_double(1, d1);
} else {
set_register_pair_from_double(0, &d0);
set_register_pair_from_double(2, &d1);
}
CallInternal(entry);
return get_register(r0);
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
int new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
int current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
Simulator::LocalMonitor::LocalMonitor()
: access_state_(MonitorAccess::Open),
tagged_addr_(0),
size_(TransactionSize::None) {}
void Simulator::LocalMonitor::Clear() {
access_state_ = MonitorAccess::Open;
tagged_addr_ = 0;
size_ = TransactionSize::None;
}
void Simulator::LocalMonitor::NotifyLoad(int32_t addr) {
if (access_state_ == MonitorAccess::Exclusive) {
// A load could cause a cache eviction which will affect the monitor. As a
// result, it's most strict to unconditionally clear the local monitor on
// load.
Clear();
}
}
void Simulator::LocalMonitor::NotifyLoadExcl(int32_t addr,
TransactionSize size) {
access_state_ = MonitorAccess::Exclusive;
tagged_addr_ = addr;
size_ = size;
}
void Simulator::LocalMonitor::NotifyStore(int32_t addr) {
if (access_state_ == MonitorAccess::Exclusive) {
// It is implementation-defined whether a non-exclusive store to an address
// covered by the local monitor during exclusive access transitions to open
// or exclusive access. See ARM DDI 0406C.b, A3.4.1.
//
// However, a store could cause a cache eviction which will affect the
// monitor. As a result, it's most strict to unconditionally clear the
// local monitor on store.
Clear();
}
}
bool Simulator::LocalMonitor::NotifyStoreExcl(int32_t addr,
TransactionSize size) {
if (access_state_ == MonitorAccess::Exclusive) {
// It is allowed for a processor to require that the address matches
// exactly (A3.4.5), so this comparison does not mask addr.
if (addr == tagged_addr_ && size_ == size) {
Clear();
return true;
} else {
// It is implementation-defined whether an exclusive store to a
// non-tagged address will update memory. Behavior is unpredictable if
// the transaction size of the exclusive store differs from that of the
// exclusive load. See ARM DDI 0406C.b, A3.4.5.
Clear();
return false;
}
} else {
DCHECK(access_state_ == MonitorAccess::Open);
return false;
}
}
Simulator::GlobalMonitor::Processor::Processor()
: access_state_(MonitorAccess::Open),
tagged_addr_(0),
next_(nullptr),
prev_(nullptr),
failure_counter_(0) {}
void Simulator::GlobalMonitor::Processor::Clear_Locked() {
access_state_ = MonitorAccess::Open;
tagged_addr_ = 0;
}
void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(int32_t addr) {
access_state_ = MonitorAccess::Exclusive;
tagged_addr_ = addr;
}
void Simulator::GlobalMonitor::Processor::NotifyStore_Locked(
int32_t addr, bool is_requesting_processor) {
if (access_state_ == MonitorAccess::Exclusive) {
// It is implementation-defined whether a non-exclusive store by the
// requesting processor to an address covered by the global monitor
// during exclusive access transitions to open or exclusive access.
//
// For any other processor, the access state always transitions to open
// access.
//
// See ARM DDI 0406C.b, A3.4.2.
//
// However, similar to the local monitor, it is possible that a store
// caused a cache eviction, which can affect the montior, so
// conservatively, we always clear the monitor.
Clear_Locked();
}
}
bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked(
int32_t addr, bool is_requesting_processor) {
if (access_state_ == MonitorAccess::Exclusive) {
if (is_requesting_processor) {
// It is allowed for a processor to require that the address matches
// exactly (A3.4.5), so this comparison does not mask addr.
if (addr == tagged_addr_) {
// The access state for the requesting processor after a successful
// exclusive store is implementation-defined, but according to the ARM
// DDI, this has no effect on the subsequent operation of the global
// monitor.
Clear_Locked();
// Introduce occasional strex failures. This is to simulate the
// behavior of hardware, which can randomly fail due to background
// cache evictions.
if (failure_counter_++ >= kMaxFailureCounter) {
failure_counter_ = 0;
return false;
} else {
return true;
}
}
} else if ((addr & kExclusiveTaggedAddrMask) ==
(tagged_addr_ & kExclusiveTaggedAddrMask)) {
// Check the masked addresses when responding to a successful lock by
// another processor so the implementation is more conservative (i.e. the
// granularity of locking is as large as possible.)
Clear_Locked();
return false;
}
}
return false;
}
void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(int32_t addr,
Processor* processor) {
processor->NotifyLoadExcl_Locked(addr);
PrependProcessor_Locked(processor);
}
void Simulator::GlobalMonitor::NotifyStore_Locked(int32_t addr,
Processor* processor) {
// Notify each processor of the store operation.
for (Processor* iter = head_; iter; iter = iter->next_) {
bool is_requesting_processor = iter == processor;
iter->NotifyStore_Locked(addr, is_requesting_processor);
}
}
bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(int32_t addr,
Processor* processor) {
DCHECK(IsProcessorInLinkedList_Locked(processor));
if (processor->NotifyStoreExcl_Locked(addr, true)) {
// Notify the other processors that this StoreExcl succeeded.
for (Processor* iter = head_; iter; iter = iter->next_) {
if (iter != processor) {
iter->NotifyStoreExcl_Locked(addr, false);
}
}
return true;
} else {
return false;
}
}
bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked(
Processor* processor) const {
return head_ == processor || processor->next_ || processor->prev_;
}
void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) {
if (IsProcessorInLinkedList_Locked(processor)) {
return;
}
if (head_) {
head_->prev_ = processor;
}
processor->prev_ = nullptr;
processor->next_ = head_;
head_ = processor;
}
void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) {
base::MutexGuard lock_guard(&mutex);
if (!IsProcessorInLinkedList_Locked(processor)) {
return;
}
if (processor->prev_) {
processor->prev_->next_ = processor->next_;
} else {
head_ = processor->next_;
}
if (processor->next_) {
processor->next_->prev_ = processor->prev_;
}
processor->prev_ = nullptr;
processor->next_ = nullptr;
}
#undef SScanF
} // namespace internal
} // namespace v8
#endif // USE_SIMULATOR