| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/execution/arm/simulator-arm.h" |
| |
| #if defined(USE_SIMULATOR) |
| |
| #include <stdarg.h> |
| #include <stdlib.h> |
| |
| #include <cmath> |
| |
| #include "src/base/bits.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/base/memory.h" |
| #include "src/base/overflowing-math.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/platform/wrappers.h" |
| #include "src/codegen/arm/constants-arm.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/diagnostics/disasm.h" |
| #include "src/heap/combined-heap.h" |
| #include "src/heap/heap-inl.h" // For CodeSpaceMemoryModificationScope. |
| #include "src/objects/objects-inl.h" |
| #include "src/runtime/runtime-utils.h" |
| #include "src/utils/ostreams.h" |
| #include "src/utils/utils.h" |
| #include "src/utils/vector.h" |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| namespace v8 { |
| namespace internal { |
| |
| DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor, |
| Simulator::GlobalMonitor::Get) |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // ::v8::internal::OS in the same way as SNPrintF is that the |
| // Windows C Run-Time Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The ArmDebugger class is used by the simulator while debugging simulated ARM |
| // code. |
| class ArmDebugger { |
| public: |
| explicit ArmDebugger(Simulator* sim) : sim_(sim) {} |
| void Debug(); |
| |
| private: |
| static const Instr kBreakpointInstr = |
| (al | (7 * B25) | (1 * B24) | kBreakpoint); |
| static const Instr kNopInstr = (al | (13 * B21)); |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| double GetRegisterPairDoubleValue(int regnum); |
| double GetVFPDoubleRegisterValue(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| bool GetVFPSingleValue(const char* desc, float* value); |
| bool GetVFPDoubleValue(const char* desc, double* value); |
| |
| // Set or delete breakpoint (there can be only one). |
| bool SetBreakpoint(Instruction* breakpc); |
| void DeleteBreakpoint(); |
| |
| // Undo and redo the breakpoint. This is needed to bracket disassembly and |
| // execution to skip past the breakpoint when run from the debugger. |
| void UndoBreakpoint(); |
| void RedoBreakpoint(); |
| }; |
| |
| void Simulator::DebugAtNextPC() { |
| PrintF("Starting debugger on the next instruction:\n"); |
| set_pc(get_pc() + kInstrSize); |
| ArmDebugger(this).Debug(); |
| } |
| |
| int32_t ArmDebugger::GetRegisterValue(int regnum) { |
| if (regnum == kPCRegister) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { |
| return sim_->get_double_from_register_pair(regnum); |
| } |
| |
| double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { |
| return sim_->get_double_from_d_register(regnum).get_scalar(); |
| } |
| |
| bool ArmDebugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| if (regnum != kNoRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else { |
| if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; |
| } |
| } |
| return false; |
| } |
| |
| bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && !is_double) { |
| *value = sim_->get_float_from_s_register(regnum).get_scalar(); |
| return true; |
| } |
| return false; |
| } |
| |
| bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && is_double) { |
| *value = sim_->get_double_from_d_register(regnum).get_scalar(); |
| return true; |
| } |
| return false; |
| } |
| |
| bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| namespace { |
| // This function is dangerous, but it's only available in non-production |
| // (simulator) builds. |
| void SetInstructionBitsInCodeSpace(Instruction* instr, Instr value, |
| Heap* heap) { |
| CodeSpaceMemoryModificationScope scope(heap); |
| instr->SetInstructionBits(value); |
| } |
| } // namespace |
| |
| void ArmDebugger::DeleteBreakpoint() { |
| UndoBreakpoint(); |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| } |
| |
| void ArmDebugger::UndoBreakpoint() { |
| if (sim_->break_pc_ != nullptr) { |
| SetInstructionBitsInCodeSpace(sim_->break_pc_, sim_->break_instr_, |
| sim_->isolate_->heap()); |
| } |
| } |
| |
| void ArmDebugger::RedoBreakpoint() { |
| if (sim_->break_pc_ != nullptr) { |
| SetInstructionBitsInCodeSpace(sim_->break_pc_, kBreakpointInstr, |
| sim_->isolate_->heap()); |
| } |
| } |
| |
| void ArmDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = {cmd, arg1, arg2}; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Unset breakpoint while running in the debugger shell, making it invisible |
| // to all commands. |
| UndoBreakpoint(); |
| |
| while (!done && !sim_->has_bad_pc()) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.begin()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| break; |
| } else { |
| char* last_input = sim_->last_debugger_input(); |
| if (strcmp(line, "\n") == 0 && last_input != nullptr) { |
| line = last_input; |
| } else { |
| // Ownership is transferred to sim_; |
| sim_->set_last_debugger_input(line); |
| } |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
| int32_t value; |
| float svalue; |
| double dvalue; |
| if (strcmp(arg1, "all") == 0) { |
| for (int i = 0; i < kNumRegisters; i++) { |
| value = GetRegisterValue(i); |
| PrintF("%3s: 0x%08x %10d", RegisterName(Register::from_code(i)), |
| value, value); |
| if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
| (i % 2) == 0) { |
| dvalue = GetRegisterPairDoubleValue(i); |
| PrintF(" (%f)\n", dvalue); |
| } else { |
| PrintF("\n"); |
| } |
| } |
| for (int i = 0; i < DwVfpRegister::SupportedRegisterCount(); i++) { |
| dvalue = GetVFPDoubleRegisterValue(i); |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true), |
| dvalue, static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } |
| } else { |
| if (GetValue(arg1, &value)) { |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (GetVFPSingleValue(arg1, &svalue)) { |
| uint32_t as_word = bit_cast<uint32_t>(svalue); |
| PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); |
| } else if (GetVFPDoubleValue(arg1, &dvalue)) { |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| PrintF("print <register>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| StdoutStream os; |
| if (GetValue(arg1, &value)) { |
| Object obj(value); |
| os << arg1 << ": \n"; |
| #ifdef DEBUG |
| obj.Print(os); |
| os << "\n"; |
| #else |
| os << Brief(obj) << "\n"; |
| #endif |
| } else { |
| os << arg1 << " unrecognized\n"; |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 || |
| strcmp(cmd, "dump") == 0) { |
| int32_t* cur = nullptr; |
| int32_t* end = nullptr; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| int32_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| bool skip_obj_print = (strcmp(cmd, "dump") == 0); |
| while (cur < end) { |
| PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d", |
| reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| Object obj(*cur); |
| Heap* current_heap = sim_->isolate_->heap(); |
| if (!skip_obj_print) { |
| if (obj.IsSmi() || |
| IsValidHeapObject(current_heap, HeapObject::cast(obj))) { |
| PrintF(" ("); |
| if (obj.IsSmi()) { |
| PrintF("smi %d", Smi::ToInt(obj)); |
| } else { |
| obj.ShortPrint(); |
| } |
| PrintF(")"); |
| } |
| } |
| PrintF("\n"); |
| cur++; |
| } |
| } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* prev = nullptr; |
| byte* cur = nullptr; |
| byte* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * kInstrSize); |
| } else if (argc == 2) { |
| int regnum = Registers::Number(arg1); |
| if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { |
| // The argument is an address or a register name. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // Disassemble 10 instructions at <arg1>. |
| end = cur + (10 * kInstrSize); |
| } |
| } else { |
| // The argument is the number of instructions. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| // Disassemble <arg1> instructions. |
| end = cur + (value * kInstrSize); |
| } |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| prev = cur; |
| cur += dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), |
| buffer.begin()); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::base::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| DeleteBreakpoint(); |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("N flag: %d; ", sim_->n_flag_); |
| PrintF("Z flag: %d; ", sim_->z_flag_); |
| PrintF("C flag: %d; ", sim_->c_flag_); |
| PrintF("V flag: %d\n", sim_->v_flag_); |
| PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); |
| PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); |
| PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); |
| PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); |
| PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); |
| } else if (strcmp(cmd, "stop") == 0) { |
| int32_t value; |
| intptr_t stop_pc = sim_->get_pc() - kInstrSize; |
| Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
| if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| // Remove the current stop. |
| if (stop_instr->IsStop()) { |
| SetInstructionBitsInCodeSpace(stop_instr, kNopInstr, |
| sim_->isolate_->heap()); |
| } else { |
| PrintF("Not at debugger stop.\n"); |
| } |
| } else if (argc == 3) { |
| // Print information about all/the specified breakpoint(s). |
| if (strcmp(arg1, "info") == 0) { |
| if (strcmp(arg2, "all") == 0) { |
| PrintF("Stop information:\n"); |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->PrintStopInfo(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->PrintStopInfo(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "enable") == 0) { |
| // Enable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->EnableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->EnableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "disable") == 0) { |
| // Disable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->DisableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->DisableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } |
| } else { |
| PrintF("Wrong usage. Use help command for more information.\n"); |
| } |
| } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
| ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
| PrintF("Trace of executed instructions is %s\n", |
| ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF(" add argument 'fp' to print register pair double values\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("stack [<words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("dump [<words>]\n"); |
| PrintF( |
| " dump memory content without pretty printing JS objects, default " |
| "dump 10 words)\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [<address/register>]\n"); |
| PrintF("disasm [[<address/register>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions\n"); |
| PrintF(" from pc (alias 'di')\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("trace (alias 't')\n"); |
| PrintF(" toogle the tracing of all executed statements\n"); |
| PrintF("stop feature:\n"); |
| PrintF(" Description:\n"); |
| PrintF(" Stops are debug instructions inserted by\n"); |
| PrintF(" the Assembler::stop() function.\n"); |
| PrintF(" When hitting a stop, the Simulator will\n"); |
| PrintF(" stop and give control to the ArmDebugger.\n"); |
| PrintF(" The first %d stop codes are watched:\n", |
| Simulator::kNumOfWatchedStops); |
| PrintF(" - They can be enabled / disabled: the Simulator\n"); |
| PrintF(" will / won't stop when hitting them.\n"); |
| PrintF(" - The Simulator keeps track of how many times they \n"); |
| PrintF(" are met. (See the info command.) Going over a\n"); |
| PrintF(" disabled stop still increases its counter. \n"); |
| PrintF(" Commands:\n"); |
| PrintF(" stop info all/<code> : print infos about number <code>\n"); |
| PrintF(" or all stop(s).\n"); |
| PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
| PrintF(" all or number <code> stop(s)\n"); |
| PrintF(" stop unstop\n"); |
| PrintF(" ignore the stop instruction at the current location\n"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| } |
| |
| // Reinstall breakpoint to stop execution and enter the debugger shell when |
| // hit. |
| RedoBreakpoint(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| bool Simulator::ICacheMatch(void* one, void* two) { |
| DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); |
| DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); |
| return one == two; |
| } |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| void Simulator::set_last_debugger_input(char* input) { |
| DeleteArray(last_debugger_input_); |
| last_debugger_input_ = input; |
| } |
| |
| void Simulator::SetRedirectInstruction(Instruction* instruction) { |
| instruction->SetInstructionBits(al | (0xF * B24) | kCallRtRedirected); |
| } |
| |
| void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, |
| void* start_addr, size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| DCHECK_EQ(0, start & CachePage::kPageMask); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(i_cache, start, size); |
| } |
| } |
| |
| CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page) { |
| base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); |
| if (entry->value == nullptr) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, |
| intptr_t start, int size) { |
| DCHECK_LE(size, CachePage::kPageSize); |
| DCHECK(AllOnOnePage(start, size - 1)); |
| DCHECK_EQ(start & CachePage::kLineMask, 0); |
| DCHECK_EQ(size & CachePage::kLineMask, 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), kInstrSize)); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
| // Set up simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack |
| stack_ = reinterpret_cast<char*>(base::Malloc(stack_size)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| |
| // Set up architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < num_registers; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| // Initializing VFP registers. |
| // All registers are initialized to zero to start with |
| // even though s_registers_ & d_registers_ share the same |
| // physical registers in the target. |
| for (int i = 0; i < num_d_registers * 2; i++) { |
| vfp_registers_[i] = 0; |
| } |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| FPSCR_rounding_mode_ = RN; |
| FPSCR_default_NaN_mode_ = false; |
| |
| inv_op_vfp_flag_ = false; |
| div_zero_vfp_flag_ = false; |
| overflow_vfp_flag_ = false; |
| underflow_vfp_flag_ = false; |
| inexact_vfp_flag_ = false; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_lr; |
| registers_[lr] = bad_lr; |
| |
| last_debugger_input_ = nullptr; |
| } |
| |
| Simulator::~Simulator() { |
| GlobalMonitor::Get()->RemoveProcessor(&global_monitor_processor_); |
| base::Free(stack_); |
| } |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current(Isolate* isolate) { |
| v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| isolate->FindOrAllocatePerThreadDataForThisThread(); |
| DCHECK_NOT_NULL(isolate_data); |
| |
| Simulator* sim = isolate_data->simulator(); |
| if (sim == nullptr) { |
| // TODO(146): delete the simulator object when a thread/isolate goes away. |
| sim = new Simulator(isolate); |
| isolate_data->set_simulator(sim); |
| } |
| return sim; |
| } |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| DCHECK((reg >= 0) && (reg < num_registers)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| registers_[reg] = value; |
| } |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| DCHECK((reg >= 0) && (reg < num_registers)); |
| // Stupid code added to avoid bug in GCC. |
| // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| if (reg >= num_registers) return 0; |
| // End stupid code. |
| return registers_[reg] + ((reg == pc) ? Instruction::kPcLoadDelta : 0); |
| } |
| |
| double Simulator::get_double_from_register_pair(int reg) { |
| DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); |
| |
| double dm_val = 0.0; |
| // Read the bits from the unsigned integer register_[] array |
| // into the double precision floating point value and return it. |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| return (dm_val); |
| } |
| |
| void Simulator::set_register_pair_from_double(int reg, double* value) { |
| DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); |
| memcpy(registers_ + reg, value, sizeof(*value)); |
| } |
| |
| void Simulator::set_dw_register(int dreg, const int* dbl) { |
| DCHECK((dreg >= 0) && (dreg < num_d_registers)); |
| registers_[dreg] = dbl[0]; |
| registers_[dreg + 1] = dbl[1]; |
| } |
| |
| void Simulator::get_d_register(int dreg, uint64_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount())); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); |
| } |
| |
| void Simulator::set_d_register(int dreg, const uint64_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount())); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); |
| } |
| |
| void Simulator::get_d_register(int dreg, uint32_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount())); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); |
| } |
| |
| void Simulator::set_d_register(int dreg, const uint32_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::SupportedRegisterCount())); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); |
| } |
| |
| template <typename T, int SIZE> |
| void Simulator::get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]) { |
| DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize); |
| DCHECK_LE(0, reg); |
| DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg); |
| memcpy(value, vfp_registers_ + reg * (SIZE / 4), SIZE); |
| } |
| |
| template <typename T, int SIZE> |
| void Simulator::set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]) { |
| DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize); |
| DCHECK_LE(0, reg); |
| DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg); |
| memcpy(vfp_registers_ + reg * (SIZE / 4), value, SIZE); |
| } |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| bool Simulator::has_bad_pc() const { |
| return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); |
| } |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { return registers_[pc]; } |
| |
| // Getting from and setting into VFP registers. |
| void Simulator::set_s_register(int sreg, unsigned int value) { |
| DCHECK((sreg >= 0) && (sreg < num_s_registers)); |
| vfp_registers_[sreg] = value; |
| } |
| |
| unsigned int Simulator::get_s_register(int sreg) const { |
| DCHECK((sreg >= 0) && (sreg < num_s_registers)); |
| return vfp_registers_[sreg]; |
| } |
| |
| template <class InputType, int register_size> |
| void Simulator::SetVFPRegister(int reg_index, const InputType& value) { |
| unsigned bytes = register_size * sizeof(vfp_registers_[0]); |
| DCHECK_EQ(sizeof(InputType), bytes); |
| DCHECK_GE(reg_index, 0); |
| if (register_size == 1) DCHECK(reg_index < num_s_registers); |
| if (register_size == 2) |
| DCHECK(reg_index < DwVfpRegister::SupportedRegisterCount()); |
| |
| memcpy(&vfp_registers_[reg_index * register_size], &value, bytes); |
| } |
| |
| template <class ReturnType, int register_size> |
| ReturnType Simulator::GetFromVFPRegister(int reg_index) { |
| unsigned bytes = register_size * sizeof(vfp_registers_[0]); |
| DCHECK_EQ(sizeof(ReturnType), bytes); |
| DCHECK_GE(reg_index, 0); |
| if (register_size == 1) DCHECK(reg_index < num_s_registers); |
| if (register_size == 2) |
| DCHECK(reg_index < DwVfpRegister::SupportedRegisterCount()); |
| |
| ReturnType value; |
| memcpy(&value, &vfp_registers_[register_size * reg_index], bytes); |
| return value; |
| } |
| |
| void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask, |
| uint32_t value) { |
| // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented. |
| if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) { |
| n_flag_ = ((value & (1 << 31)) != 0); |
| z_flag_ = ((value & (1 << 30)) != 0); |
| c_flag_ = ((value & (1 << 29)) != 0); |
| v_flag_ = ((value & (1 << 28)) != 0); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| uint32_t Simulator::GetFromSpecialRegister(SRegister reg) { |
| uint32_t result = 0; |
| // Only CPSR_f is implemented. |
| if (reg == CPSR) { |
| if (n_flag_) result |= (1 << 31); |
| if (z_flag_) result |= (1 << 30); |
| if (c_flag_) result |= (1 << 29); |
| if (v_flag_) result |= (1 << 28); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| return result; |
| } |
| |
| // Runtime FP routines take: |
| // - two double arguments |
| // - one double argument and zero or one integer arguments. |
| // All are consructed here from r0-r3 or d0, d1 and r0. |
| void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { |
| if (use_eabi_hardfloat()) { |
| *x = get_double_from_d_register(0).get_scalar(); |
| *y = get_double_from_d_register(1).get_scalar(); |
| *z = get_register(0); |
| } else { |
| // Registers 0 and 1 -> x. |
| *x = get_double_from_register_pair(0); |
| // Register 2 and 3 -> y. |
| *y = get_double_from_register_pair(2); |
| // Register 2 -> z |
| *z = get_register(2); |
| } |
| } |
| |
| // The return value is either in r0/r1 or d0. |
| void Simulator::SetFpResult(const double& result) { |
| if (use_eabi_hardfloat()) { |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to d0. |
| memcpy(vfp_registers_, buffer, sizeof(buffer)); |
| } else { |
| char buffer[2 * sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to r0 and r1. |
| memcpy(registers_, buffer, sizeof(buffer)); |
| } |
| } |
| |
| void Simulator::TrashCallerSaveRegisters() { |
| // Return registers. |
| registers_[0] = 0x50BAD4U; |
| registers_[1] = 0x50BAD4U; |
| // Caller-saved registers. |
| registers_[2] = 0x50BAD4U; |
| registers_[3] = 0x50BAD4U; |
| registers_[12] = 0x50BAD4U; |
| // This value is a NaN in both 32-bit and 64-bit FP. |
| static const uint64_t v = 0x7ff000007f801000UL; |
| // d0 - d7 are caller-saved. |
| for (int i = 0; i < 8; i++) { |
| set_d_register(i, &v); |
| } |
| if (DoubleRegister::SupportedRegisterCount() > 16) { |
| // d16 - d31 (if supported) are caller-saved. |
| for (int i = 16; i < 32; i++) { |
| set_d_register(i, &v); |
| } |
| } |
| } |
| |
| int Simulator::ReadW(int32_t addr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return base::ReadUnalignedValue<intptr_t>(addr); |
| } |
| |
| int Simulator::ReadExW(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word); |
| GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); |
| return base::ReadUnalignedValue<intptr_t>(addr); |
| } |
| |
| void Simulator::WriteW(int32_t addr, int value) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue<intptr_t>(addr, value); |
| } |
| |
| int Simulator::WriteExW(int32_t addr, int value) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) && |
| GlobalMonitor::Get()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| base::WriteUnalignedValue<intptr_t>(addr, value); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| uint16_t Simulator::ReadHU(int32_t addr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return base::ReadUnalignedValue<uint16_t>(addr); |
| } |
| |
| int16_t Simulator::ReadH(int32_t addr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return base::ReadUnalignedValue<int16_t>(addr); |
| } |
| |
| uint16_t Simulator::ReadExHU(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord); |
| GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); |
| return base::ReadUnalignedValue<uint16_t>(addr); |
| } |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue(addr, value); |
| } |
| |
| void Simulator::WriteH(int32_t addr, int16_t value) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue(addr, value); |
| } |
| |
| int Simulator::WriteExH(int32_t addr, uint16_t value) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) && |
| GlobalMonitor::Get()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| base::WriteUnalignedValue(addr, value); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| uint8_t Simulator::ReadBU(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return base::ReadUnalignedValue<uint8_t>(addr); |
| } |
| |
| int8_t Simulator::ReadB(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return base::ReadUnalignedValue<int8_t>(addr); |
| } |
| |
| uint8_t Simulator::ReadExBU(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte); |
| GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); |
| return base::ReadUnalignedValue<uint8_t>(addr); |
| } |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue(addr, value); |
| } |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue(addr, value); |
| } |
| |
| int Simulator::WriteExB(int32_t addr, uint8_t value) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) && |
| GlobalMonitor::Get()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| base::WriteUnalignedValue(addr, value); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| int32_t* Simulator::ReadDW(int32_t addr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| return reinterpret_cast<int32_t*>(addr); |
| } |
| |
| int32_t* Simulator::ReadExDW(int32_t addr) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::DoubleWord); |
| GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); |
| return reinterpret_cast<int32_t*>(addr); |
| } |
| |
| void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| local_monitor_.NotifyStore(addr); |
| GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_); |
| base::WriteUnalignedValue(addr, value1); |
| base::WriteUnalignedValue(addr + sizeof(value1), value2); |
| } |
| |
| int Simulator::WriteExDW(int32_t addr, int32_t value1, int32_t value2) { |
| base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::DoubleWord) && |
| GlobalMonitor::Get()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| base::WriteUnalignedValue(addr, value1); |
| base::WriteUnalignedValue(addr + sizeof(value1), value2); |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { |
| // The simulator uses a separate JS stack. If we have exhausted the C stack, |
| // we also drop down the JS limit to reflect the exhaustion on the JS stack. |
| if (base::Stack::GetCurrentStackPosition() < c_limit) { |
| return reinterpret_cast<uintptr_t>(get_sp()); |
| } |
| |
| // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes |
| // to prevent overrunning the stack when pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 1024; |
| } |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", |
| reinterpret_cast<intptr_t>(instr), format); |
| UNIMPLEMENTED(); |
| } |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| bool Simulator::ConditionallyExecute(Instruction* instr) { |
| switch (instr->ConditionField()) { |
| case eq: |
| return z_flag_; |
| case ne: |
| return !z_flag_; |
| case cs: |
| return c_flag_; |
| case cc: |
| return !c_flag_; |
| case mi: |
| return n_flag_; |
| case pl: |
| return !n_flag_; |
| case vs: |
| return v_flag_; |
| case vc: |
| return !v_flag_; |
| case hi: |
| return c_flag_ && !z_flag_; |
| case ls: |
| return !c_flag_ || z_flag_; |
| case ge: |
| return n_flag_ == v_flag_; |
| case lt: |
| return n_flag_ != v_flag_; |
| case gt: |
| return !z_flag_ && (n_flag_ == v_flag_); |
| case le: |
| return z_flag_ || (n_flag_ != v_flag_); |
| case al: |
| return true; |
| default: |
| UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlags(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| // Set the Carry flag. |
| void Simulator::SetCFlag(bool val) { c_flag_ = val; } |
| |
| // Set the oVerflow flag. |
| void Simulator::SetVFlag(bool val) { v_flag_ = val; } |
| |
| // Calculate C flag value for additions. |
| bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| uint32_t urest = 0xFFFFFFFFU - uleft; |
| |
| return (uright > urest) || |
| (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
| } |
| |
| // Calculate C flag value for subtractions. |
| bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| |
| return (uright > uleft) || |
| (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1)))); |
| } |
| |
| // Calculate V flag value for additions and subtractions. |
| bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
| bool addition) { |
| bool overflow; |
| if (addition) { |
| // operands have the same sign |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // and operands and result have different sign |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // operands have different signs |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // and first operand and result have different signs |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| // Support for VFP comparisons. |
| void Simulator::Compute_FPSCR_Flags(float val1, float val2) { |
| if (std::isnan(val1) || std::isnan(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| void Simulator::Compute_FPSCR_Flags(double val1, double val2) { |
| if (std::isnan(val1) || std::isnan(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| void Simulator::Copy_FPSCR_to_APSR() { |
| n_flag_ = n_flag_FPSCR_; |
| z_flag_ = z_flag_FPSCR_; |
| c_flag_ = c_flag_FPSCR_; |
| v_flag_ = v_flag_FPSCR_; |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { |
| ShiftOp shift = instr->ShiftField(); |
| int shift_amount = instr->ShiftAmountValue(); |
| int32_t result = get_register(instr->RmValue()); |
| if (instr->Bit(4) == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| UNIMPLEMENTED(); |
| return result; |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xFFFFFFFF; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| *carry_out = (result < 0); |
| result = static_cast<uint32_t>(result) << 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result = base::bits::RotateRight32(result, shift_amount); |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // by register |
| int rs = instr->RsValue(); |
| shift_amount = get_register(rs) & 0xFF; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| DCHECK_GE(shift_amount, 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xFFFFFFFF; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| *carry_out = (result < 0); |
| result = static_cast<uint32_t>(result) << 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| DCHECK_GT(shift_amount, 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| // Avoid undefined behavior. Rotating by multiples of 32 is no-op. |
| result = base::bits::RotateRight32(result, shift_amount & 31); |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { |
| int rotate = instr->RotateValue() * 2; |
| int immed8 = instr->Immed8Value(); |
| int imm = base::bits::RotateRight32(immed8, rotate); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| static int count_bits(int bit_vector) { |
| int count = 0; |
| while (bit_vector != 0) { |
| if ((bit_vector & 1) != 0) { |
| count++; |
| } |
| bit_vector >>= 1; |
| } |
| return count; |
| } |
| |
| int32_t Simulator::ProcessPU(Instruction* instr, int num_regs, int reg_size, |
| intptr_t* start_address, intptr_t* end_address) { |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| switch (instr->PUField()) { |
| case da_x: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| case ia_x: { |
| *start_address = rn_val; |
| *end_address = rn_val + (num_regs * reg_size) - reg_size; |
| rn_val = rn_val + (num_regs * reg_size); |
| break; |
| } |
| case db_x: { |
| *start_address = rn_val - (num_regs * reg_size); |
| *end_address = rn_val - reg_size; |
| rn_val = *start_address; |
| break; |
| } |
| case ib_x: { |
| *start_address = rn_val + reg_size; |
| *end_address = rn_val + (num_regs * reg_size); |
| rn_val = *end_address; |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| } |
| } |
| return rn_val; |
| } |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void Simulator::HandleRList(Instruction* instr, bool load) { |
| int rlist = instr->RlistValue(); |
| int num_regs = count_bits(rlist); |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = |
| ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); |
| |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| // Catch null pointers a little earlier. |
| DCHECK(start_address > 8191 || start_address < 0); |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(reg, *address); |
| } else { |
| *address = get_register(reg); |
| } |
| address += 1; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| DCHECK(end_address == ((intptr_t)address) - 4); |
| if (instr->HasW()) { |
| set_register(instr->RnValue(), rn_val); |
| } |
| } |
| |
| // Addressing Mode 6 - Load and Store Multiple Coprocessor registers. |
| void Simulator::HandleVList(Instruction* instr) { |
| VFPRegPrecision precision = |
| (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; |
| int operand_size = (precision == kSinglePrecision) ? 4 : 8; |
| |
| bool load = (instr->VLValue() == 0x1); |
| |
| int vd; |
| int num_regs; |
| vd = instr->VFPDRegValue(precision); |
| if (precision == kSinglePrecision) { |
| num_regs = instr->Immed8Value(); |
| } else { |
| num_regs = instr->Immed8Value() / 2; |
| } |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = |
| ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); |
| |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| for (int reg = vd; reg < vd + num_regs; reg++) { |
| if (precision == kSinglePrecision) { |
| if (load) { |
| set_s_register_from_sinteger(reg, |
| ReadW(reinterpret_cast<int32_t>(address))); |
| } else { |
| WriteW(reinterpret_cast<int32_t>(address), |
| get_sinteger_from_s_register(reg)); |
| } |
| address += 1; |
| } else { |
| if (load) { |
| int32_t data[] = {ReadW(reinterpret_cast<int32_t>(address)), |
| ReadW(reinterpret_cast<int32_t>(address + 1))}; |
| set_d_register(reg, reinterpret_cast<uint32_t*>(data)); |
| } else { |
| uint32_t data[2]; |
| get_d_register(reg, data); |
| WriteW(reinterpret_cast<int32_t>(address), data[0]); |
| WriteW(reinterpret_cast<int32_t>(address + 1), data[1]); |
| } |
| address += 2; |
| } |
| } |
| DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address); |
| if (instr->HasW()) { |
| set_register(instr->RnValue(), rn_val); |
| } |
| } |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the r1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1, |
| int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5, |
| int32_t arg6, int32_t arg7, |
| int32_t arg8, int32_t arg9); |
| |
| // These prototypes handle the four types of FP calls. |
| using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1); |
| using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1); |
| using SimulatorRuntimeFPCall = double (*)(double darg0); |
| using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0); |
| |
| // This signature supports direct call in to API function native callback |
| // (refer to InvocationCallback in v8.h). |
| using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0); |
| using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1); |
| |
| // This signature supports direct call to accessor getter callback. |
| using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1); |
| using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1, |
| void* arg2); |
| |
| // Separate for fine-grained UBSan blocklisting. Casting any given C++ |
| // function to {SimulatorRuntimeCall} is undefined behavior; but since |
| // the target function can indeed be any function that's exposed via |
| // the "fast C call" mechanism, we can't reconstruct its signature here. |
| int64_t UnsafeGenericFunctionCall(intptr_t function, int32_t arg0, int32_t arg1, |
| int32_t arg2, int32_t arg3, int32_t arg4, |
| int32_t arg5, int32_t arg6, int32_t arg7, |
| int32_t arg8, int32_t arg9) { |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(function); |
| return target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9); |
| } |
| void UnsafeDirectApiCall(intptr_t function, int32_t arg0) { |
| SimulatorRuntimeDirectApiCall target = |
| reinterpret_cast<SimulatorRuntimeDirectApiCall>(function); |
| target(arg0); |
| } |
| void UnsafeProfilingApiCall(intptr_t function, int32_t arg0, int32_t arg1) { |
| SimulatorRuntimeProfilingApiCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingApiCall>(function); |
| target(arg0, Redirection::ReverseRedirection(arg1)); |
| } |
| void UnsafeDirectGetterCall(intptr_t function, int32_t arg0, int32_t arg1) { |
| SimulatorRuntimeDirectGetterCall target = |
| reinterpret_cast<SimulatorRuntimeDirectGetterCall>(function); |
| target(arg0, arg1); |
| } |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. |
| void Simulator::SoftwareInterrupt(Instruction* instr) { |
| int svc = instr->SvcValue(); |
| switch (svc) { |
| case kCallRtRedirected: { |
| // Check if stack is aligned. Error if not aligned is reported below to |
| // include information on the function called. |
| bool stack_aligned = |
| (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == |
| 0; |
| Redirection* redirection = Redirection::FromInstruction(instr); |
| int32_t arg0 = get_register(r0); |
| int32_t arg1 = get_register(r1); |
| int32_t arg2 = get_register(r2); |
| int32_t arg3 = get_register(r3); |
| int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
| int32_t arg4 = stack_pointer[0]; |
| int32_t arg5 = stack_pointer[1]; |
| int32_t arg6 = stack_pointer[2]; |
| int32_t arg7 = stack_pointer[3]; |
| int32_t arg8 = stack_pointer[4]; |
| int32_t arg9 = stack_pointer[5]; |
| STATIC_ASSERT(kMaxCParameters == 10); |
| |
| bool fp_call = |
| (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_lr = get_register(lr); |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| if (fp_call) { |
| double dval0, dval1; // one or two double parameters |
| int32_t ival; // zero or one integer parameters |
| int64_t iresult = 0; // integer return value |
| double dresult = 0; // double return value |
| GetFpArgs(&dval0, &dval1, &ival); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| SimulatorRuntimeCall generic_target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Call to host function at %p with args %f, %f", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, dval1); |
| break; |
| case ExternalReference::BUILTIN_FP_CALL: |
| PrintF("Call to host function at %p with arg %f", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0); |
| break; |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Call to host function at %p with args %f, %d", |
| reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, ival); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: { |
| SimulatorRuntimeCompareCall target = |
| reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
| iresult = target(dval0, dval1); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| set_register(r0, static_cast<int32_t>(iresult)); |
| set_register(r1, static_cast<int32_t>(iresult >> 32)); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_FP_CALL: { |
| SimulatorRuntimeFPFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
| dresult = target(dval0, dval1); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_CALL: { |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| dresult = target(dval0); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_INT_CALL: { |
| SimulatorRuntimeFPIntCall target = |
| reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
| dresult = target(dval0, ival); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| SetFpResult(dresult); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); |
| break; |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_FP_CALL: |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Returned %f\n", dresult); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x", |
| reinterpret_cast<void*>(external), arg0); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| UnsafeDirectApiCall(external, arg0); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| UnsafeProfilingApiCall(external, arg0, arg1); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| UnsafeDirectGetterCall(external, arg0, arg1); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| } else if (redirection->type() == |
| ExternalReference::PROFILING_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1, arg2); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeProfilingGetterCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); |
| target(arg0, arg1, Redirection::ReverseRedirection(arg2)); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| } else { |
| // builtin call. |
| DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || |
| redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF( |
| "Call to host function at %p " |
| "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x", |
| reinterpret_cast<void*>(external), arg0, arg1, arg2, arg3, arg4, |
| arg5, arg6, arg7, arg8, arg9); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| int64_t result = |
| UnsafeGenericFunctionCall(external, arg0, arg1, arg2, arg3, arg4, |
| arg5, arg6, arg7, arg8, arg9); |
| #ifdef DEBUG |
| TrashCallerSaveRegisters(); |
| #endif |
| int32_t lo_res = static_cast<int32_t>(result); |
| int32_t hi_res = static_cast<int32_t>(result >> 32); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x\n", lo_res); |
| } |
| set_register(r0, lo_res); |
| set_register(r1, hi_res); |
| } |
| set_register(lr, saved_lr); |
| set_pc(get_register(lr)); |
| break; |
| } |
| case kBreakpoint: |
| ArmDebugger(this).Debug(); |
| break; |
| // stop uses all codes greater than 1 << 23. |
| default: |
| if (svc >= (1 << 23)) { |
| uint32_t code = svc & kStopCodeMask; |
| if (isWatchedStop(code)) { |
| IncreaseStopCounter(code); |
| } |
| // Stop if it is enabled, otherwise go on jumping over the stop |
| // and the message address. |
| if (isEnabledStop(code)) { |
| if (code != kMaxStopCode) { |
| PrintF("Simulator hit stop %u. ", code); |
| } else { |
| PrintF("Simulator hit stop. "); |
| } |
| DebugAtNextPC(); |
| } |
| } else { |
| // This is not a valid svc code. |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| float Simulator::canonicalizeNaN(float value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr uint32_t kDefaultNaN = 0x7FC00000u; |
| if (FPSCR_default_NaN_mode_ && std::isnan(value)) { |
| value = bit_cast<float>(kDefaultNaN); |
| } |
| return value; |
| } |
| |
| Float32 Simulator::canonicalizeNaN(Float32 value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr Float32 kDefaultNaN = Float32::FromBits(0x7FC00000u); |
| return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value; |
| } |
| |
| double Simulator::canonicalizeNaN(double value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr uint64_t kDefaultNaN = uint64_t{0x7FF8000000000000}; |
| if (FPSCR_default_NaN_mode_ && std::isnan(value)) { |
| value = bit_cast<double>(kDefaultNaN); |
| } |
| return value; |
| } |
| |
| Float64 Simulator::canonicalizeNaN(Float64 value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr Float64 kDefaultNaN = |
| Float64::FromBits(uint64_t{0x7FF8000000000000}); |
| return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value; |
| } |
| |
| // Stop helper functions. |
| bool Simulator::isWatchedStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| return code < kNumOfWatchedStops; |
| } |
| |
| bool Simulator::isEnabledStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| // Unwatched stops are always enabled. |
| return !isWatchedStop(code) || |
| !(watched_stops_[code].count & kStopDisabledBit); |
| } |
| |
| void Simulator::EnableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (!isEnabledStop(code)) { |
| watched_stops_[code].count &= ~kStopDisabledBit; |
| } |
| } |
| |
| void Simulator::DisableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (isEnabledStop(code)) { |
| watched_stops_[code].count |= kStopDisabledBit; |
| } |
| } |
| |
| void Simulator::IncreaseStopCounter(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| DCHECK(isWatchedStop(code)); |
| if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { |
| PrintF( |
| "Stop counter for code %i has overflowed.\n" |
| "Enabling this code and reseting the counter to 0.\n", |
| code); |
| watched_stops_[code].count = 0; |
| EnableStop(code); |
| } else { |
| watched_stops_[code].count++; |
| } |
| } |
| |
| // Print a stop status. |
| void Simulator::PrintStopInfo(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| if (!isWatchedStop(code)) { |
| PrintF("Stop not watched."); |
| } else { |
| const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
| int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| // Don't print the state of unused breakpoints. |
| if (count != 0) { |
| if (watched_stops_[code].desc) { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, |
| state, count, watched_stops_[code].desc); |
| } else { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, |
| count); |
| } |
| } |
| } |
| } |
| |
| // Handle execution based on instruction types. |
| |
| // Instruction types 0 and 1 are both rolled into one function because they |
| // only differ in the handling of the shifter_operand. |
| void Simulator::DecodeType01(Instruction* instr) { |
| int type = instr->TypeValue(); |
| if ((type == 0) && instr->IsSpecialType0()) { |
| // multiply instruction or extra loads and stores |
| if (instr->Bits(7, 4) == 9) { |
| if (instr->Bit(24) == 0) { |
| // Raw field decoding here. Multiply instructions have their Rd in |
| // funny places. |
| int rn = instr->RnValue(); |
| int rm = instr->RmValue(); |
| int rs = instr->RsValue(); |
| int32_t rs_val = get_register(rs); |
| int32_t rm_val = get_register(rm); |
| if (instr->Bit(23) == 0) { |
| if (instr->Bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to Rd as being |
| // the destination for the operation, but it confusingly uses the |
| // Rn field to encode it. |
| // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| int rd = rn; // Remap the rn field to the Rd register. |
| int32_t alu_out = base::MulWithWraparound(rm_val, rs_val); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| } |
| } else { |
| int rd = instr->RdValue(); |
| int32_t acc_value = get_register(rd); |
| if (instr->Bit(22) == 0) { |
| // The MLA instruction description (A 4.1.28) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| int32_t mul_out = base::MulWithWraparound(rm_val, rs_val); |
| int32_t result = base::AddWithWraparound(acc_value, mul_out); |
| set_register(rn, result); |
| } else { |
| // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| int32_t mul_out = base::MulWithWraparound(rm_val, rs_val); |
| int32_t result = base::SubWithWraparound(acc_value, mul_out); |
| set_register(rn, result); |
| } |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi and RdLo |
| // when referring to the target registers. They are mapped to the Rn |
| // and Rd fields as follows: |
| // RdLo == Rd |
| // RdHi == Rn (This is confusingly stored in variable rd here |
| // because the mul instruction from above uses the |
| // Rn field to encode the Rd register. Good luck figuring |
| // this out without reading the ARM instruction manual |
| // at a very detailed level.) |
| // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); |
| int rd_hi = rn; // Remap the rn field to the RdHi register. |
| int rd_lo = instr->RdValue(); |
| int32_t hi_res = 0; |
| int32_t lo_res = 0; |
| if (instr->Bit(22) == 1) { |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xFFFFFFFF); |
| } else { |
| // unsigned multiply |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xFFFFFFFF); |
| } |
| set_register(rd_lo, lo_res); |
| set_register(rd_hi, hi_res); |
| if (instr->HasS()) { |
| UNIMPLEMENTED(); |
| } |
| } |
| } else { |
| if (instr->Bits(24, 23) == 3) { |
| if (instr->Bit(20) == 1) { |
| // ldrex |
| int rt = instr->RtValue(); |
| int rn = instr->RnValue(); |
| int32_t addr = get_register(rn); |
| switch (instr->Bits(22, 21)) { |
| case 0: { |
| // Format(instr, "ldrex'cond 'rt, ['rn]"); |
| int value = ReadExW(addr); |
| set_register(rt, value); |
| break; |
| } |
| case 1: { |
| // Format(instr, "ldrexd'cond 'rt, ['rn]"); |
| int* rn_data = ReadExDW(addr); |
| set_dw_register(rt, rn_data); |
| break; |
| } |
| case 2: { |
| // Format(instr, "ldrexb'cond 'rt, ['rn]"); |
| uint8_t value = ReadExBU(addr); |
| set_register(rt, value); |
| break; |
| } |
| case 3: { |
| // Format(instr, "ldrexh'cond 'rt, ['rn]"); |
| uint16_t value = ReadExHU(addr); |
| set_register(rt, value); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // The instruction is documented as strex rd, rt, [rn], but the |
| // "rt" register is using the rm bits. |
| int rd = instr->RdValue(); |
| int rt = instr->RmValue(); |
| int rn = instr->RnValue(); |
| DCHECK_NE(rd, rn); |
| DCHECK_NE(rd, rt); |
| int32_t addr = get_register(rn); |
| switch (instr->Bits(22, 21)) { |
| case 0: { |
| // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| int value = get_register(rt); |
| int status = WriteExW(addr, value); |
| set_register(rd, status); |
| break; |
| } |
| case 1: { |
| // Format(instr, "strexd'cond 'rd, 'rm, ['rn]"); |
| DCHECK_EQ(rt % 2, 0); |
| int32_t value1 = get_register(rt); |
| int32_t value2 = get_register(rt + 1); |
| int status = WriteExDW(addr, value1, value2); |
| set_register(rd, status); |
| break; |
| } |
| case 2: { |
| // Format(instr, "strexb'cond 'rd, 'rm, ['rn]"); |
| uint8_t value = get_register(rt); |
| int status = WriteExB(addr, value); |
| set_register(rd, status); |
| break; |
| } |
| case 3: { |
| // Format(instr, "strexh'cond 'rd, 'rm, ['rn]"); |
| uint16_t value = get_register(rt); |
| int status = WriteExH(addr, value); |
| set_register(rd, status); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| } else { |
| // extra load/store instructions |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t addr = 0; |
| if (instr->Bit(22) == 0) { |
| int rm = instr->RmValue(); |
| int32_t rm_val = get_register(rm); |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val = base::SubWithWraparound(rn_val, rm_val); |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val = base::AddWithWraparound(rn_val, rm_val); |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); |
| rn_val = base::SubWithWraparound(rn_val, rm_val); |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); |
| rn_val = base::AddWithWraparound(rn_val, rm_val); |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val = base::SubWithWraparound(rn_val, imm_val); |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val = base::AddWithWraparound(rn_val, imm_val); |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); |
| rn_val = base::SubWithWraparound(rn_val, imm_val); |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); |
| rn_val = base::AddWithWraparound(rn_val, imm_val); |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (((instr->Bits(7, 4) & 0xD) == 0xD) && (instr->Bit(20) == 0)) { |
| DCHECK_EQ(rd % 2, 0); |
| if (instr->HasH()) { |
| // The strd instruction. |
| int32_t value1 = get_register(rd); |
| int32_t value2 = get_register(rd + 1); |
| WriteDW(addr, value1, value2); |
| } else { |
| // The ldrd instruction. |
| int* rn_data = ReadDW(addr); |
| set_dw_register(rd, rn_data); |
| } |
| } else if (instr->HasH()) { |
| if (instr->HasSign()) { |
| if (instr->HasL()) { |
| int16_t val = ReadH(addr); |
| set_register(rd, val); |
| } else { |
| int16_t val = get_register(rd); |
| WriteH(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| uint16_t val = ReadHU(addr); |
| set_register(rd, val); |
| } else { |
| uint16_t val = get_register(rd); |
| WriteH(addr, val); |
| } |
| } |
| } else { |
| // signed byte loads |
| DCHECK(instr->HasSign()); |
| DCHECK(instr->HasL()); |
| int8_t val = ReadB(addr); |
| set_register(rd, val); |
| } |
| return; |
| } |
| } else if ((type == 0) && instr->IsMiscType0()) { |
| if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && |
| (instr->Bits(15, 4) == 0xF00)) { |
| // MSR |
| int rm = instr->RmValue(); |
| DCHECK_NE(pc, rm); // UNPREDICTABLE |
| SRegisterFieldMask sreg_and_mask = |
| instr->BitField(22, 22) | instr->BitField(19, 16); |
| SetSpecialRegister(sreg_and_mask, get_register(rm)); |
| } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && |
| (instr->Bits(11, 0) == 0)) { |
| // MRS |
| int rd = instr->RdValue(); |
| DCHECK_NE(pc, rd); // UNPREDICTABLE |
| SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22)); |
| set_register(rd, GetFromSpecialRegister(sreg)); |
| } else if (instr->Bits(22, 21) == 1) { |
| int rm = instr->RmValue(); |
| switch (instr->BitField(7, 4)) { |
| case BX: |
| set_pc(get_register(rm)); |
| break; |
| case BLX: { |
| uint32_t old_pc = get_pc(); |
| set_pc(get_register(rm)); |
| set_register(lr, old_pc + kInstrSize); |
| break; |
| } |
| case BKPT: |
| PrintF("Simulator hit BKPT. "); |
| DebugAtNextPC(); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else if (instr->Bits(22, 21) == 3) { |
| int rm = instr->RmValue(); |
| int rd = instr->RdValue(); |
| switch (instr->BitField(7, 4)) { |
| case CLZ: { |
| uint32_t bits = get_register(rm); |
| int leading_zeros = 0; |
| if (bits == 0) { |
| leading_zeros = 32; |
| } else { |
| while ((bits & 0x80000000u) == 0) { |
| bits <<= 1; |
| leading_zeros++; |
| } |
| } |
| set_register(rd, leading_zeros); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else { |
| PrintF("%08x\n", instr->InstructionBits()); |
| UNIMPLEMENTED(); |
| } |
| } else if ((type == 1) && instr->IsNopLikeType1()) { |
| if (instr->BitField(7, 0) == 0) { |
| // NOP. |
| } else if (instr->BitField(7, 0) == 20) { |
| // CSDB. |
| } else { |
| PrintF("%08x\n", instr->InstructionBits()); |
| UNIMPLEMENTED(); |
| } |
| } else { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t shifter_operand = 0; |
| bool shifter_carry_out = 0; |
| if (type == 0) { |
| shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| } else { |
| DCHECK_EQ(instr->TypeValue(), 1); |
| shifter_operand = GetImm(instr, &shifter_carry_out); |
| } |
| int32_t alu_out; |
| |
| switch (instr->OpcodeField()) { |
| case AND: { |
| // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case EOR: { |
| // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case SUB: { |
| // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| alu_out = base::SubWithWraparound(rn_val, shifter_operand); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } |
| break; |
| } |
| |
| case RSB: { |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| alu_out = base::SubWithWraparound(shifter_operand, rn_val); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(shifter_operand, rn_val)); |
| SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); |
| } |
| break; |
| } |
| |
| case ADD: { |
| // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| alu_out = base::AddWithWraparound(rn_val, shifter_operand); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } |
| break; |
| } |
| |
| case ADC: { |
| // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| alu_out = base::AddWithWraparound( |
| base::AddWithWraparound(rn_val, shifter_operand), GetCarry()); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } |
| break; |
| } |
| |
| case SBC: { |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| alu_out = base::SubWithWraparound( |
| base::SubWithWraparound(rn_val, shifter_operand), |
| (GetCarry() ? 0 : 1)); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry())); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } |
| break; |
| } |
| |
| case RSC: { |
| Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| break; |
| } |
| |
| case TST: { |
| if (instr->HasS()) { |
| // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| // Format(instr, "tst'cond 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Format(instr, "movw'cond 'rd, 'imm"). |
| alu_out = instr->ImmedMovwMovtValue(); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case TEQ: { |
| if (instr->HasS()) { |
| // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| // Format(instr, "teq'cond 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case CMP: { |
| if (instr->HasS()) { |
| // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmp'cond 'rn, 'imm"); |
| alu_out = base::SubWithWraparound(rn_val, shifter_operand); |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } else { |
| // Format(instr, "movt'cond 'rd, 'imm"). |
| alu_out = |
| (get_register(rd) & 0xFFFF) | (instr->ImmedMovwMovtValue() << 16); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case CMN: { |
| if (instr->HasS()) { |
| // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmn'cond 'rn, 'imm"); |
| alu_out = base::AddWithWraparound(rn_val, shifter_operand); |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case ORR: { |
| // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val | shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MOV: { |
| // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mov'cond's 'rd, 'imm"); |
| alu_out = shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case BIC: { |
| // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MVN: { |
| // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mvn'cond's 'rd, 'imm"); |
| alu_out = ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| void Simulator::DecodeType2(Instruction* instr) { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t im_val = instr->Offset12Value(); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val += im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| rn_val -= im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| rn_val += im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| } |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| byte val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| byte val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr)); |
| } else { |
| WriteW(addr, get_register(rd)); |
| } |
| } |
| } |
| |
| void Simulator::DecodeType3(Instruction* instr) { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| bool shifter_carry_out = 0; |
| int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case da_x: { |
| DCHECK(!instr->HasW()); |
| Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| UNIMPLEMENTED(); |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(4) == 0) { |
| // Memop. |
| } else { |
| if (instr->Bit(5) == 0) { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| if (instr->Bit(20) == 0) { |
| if (instr->Bit(6) == 0) { |
| // Pkhbt. |
| uint32_t rn_val = get_register(rn); |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t shift = instr->Bits(11, 7); |
| rm_val <<= shift; |
| set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); |
| } else { |
| // Pkhtb. |
| uint32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t shift = instr->Bits(11, 7); |
| if (shift == 0) { |
| shift = 32; |
| } |
| rm_val >>= shift; |
| set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| case 1: |
| UNIMPLEMENTED(); |
| break; |
| case 2: |
| UNIMPLEMENTED(); |
| break; |
| case 3: { |
| // Usat. |
| int32_t sat_pos = instr->Bits(20, 16); |
| int32_t sat_val = (1 << sat_pos) - 1; |
| int32_t shift = instr->Bits(11, 7); |
| int32_t shift_type = instr->Bit(6); |
| int32_t rm_val = get_register(instr->RmValue()); |
| if (shift_type == 0) { // LSL |
| rm_val <<= shift; |
| } else { // ASR |
| rm_val >>= shift; |
| } |
| // If saturation occurs, the Q flag should be set in the CPSR. |
| // There is no Q flag yet, and no instruction (MRS) to read the |
| // CPSR directly. |
| if (rm_val > sat_val) { |
| rm_val = sat_val; |
| } else if (rm_val < 0) { |
| rm_val = 0; |
| } |
| set_register(rd, rm_val); |
| break; |
| } |
| } |
| } else { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| UNIMPLEMENTED(); |
| break; |
| case 1: |
| if (instr->Bits(9, 6) == 1) { |
| if (instr->Bit(20) == 0) { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Sxtb. |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, static_cast<int8_t>(rm_val)); |
| } else { |
| // Sxtab. |
| int32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, rn_val + static_cast<int8_t>(rm_val)); |
| } |
| } else { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Sxth. |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, static_cast<int16_t>(rm_val)); |
| } else { |
| // Sxtah. |
| int32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, rn_val + static_cast<int16_t>(rm_val)); |
| } |
| } |
| } else if (instr->Bits(27, 16) == 0x6BF && |
| instr->Bits(11, 4) == 0xF3) { |
| // Rev. |
| uint32_t rm_val = get_register(instr->RmValue()); |
| set_register(rd, ByteReverse(rm_val)); |
| } else { |
| UNREACHABLE(); |
| } |
| break; |
| case 2: |
| if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Uxtb16. |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| case 3: |
| if ((instr->Bits(9, 6) == 1)) { |
| if (instr->Bit(20) == 0) { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Uxtb. |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, (rm_val & 0xFF)); |
| } else { |
| // Uxtab. |
| uint32_t rn_val = get_register(rn); |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, rn_val + (rm_val & 0xFF)); |
| } |
| } else { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Uxth. |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, (rm_val & 0xFFFF)); |
| } else { |
| // Uxtah. |
| uint32_t rn_val = get_register(rn); |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
| set_register(rd, rn_val + (rm_val & 0xFFFF)); |
| } |
| } |
| } else { |
| // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001 |
| if ((instr->Bits(20, 16) == 0x1F) && |
| (instr->Bits(11, 4) == 0xF3)) { |
| // Rbit. |
| uint32_t rm_val = get_register(instr->RmValue()); |
| set_register(rd, base::bits::ReverseBits(rm_val)); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| break; |
| } |
| } |
| return; |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bits(22, 20) == 0x5) { |
| if (instr->Bits(7, 4) == 0x1) { |
| int rm = instr->RmValue(); |
| int32_t rm_val = get_register(rm); |
| int rs = instr->RsValue(); |
| int32_t rs_val = get_register(rs); |
| if (instr->Bits(15, 12) == 0xF) { |
| // SMMUL (in V8 notation matching ARM ISA format) |
| // Format(instr, "smmul'cond 'rn, 'rm, 'rs"); |
| rn_val = base::bits::SignedMulHigh32(rm_val, rs_val); |
| } else { |
| // SMMLA (in V8 notation matching ARM ISA format) |
| // Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); |
| int rd = instr->RdValue(); |
| int32_t rd_val = get_register(rd); |
| rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val); |
| } |
| set_register(rn, rn_val); |
| return; |
| } |
| } |
| if (instr->Bits(5, 4) == 0x1) { |
| if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { |
| // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs |
| // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs); |
| int rm = instr->RmValue(); |
| int32_t rm_val = get_register(rm); |
| int rs = instr->RsValue(); |
| int32_t rs_val = get_register(rs); |
| int32_t ret_val = 0; |
| // udiv |
| if (instr->Bit(21) == 0x1) { |
| ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32( |
| bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val))); |
| } else { |
| ret_val = base::bits::SignedDiv32(rm_val, rs_val); |
| } |
| set_register(rn, ret_val); |
| return; |
| } |
| } |
| // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| addr = rn_val - shifter_operand; |
| if (instr->HasW()) { |
| set_register(rn, addr); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { |
| uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = widthminus1 + lsbit; |
| if (msbit <= 31) { |
| if (instr->Bit(22)) { |
| // ubfx - unsigned bitfield extract. |
| uint32_t rm_val = |
| static_cast<uint32_t>(get_register(instr->RmValue())); |
| uint32_t extr_val = rm_val << (31 - msbit); |
| extr_val = extr_val >> (31 - widthminus1); |
| set_register(instr->RdValue(), extr_val); |
| } else { |
| // sbfx - signed bitfield extract. |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t extr_val = static_cast<uint32_t>(rm_val) << (31 - msbit); |
| extr_val = extr_val >> (31 - widthminus1); |
| set_register(instr->RdValue(), extr_val); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| return; |
| } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); |
| if (msbit >= lsbit) { |
| // bfc or bfi - bitfield clear/insert. |
| uint32_t rd_val = |
| static_cast<uint32_t>(get_register(instr->RdValue())); |
| uint32_t bitcount = msbit - lsbit + 1; |
| uint32_t mask = 0xFFFFFFFFu >> (32 - bitcount); |
| rd_val &= ~(mask << lsbit); |
| if (instr->RmValue() != 15) { |
| // bfi - bitfield insert. |
| uint32_t rm_val = |
| static_cast<uint32_t>(get_register(instr->RmValue())); |
| rm_val &= mask; |
| rd_val |= rm_val << lsbit; |
| } |
| set_register(instr->RdValue(), rd_val); |
| } else { |
| UNREACHABLE(); |
| } |
| return; |
| } else { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| addr = base::AddWithWraparound(rn_val, shifter_operand); |
| if (instr->HasW()) { |
| set_register(rn, addr); |
| } |
| } |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| } |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| uint8_t byte = ReadB(addr); |
| set_register(rd, byte); |
| } else { |
| uint8_t byte = get_register(rd); |
| WriteB(addr, byte); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr)); |
| } else { |
| WriteW(addr, get_register(rd)); |
| } |
| } |
| } |
| |
| void Simulator::DecodeType4(Instruction* instr) { |
| DCHECK_EQ(instr->Bit(22), 0); // only allowed to be set in privileged mode |
| if (instr->HasL()) { |
| // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, true); |
| } else { |
| // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, false); |
| } |
| } |
| |
| void Simulator::DecodeType5(Instruction* instr) { |
| // Format(instr, "b'l'cond 'target"); |
| int off = |
| static_cast<int>(static_cast<uint32_t>(instr->SImmed24Value()) << 2); |
| intptr_t pc_address = get_pc(); |
| if (instr->HasLink()) { |
| set_register(lr, pc_address + kInstrSize); |
| } |
| int pc_reg = get_register(pc); |
| set_pc(pc_reg + off); |
| } |
| |
| void Simulator::DecodeType6(Instruction* instr) { |
| DecodeType6CoprocessorIns(instr); |
| } |
| |
| void Simulator::DecodeType7(Instruction* instr) { |
| if (instr->Bit(24) == 1) { |
| SoftwareInterrupt(instr); |
| } else { |
| switch (instr->CoprocessorValue()) { |
| case 10: // Fall through. |
| case 11: |
| DecodeTypeVFP(instr); |
| break; |
| case 15: |
| DecodeTypeCP15(instr); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| } |
| } |
| |
| // void Simulator::DecodeTypeVFP(Instruction* instr) |
| // The Following ARMv7 VFPv instructions are currently supported. |
| // vmov :Sn = Rt |
| // vmov :Rt = Sn |
| // vcvt: Dd = Sm |
| // vcvt: Sd = Dm |
| // vcvt.f64.s32 Dd, Dd, #<fbits> |
| // Dd = vabs(Dm) |
| // Sd = vabs(Sm) |
| // Dd = vneg(Dm) |
| // Sd = vneg(Sm) |
| // Dd = vadd(Dn, Dm) |
| // Sd = vadd(Sn, Sm) |
| // Dd = vsub(Dn, Dm) |
| // Sd = vsub(Sn, Sm) |
| // Dd = vmul(Dn, Dm) |
| // Sd = vmul(Sn, Sm) |
| // Dd = vdiv(Dn, Dm) |
| // Sd = vdiv(Sn, Sm) |
| // vcmp(Dd, Dm) |
| // vcmp(Sd, Sm) |
| // Dd = vsqrt(Dm) |
| // Sd = vsqrt(Sm) |
| // vmrs |
| // vdup.size Qd, Rt. |
| void Simulator::DecodeTypeVFP(Instruction* instr) { |
| DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); |
| DCHECK_EQ(instr->Bits(11, 9), 0x5); |
| // Obtain single precision register codes. |
| int m = instr->VFPMRegValue(kSinglePrecision); |
| int d = instr->VFPDRegValue(kSinglePrecision); |
| int n = instr->VFPNRegValue(kSinglePrecision); |
| // Obtain double precision register codes. |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| int vn = instr->VFPNRegValue(kDoublePrecision); |
| |
| if (instr->Bit(4) == 0) { |
| if (instr->Opc1Value() == 0x7) { |
| // Other data processing instructions |
| if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { |
| // vmov register to register. |
| if (instr->SzValue() == 0x1) { |
| uint32_t data[2]; |
| get_d_register(vm, data); |
| set_d_register(vd, data); |
| } else { |
| set_s_register(d, get_s_register(m)); |
| } |
| } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { |
| // vabs |
| if (instr->SzValue() == 0x1) { |
| Float64 dm = get_double_from_d_register(vm); |
| constexpr uint64_t kSignBit64 = uint64_t{1} << 63; |
| Float64 dd = Float64::FromBits(dm.get_bits() & ~kSignBit64); |
| dd = canonicalizeNaN(dd); |
| set_d_register_from_double(vd, dd); |
| } else { |
| Float32 sm = get_float_from_s_register(m); |
| constexpr uint32_t kSignBit32 = uint32_t{1} << 31; |
| Float32 sd = Float32::FromBits(sm.get_bits() & ~kSignBit32); |
| sd = canonicalizeNaN(sd); |
| set_s_register_from_float(d, sd); |
| } |
| } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { |
| // vneg |
| if (instr->SzValue() == 0x1) { |
| Float64 dm = get_double_from_d_register(vm); |
| constexpr uint64_t kSignBit64 = uint64_t{1} << 63; |
| Float64 dd = Float64::FromBits(dm.get_bits() ^ kSignBit64); |
| dd = canonicalizeNaN(dd); |
| set_d_register_from_double(vd, dd); |
| } else { |
| Float32 sm = get_float_from_s_register(m); |
| constexpr uint32_t kSignBit32 = uint32_t{1} << 31; |
| Float32 sd = Float32::FromBits(sm.get_bits() ^ kSignBit32); |
| sd = canonicalizeNaN(sd); |
| set_s_register_from_float(d, sd); |
| } |
| } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { |
| DecodeVCVTBetweenDoubleAndSingle(instr); |
| } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && |
| (instr->Bit(8) == 1)) { |
| // vcvt.f64.s32 Dd, Dd, #<fbits> |
| int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); |
| int fixed_value = get_sinteger_from_s_register(vd * 2); |
| double divide = 1 << fraction_bits; |
| set_d_register_from_double(vd, fixed_value / divide); |
| } else if (((instr->Opc2Value() >> 1) == 0x6) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCMP(instr); |
| } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { |
| // vsqrt |
| if (instr->SzValue() == 0x1) { |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = std::sqrt(dm_value); |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = std::sqrt(sm_value); |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else if (instr->Opc3Value() == 0x0) { |
| // vmov immediate. |
| if (instr->SzValue() == 0x1) { |
| set_d_register_from_double(vd, instr->DoubleImmedVmov()); |
| } else { |
| // Cast double to float. |
| float value = instr->DoubleImmedVmov().get_scalar(); |
| set_s_register_from_float(d, value); |
| } |
| } else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) { |
| // vrintz - truncate |
| if (instr->SzValue() == 0x1) { |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = trunc(dm_value); |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = truncf(sm_value); |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else { |
| UNREACHABLE(); // Not used by V8. |
| } |
| } else if (instr->Opc1Value() == 0x3) { |
| if (instr->Opc3Value() & 0x1) { |
| // vsub |
| if (instr->SzValue() == 0x1) { |
| double dn_value = get_double_from_d_register(vn).get_scalar(); |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = dn_value - dm_value; |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sn_value = get_float_from_s_register(n).get_scalar(); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = sn_value - sm_value; |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else { |
| // vadd |
| if (instr->SzValue() == 0x1) { |
| double dn_value = get_double_from_d_register(vn).get_scalar(); |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = dn_value + dm_value; |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sn_value = get_float_from_s_register(n).get_scalar(); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = sn_value + sm_value; |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } |
| } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { |
| // vmul |
| if (instr->SzValue() == 0x1) { |
| double dn_value = get_double_from_d_register(vn).get_scalar(); |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = dn_value * dm_value; |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sn_value = get_float_from_s_register(n).get_scalar(); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = sn_value * sm_value; |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else if ((instr->Opc1Value() == 0x0)) { |
| // vmla, vmls |
| const bool is_vmls = (instr->Opc3Value() & 0x1); |
| if (instr->SzValue() == 0x1) { |
| const double dd_val = get_double_from_d_register(vd).get_scalar(); |
| const double dn_val = get_double_from_d_register(vn).get_scalar(); |
| const double dm_val = get_double_from_d_register(vm).get_scalar(); |
| |
| // Note: we do the mul and add/sub in separate steps to avoid getting a |
| // result with too high precision. |
| const double res = dn_val * dm_val; |
| set_d_register_from_double(vd, res); |
| if (is_vmls) { |
| set_d_register_from_double(vd, canonicalizeNaN(dd_val - res)); |
| } else { |
| set_d_register_from_double(vd, canonicalizeNaN(dd_val + res)); |
| } |
| } else { |
| const float sd_val = get_float_from_s_register(d).get_scalar(); |
| const float sn_val = get_float_from_s_register(n).get_scalar(); |
| const float sm_val = get_float_from_s_register(m).get_scalar(); |
| |
| // Note: we do the mul and add/sub in separate steps to avoid getting a |
| // result with too high precision. |
| const float res = sn_val * sm_val; |
| set_s_register_from_float(d, res); |
| if (is_vmls) { |
| set_s_register_from_float(d, canonicalizeNaN(sd_val - res)); |
| } else { |
| set_s_register_from_float(d, canonicalizeNaN(sd_val + res)); |
| } |
| } |
| } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { |
| // vdiv |
| if (instr->SzValue() == 0x1) { |
| double dn_value = get_double_from_d_register(vn).get_scalar(); |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = base::Divide(dn_value, dm_value); |
| div_zero_vfp_flag_ = (dm_value == 0); |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| float sn_value = get_float_from_s_register(n).get_scalar(); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = base::Divide(sn_value, sm_value); |
| div_zero_vfp_flag_ = (sm_value == 0); |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } else { |
| if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) { |
| DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); |
| } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) { |
| if (instr->Bit(23) == 0) { |
| // vmov (ARM core register to scalar) |
| int vd = instr->VFPNRegValue(kDoublePrecision); |
| int rt = instr->RtValue(); |
| int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5); |
| if ((opc1_opc2 & 0xB) == 0) { |
| // NeonS32/NeonU32 |
| uint32_t data[2]; |
| get_d_register(vd, data); |
| data[instr->Bit(21)] = get_register(rt); |
| set_d_register(vd, data); |
| } else { |
| uint64_t data; |
| get_d_register(vd, &data); |
| uint64_t rt_value = get_register(rt); |
| if ((opc1_opc2 & 0x8) != 0) { |
| // NeonS8 / NeonU8 |
| int i = opc1_opc2 & 0x7; |
| int shift = i * kBitsPerByte; |
| const uint64_t mask = 0xFF; |
| data &= ~(mask << shift); |
| data |= (rt_value & mask) << shift; |
| set_d_register(vd, &data); |
| } else if ((opc1_opc2 & 0x1) != 0) { |
| // NeonS16 / NeonU16 |
| int i = (opc1_opc2 >> 1) & 0x3; |
| int shift = i * kBitsPerByte * kShortSize; |
| const uint64_t mask = 0xFFFF; |
| data &= ~(mask << shift); |
| data |= (rt_value & mask) << shift; |
| set_d_register(vd, &data); |
| } else { |
| UNREACHABLE(); // Not used by V8. |
| } |
| } |
| } else { |
| // vdup.size Qd, Rt. |
| NeonSize size = Neon32; |
| if (instr->Bit(5) != 0) |
| size = Neon16; |
| else if (instr->Bit(22) != 0) |
| size = Neon8; |
| int vd = instr->VFPNRegValue(kSimd128Precision); |
| int rt = instr->RtValue(); |
| uint32_t rt_value = get_register(rt); |
| uint32_t q_data[4]; |
| switch (size) { |
| case Neon8: { |
| rt_value &= 0xFF; |
| uint8_t* dst = reinterpret_cast<uint8_t*>(q_data); |
| for (int i = 0; i < 16; i++) { |
| dst[i] = rt_value; |
| } |
| break; |
| } |
| case Neon16: { |
| // Perform pairwise op. |
| rt_value &= 0xFFFFu; |
| uint32_t rt_rt = (rt_value << 16) | (rt_value & 0xFFFFu); |
| for (int i = 0; i < 4; i++) { |
| q_data[i] = rt_rt; |
| } |
| break; |
| } |
| case Neon32: { |
| for (int i = 0; i < 4; i++) { |
| q_data[i] = rt_value; |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| set_neon_register(vd, q_data); |
| } |
| } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) { |
| // vmov (scalar to ARM core register) |
| int vn = instr->VFPNRegValue(kDoublePrecision); |
| int rt = instr->RtValue(); |
| int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5); |
| uint64_t data; |
| get_d_register(vn, &data); |
| if ((opc1_opc2 & 0xB) == 0) { |
| // NeonS32 / NeonU32 |
| int32_t int_data[2]; |
| memcpy(int_data, &data, sizeof(int_data)); |
| set_register(rt, int_data[instr->Bit(21)]); |
| } else { |
| uint64_t data; |
| get_d_register(vn, &data); |
| bool u = instr->Bit(23) != 0; |
| if ((opc1_opc2 & 0x8) != 0) { |
| // NeonS8 / NeonU8 |
| int i = opc1_opc2 & 0x7; |
| int shift = i * kBitsPerByte; |
| uint32_t scalar = (data >> shift) & 0xFFu; |
| if (!u && (scalar & 0x80) != 0) scalar |= 0xFFFFFF00; |
| set_register(rt, scalar); |
| } else if ((opc1_opc2 & 0x1) != 0) { |
| // NeonS16 / NeonU16 |
| int i = (opc1_opc2 >> 1) & 0x3; |
| int shift = i * kBitsPerByte * kShortSize; |
| uint32_t scalar = (data >> shift) & 0xFFFFu; |
| if (!u && (scalar & 0x8000) != 0) scalar |= 0xFFFF0000; |
| set_register(rt, scalar); |
| } else { |
| UNREACHABLE(); // Not used by V8. |
| } |
| } |
| } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) { |
| // vmrs |
| uint32_t rt = instr->RtValue(); |
| if (rt == 0xF) { |
| Copy_FPSCR_to_APSR(); |
| } else { |
| // Emulate FPSCR from the Simulator flags. |
| uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) | |
| (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) | |
| (FPSCR_default_NaN_mode_ << 25) | |
| (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) | |
| (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) | |
| (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_); |
| set_register(rt, fpscr); |
| } |
| } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) { |
| // vmsr |
| uint32_t rt = instr->RtValue(); |
| if (rt == pc) { |
| UNREACHABLE(); |
| } else { |
| uint32_t rt_value = get_register(rt); |
| n_flag_FPSCR_ = (rt_value >> 31) & 1; |
| z_flag_FPSCR_ = (rt_value >> 30) & 1; |
| c_flag_FPSCR_ = (rt_value >> 29) & 1; |
| v_flag_FPSCR_ = (rt_value >> 28) & 1; |
| FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; |
| inexact_vfp_flag_ = (rt_value >> 4) & 1; |
| underflow_vfp_flag_ = (rt_value >> 3) & 1; |
| overflow_vfp_flag_ = (rt_value >> 2) & 1; |
| div_zero_vfp_flag_ = (rt_value >> 1) & 1; |
| inv_op_vfp_flag_ = (rt_value >> 0) & 1; |
| FPSCR_rounding_mode_ = |
| static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask); |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| } |
| |
| void Simulator::DecodeTypeCP15(Instruction* instr) { |
| DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); |
| DCHECK_EQ(instr->CoprocessorValue(), 15); |
| |
| if (instr->Bit(4) == 1) { |
| // mcr |
| int crn = instr->Bits(19, 16); |
| int crm = instr->Bits(3, 0); |
| int opc1 = instr->Bits(23, 21); |
| int opc2 = instr->Bits(7, 5); |
| if ((opc1 == 0) && (crn == 7)) { |
| // ARMv6 memory barrier operations. |
| // Details available in ARM DDI 0406C.b, B3-1750. |
| if (((crm == 10) && (opc2 == 5)) || // CP15DMB |
| ((crm == 10) && (opc2 == 4)) || // CP15DSB |
| ((crm == 5) && (opc2 == 4))) { // CP15ISB |
| // These are ignored by the simulator for now. |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( |
| Instruction* instr) { |
| DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x0)); |
| |
| int t = instr->RtValue(); |
| int n = instr->VFPNRegValue(kSinglePrecision); |
| bool to_arm_register = (instr->VLValue() == 0x1); |
| |
| if (to_arm_register) { |
| int32_t int_value = get_sinteger_from_s_register(n); |
| set_register(t, int_value); |
| } else { |
| int32_t rs_val = get_register(t); |
| set_s_register_from_sinteger(n, rs_val); |
| } |
| } |
| |
| void Simulator::DecodeVCMP(Instruction* instr) { |
| DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)); |
| // Comparison. |
| |
| VFPRegPrecision precision = kSinglePrecision; |
| if (instr->SzValue() == 0x1) { |
| precision = kDoublePrecision; |
| } |
| |
| int d = instr->VFPDRegValue(precision); |
| int m = 0; |
| if (instr->Opc2Value() == 0x4) { |
| m = instr->VFPMRegValue(precision); |
| } |
| |
| if (precision == kDoublePrecision) { |
| double dd_value = get_double_from_d_register(d).get_scalar(); |
| double dm_value = 0.0; |
| if (instr->Opc2Value() == 0x4) { |
| dm_value = get_double_from_d_register(m).get_scalar(); |
| } |
| |
| // Raise exceptions for quiet NaNs if necessary. |
| if (instr->Bit(7) == 1) { |
| if (std::isnan(dd_value)) { |
| inv_op_vfp_flag_ = true; |
| } |
| } |
| |
| Compute_FPSCR_Flags(dd_value, dm_value); |
| } else { |
| float sd_value = get_float_from_s_register(d).get_scalar(); |
| float sm_value = 0.0; |
| if (instr->Opc2Value() == 0x4) { |
| sm_value = get_float_from_s_register(m).get_scalar(); |
| } |
| |
| // Raise exceptions for quiet NaNs if necessary. |
| if (instr->Bit(7) == 1) { |
| if (std::isnan(sd_value)) { |
| inv_op_vfp_flag_ = true; |
| } |
| } |
| |
| Compute_FPSCR_Flags(sd_value, sm_value); |
| } |
| } |
| |
| void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { |
| DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); |
| |
| VFPRegPrecision dst_precision = kDoublePrecision; |
| VFPRegPrecision src_precision = kSinglePrecision; |
| if (instr->SzValue() == 1) { |
| dst_precision = kSinglePrecision; |
| src_precision = kDoublePrecision; |
| } |
| |
| int dst = instr->VFPDRegValue(dst_precision); |
| int src = instr->VFPMRegValue(src_precision); |
| |
| if (dst_precision == kSinglePrecision) { |
| double val = get_double_from_d_register(src).get_scalar(); |
| set_s_register_from_float(dst, static_cast<float>(val)); |
| } else { |
| float val = get_float_from_s_register(src).get_scalar(); |
| set_d_register_from_double(dst, static_cast<double>(val)); |
| } |
| } |
| |
| bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, bool unsigned_) { |
| DCHECK((mode == RN) || (mode == RM) || (mode == RZ)); |
| double max_uint = static_cast<double>(0xFFFFFFFFu); |
| double max_int = static_cast<double>(kMaxInt); |
| double min_int = static_cast<double>(kMinInt); |
| |
| // Check for NaN. |
| if (val != val) { |
| return true; |
| } |
| |
| // Check for overflow. This code works because 32bit integers can be |
| // exactly represented by ieee-754 64bit floating-point values. |
| switch (mode) { |
| case RN: |
| return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5) |
| : (val >= (max_int + 0.5)) || (val < (min_int - 0.5)); |
| |
| case RM: |
| return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0) |
| : (val >= (max_int + 1.0)) || (val < min_int); |
| |
| case RZ: |
| return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1) |
| : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0)); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // We call this function only if we had a vfp invalid exception. |
| // It returns the correct saturated value. |
| int VFPConversionSaturate(double val, bool unsigned_res) { |
| if (val != val) { |
| return 0; |
| } else { |
| if (unsigned_res) { |
| return (val < 0) ? 0 : 0xFFFFFFFFu; |
| } else { |
| return (val < 0) ? kMinInt : kMaxInt; |
| } |
| } |
| } |
| |
| int32_t Simulator::ConvertDoubleToInt(double val, bool unsigned_integer, |
| VFPRoundingMode mode) { |
| int32_t result; |
| if (unsigned_integer) { |
| // The FastD2UI helper does not have the rounding behavior we want here |
| // (it doesn't guarantee any particular rounding, and it doesn't check |
| // for or handle overflow), so do the conversion by hand. |
| using limits = std::numeric_limits<uint32_t>; |
| if (val > limits::max()) { |
| result = limits::max(); |
| } else if (!(val >= 0)) { // Negation to catch NaNs. |
| result = 0; |
| } else { |
| result = static_cast<uint32_t>(val); |
| } |
| } else { |
| result = FastD2IChecked(val); |
| } |
| |
| inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); |
| |
| double abs_diff = unsigned_integer |
| ? std::fabs(val - static_cast<uint32_t>(result)) |
| : std::fabs(val - result); |
| |
| inexact_vfp_flag_ = (abs_diff != 0); |
| |
| if (inv_op_vfp_flag_) { |
| result = VFPConversionSaturate(val, unsigned_integer); |
| } else { |
| switch (mode) { |
| case RN: { |
| int val_sign = (val > 0) ? 1 : -1; |
| if (abs_diff > 0.5) { |
| result += val_sign; |
| } else if (abs_diff == 0.5) { |
| // Round to even if exactly halfway. |
| result = ((result % 2) == 0) |
| ? result |
| : base::AddWithWraparound(result, val_sign); |
| } |
| break; |
| } |
| |
| case RM: |
| result = result > val ? result - 1 : result; |
| break; |
| |
| case RZ: |
| // Nothing to do. |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| return result; |
| } |
| |
| void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { |
| DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && |
| (instr->Bits(27, 23) == 0x1D)); |
| DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || |
| (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); |
| |
| // Conversion between floating-point and integer. |
| bool to_integer = (instr->Bit(18) == 1); |
| |
| VFPRegPrecision src_precision = |
| (instr->SzValue() == 1) ? kDoublePrecision : kSinglePrecision; |
| |
| if (to_integer) { |
| // We are playing with code close to the C++ standard's limits below, |
| // hence the very simple code and heavy checks. |
| // |
| // Note: |
| // C++ defines default type casting from floating point to integer as |
| // (close to) rounding toward zero ("fractional part discarded"). |
| |
| int dst = instr->VFPDRegValue(kSinglePrecision); |
| int src = instr->VFPMRegValue(src_precision); |
| |
| // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding |
| // mode or the default Round to Zero mode. |
| VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ : RZ; |
| DCHECK((mode == RM) || (mode == RZ) || (mode == RN)); |
| |
| bool unsigned_integer = (instr->Bit(16) == 0); |
| bool double_precision = (src_precision == kDoublePrecision); |
| |
| double val = double_precision ? get_double_from_d_register(src).get_scalar() |
| : get_float_from_s_register(src).get_scalar(); |
| |
| int32_t temp = ConvertDoubleToInt(val, unsigned_integer, mode); |
| |
| // Update the destination register. |
| set_s_register_from_sinteger(dst, temp); |
| |
| } else { |
| bool unsigned_integer = (instr->Bit(7) == 0); |
| |
| int dst = instr->VFPDRegValue(src_precision); |
| int src = instr->VFPMRegValue(kSinglePrecision); |
| |
| int val = get_sinteger_from_s_register(src); |
| |
| if (src_precision == kDoublePrecision) { |
| if (unsigned_integer) { |
| set_d_register_from_double( |
| dst, static_cast<double>(static_cast<uint32_t>(val))); |
| } else { |
| set_d_register_from_double(dst, static_cast<double>(val)); |
| } |
| } else { |
| if (unsigned_integer) { |
| set_s_register_from_float( |
| dst, static_cast<float>(static_cast<uint32_t>(val))); |
| } else { |
| set_s_register_from_float(dst, static_cast<float>(val)); |
| } |
| } |
| } |
| } |
| |
| // void Simulator::DecodeType6CoprocessorIns(Instruction* instr) |
| // Decode Type 6 coprocessor instructions. |
| // Dm = vmov(Rt, Rt2) |
| // <Rt, Rt2> = vmov(Dm) |
| // Ddst = MEM(Rbase + 4*offset). |
| // MEM(Rbase + 4*offset) = Dsrc. |
| void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { |
| DCHECK_EQ(instr->TypeValue(), 6); |
| |
| if (instr->CoprocessorValue() == 0xA) { |
| switch (instr->OpcodeValue()) { |
| case 0x8: |
| case 0xA: |
| case 0xC: |
| case 0xE: { // Load and store single precision float to memory. |
| int rn = instr->RnValue(); |
| int vd = instr->VFPDRegValue(kSinglePrecision); |
| int offset = instr->Immed8Value(); |
| if (!instr->HasU()) { |
| offset = -offset; |
| } |
| |
| int32_t address = get_register(rn) + 4 * offset; |
| // Load and store address for singles must be at least four-byte |
| // aligned. |
| DCHECK_EQ(address % 4, 0); |
| if (instr->HasL()) { |
| // Load single from memory: vldr. |
| set_s_register_from_sinteger(vd, ReadW(address)); |
| } else { |
| // Store single to memory: vstr. |
| WriteW(address, get_sinteger_from_s_register(vd)); |
| } |
| break; |
| } |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x9: |
| case 0xB: |
| // Load/store multiple single from memory: vldm/vstm. |
| HandleVList(instr); |
| break; |
| default: |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } else if (instr->CoprocessorValue() == 0xB) { |
| switch (instr->OpcodeValue()) { |
| case 0x2: |
| // Load and store double to two GP registers |
| if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { |
| UNIMPLEMENTED(); // Not used by V8. |
| } else { |
| int rt = instr->RtValue(); |
| int rn = instr->RnValue(); |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| if (instr->HasL()) { |
| uint32_t data[2]; |
| get_d_register(vm, data); |
| set_register(rt, data[0]); |
| set_register(rn, data[1]); |
| } else { |
| int32_t data[] = {get_register(rt), get_register(rn)}; |
| set_d_register(vm, reinterpret_cast<uint32_t*>(data)); |
| } |
| } |
| break; |
| case 0x8: |
| case 0xA: |
| case 0xC: |
| case 0xE: { // Load and store double to memory. |
| int rn = instr->RnValue(); |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| int offset = instr->Immed8Value(); |
| if (!instr->HasU()) { |
| offset = -offset; |
| } |
| int32_t address = get_register(rn) + 4 * offset; |
| // Load and store address for doubles must be at least four-byte |
| // aligned. |
| DCHECK_EQ(address % 4, 0); |
| if (instr->HasL()) { |
| // Load double from memory: vldr. |
| int32_t data[] = {ReadW(address), ReadW(address + 4)}; |
| set_d_register(vd, reinterpret_cast<uint32_t*>(data)); |
| } else { |
| // Store double to memory: vstr. |
| uint32_t data[2]; |
| get_d_register(vd, data); |
| WriteW(address, data[0]); |
| WriteW(address + 4, data[1]); |
| } |
| break; |
| } |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x9: |
| case 0xB: |
| // Load/store multiple double from memory: vldm/vstm. |
| HandleVList(instr); |
| break; |
| default: |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| |
| // Helper functions for implementing NEON ops. Unop applies a unary op to each |
| // lane. Binop applies a binary operation to matching input lanes. |
| template <typename T> |
| void Unop(Simulator* simulator, int Vd, int Vm, std::function<T(T)> unop) { |
| static const int kLanes = 16 / sizeof(T); |
| T src[kLanes]; |
| simulator->get_neon_register(Vm, src); |
| for (int i = 0; i < kLanes; i++) { |
| src[i] = unop(src[i]); |
| } |
| simulator->set_neon_register(Vd, src); |
| } |
| |
| template <typename T> |
| void Binop(Simulator* simulator, int Vd, int Vm, int Vn, |
| std::function<T(T, T)> binop) { |
| static const int kLanes = 16 / sizeof(T); |
| T src1[kLanes], src2[kLanes]; |
| simulator->get_neon_register(Vn, src1); |
| simulator->get_neon_register(Vm, src2); |
| for (int i = 0; i < kLanes; i++) { |
| src1[i] = binop(src1[i], src2[i]); |
| } |
| simulator->set_neon_register(Vd, src1); |
| } |
| |
| // Templated operations for NEON instructions. |
| template <typename T, typename U> |
| U Widen(T value) { |
| static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller"); |
| static_assert(sizeof(U) > sizeof(T), "T must smaller than U"); |
| return static_cast<U>(value); |
| } |
| |
| template <typename T, typename U> |
| U Narrow(T value) { |
| static_assert(sizeof(int8_t) < sizeof(T), "T must be int16_t or larger"); |
| static_assert(sizeof(U) < sizeof(T), "T must larger than U"); |
| static_assert(std::is_unsigned<T>() == std::is_unsigned<U>(), |
| "Signed-ness of T and U must match"); |
| // Make sure value can be expressed in the smaller type; otherwise, the |
| // casted result is implementation defined. |
| DCHECK_LE(std::numeric_limits<T>::min(), value); |
| DCHECK_GE(std::numeric_limits<T>::max(), value); |
| return static_cast<U>(value); |
| } |
| |
| template <typename T, typename U> |
| void Widen(Simulator* simulator, int Vd, int Vm) { |
| static const int kLanes = 8 / sizeof(T); |
| T src[kLanes]; |
| U dst[kLanes]; |
| simulator->get_neon_register<T, kDoubleSize>(Vm, src); |
| for (int i = 0; i < kLanes; i++) { |
| dst[i] = Widen<T, U>(src[i]); |
| } |
| simulator->set_neon_register(Vd, dst); |
| } |
| |
| template <typename T, int SIZE> |
| void Abs(Simulator* simulator, int Vd, int Vm) { |
| Unop<T>(simulator, Vd, Vm, [](T x) { return std::abs(x); }); |
| } |
| |
| template <typename T, int SIZE> |
| void Neg(Simulator* simulator, int Vd, int Vm) { |
| Unop<T>(simulator, Vd, Vm, [](T x) { |
| // The respective minimum (negative) value maps to itself. |
| return x == std::numeric_limits<T>::min() ? x : -x; |
| }); |
| } |
| |
| template <typename T, typename U> |
| void SaturatingNarrow(Simulator* simulator, int Vd, int Vm) { |
| static const int kLanes = 16 / sizeof(T); |
| T src[kLanes]; |
| U dst[kLanes]; |
| simulator->get_neon_register(Vm, src); |
| for (int i = 0; i < kLanes; i++) { |
| dst[i] = Narrow<T, U>(Saturate<U>(src[i])); |
| } |
| simulator->set_neon_register<U, kDoubleSize>(Vd, dst); |
| } |
| |
| template <typename T, typename U> |
| void SaturatingUnsignedNarrow(Simulator* simulator, int Vd, int Vm) { |
| static const int kLanes = 16 / sizeof(T); |
| T src[kLanes]; |
| U dst[kLanes]; |
| simulator->get_neon_register(Vm, src); |
| for (int i = 0; i < kLanes; i++) { |
| dst[i] = Saturate<U>(src[i]); |
| } |
| simulator->set_neon_register<U, kDoubleSize>(Vd, dst); |
| } |
| |
| template <typename T> |
| void AddSat(Simulator* simulator, int Vd, int Vm, int Vn) { |
| Binop<T>(simulator, Vd, Vm, Vn, SaturateAdd<T>); |
| } |
| |
| template <typename T> |
| void SubSat(Simulator* simulator, int Vd, int Vm, int Vn) { |
| Binop<T>(simulator, Vd, Vm, Vn, SaturateSub<T>); |
| } |
| |
| template <typename T, int SIZE> |
| void Zip(Simulator* simulator, int Vd, int Vm) { |
| static const int kElems = SIZE / sizeof(T); |
| static const int kPairs = kElems / 2; |
| T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vd, src1); |
| simulator->get_neon_register<T, SIZE>(Vm, src2); |
| for (int i = 0; i < kPairs; i++) { |
| dst1[i * 2] = src1[i]; |
| dst1[i * 2 + 1] = src2[i]; |
| dst2[i * 2] = src1[i + kPairs]; |
| dst2[i * 2 + 1] = src2[i + kPairs]; |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, dst1); |
| simulator->set_neon_register<T, SIZE>(Vm, dst2); |
| } |
| |
| template <typename T, int SIZE> |
| void Unzip(Simulator* simulator, int Vd, int Vm) { |
| static const int kElems = SIZE / sizeof(T); |
| static const int kPairs = kElems / 2; |
| T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vd, src1); |
| simulator->get_neon_register<T, SIZE>(Vm, src2); |
| for (int i = 0; i < kPairs; i++) { |
| dst1[i] = src1[i * 2]; |
| dst1[i + kPairs] = src2[i * 2]; |
| dst2[i] = src1[i * 2 + 1]; |
| dst2[i + kPairs] = src2[i * 2 + 1]; |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, dst1); |
| simulator->set_neon_register<T, SIZE>(Vm, dst2); |
| } |
| |
| template <typename T, int SIZE> |
| void Transpose(Simulator* simulator, int Vd, int Vm) { |
| static const int kElems = SIZE / sizeof(T); |
| static const int kPairs = kElems / 2; |
| T src1[kElems], src2[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vd, src1); |
| simulator->get_neon_register<T, SIZE>(Vm, src2); |
| for (int i = 0; i < kPairs; i++) { |
| std::swap(src1[2 * i + 1], src2[2 * i]); |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, src1); |
| simulator->set_neon_register<T, SIZE>(Vm, src2); |
| } |
| |
| template <typename T, int SIZE> |
| void Test(Simulator* simulator, int Vd, int Vm, int Vn) { |
| auto test = [](T x, T y) { return (x & y) ? -1 : 0; }; |
| Binop<T>(simulator, Vd, Vm, Vn, test); |
| } |
| |
| template <typename T, int SIZE> |
| void Add(Simulator* simulator, int Vd, int Vm, int Vn) { |
| Binop<T>(simulator, Vd, Vm, Vn, std::plus<T>()); |
| } |
| |
| template <typename T, int SIZE> |
| void Sub(Simulator* simulator, int Vd, int Vm, int Vn) { |
| Binop<T>(simulator, Vd, Vm, Vn, std::minus<T>()); |
| } |
| |
| namespace { |
| uint32_t Multiply(uint32_t a, uint32_t b) { return a * b; } |
| uint8_t Multiply(uint8_t a, uint8_t b) { return a * b; } |
| // 16-bit integers are special due to C++'s implicit conversion rules. |
| // See https://bugs.llvm.org/show_bug.cgi?id=25580. |
| uint16_t Multiply(uint16_t a, uint16_t b) { |
| uint32_t result = static_cast<uint32_t>(a) * static_cast<uint32_t>(b); |
| return static_cast<uint16_t>(result); |
| } |
| |
| void VmovImmediate(Simulator* simulator, Instruction* instr) { |
| byte cmode = instr->Bits(11, 8); |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| int q = instr->Bit(6); |
| int regs = q ? 2 : 1; |
| uint8_t imm = instr->Bit(24) << 7; // i |
| imm |= instr->Bits(18, 16) << 4; // imm3 |
| imm |= instr->Bits(3, 0); // imm4 |
| switch (cmode) { |
| case 0: { |
| // Set the LSB of each 64-bit halves. |
| uint64_t imm64 = imm; |
| for (int r = 0; r < regs; r++) { |
| simulator->set_d_register(vd + r, &imm64); |
| } |
| break; |
| } |
| case 0xe: { |
| uint8_t imms[kSimd128Size]; |
| // Set all bytes of register. |
| std::fill_n(imms, kSimd128Size, imm); |
| uint64_t imm64; |
| memcpy(&imm64, imms, 8); |
| for (int r = 0; r < regs; r++) { |
| simulator->set_d_register(vd + r, &imm64); |
| } |
| break; |
| } |
| default: { |
| UNIMPLEMENTED(); |
| } |
| } |
| } |
| } // namespace |
| |
| template <typename T, int SIZE> |
| void Mul(Simulator* simulator, int Vd, int Vm, int Vn) { |
| static const int kElems = SIZE / sizeof(T); |
| T src1[kElems], src2[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vn, src1); |
| simulator->get_neon_register<T, SIZE>(Vm, src2); |
| for (int i = 0; i < kElems; i++) { |
| src1[i] = Multiply(src1[i], src2[i]); |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, src1); |
| } |
| |
| template <typename T, int SIZE> |
| void ShiftLeft(Simulator* simulator, int Vd, int Vm, int shift) { |
| Unop<T>(simulator, Vd, Vm, [shift](T x) { return x << shift; }); |
| } |
| |
| template <typename T, int SIZE> |
| void ShiftRight(Simulator* simulator, int Vd, int Vm, int shift) { |
| Unop<T>(simulator, Vd, Vm, [shift](T x) { return x >> shift; }); |
| } |
| |
| template <typename T, int SIZE> |
| void ArithmeticShiftRight(Simulator* simulator, int Vd, int Vm, int shift) { |
| auto shift_fn = |
| std::bind(ArithmeticShiftRight<T>, std::placeholders::_1, shift); |
| Unop<T>(simulator, Vd, Vm, shift_fn); |
| } |
| |
| template <typename T, int SIZE> |
| void ShiftLeftAndInsert(Simulator* simulator, int Vd, int Vm, int shift) { |
| static const int kElems = SIZE / sizeof(T); |
| T src[kElems]; |
| T dst[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vm, src); |
| simulator->get_neon_register<T, SIZE>(Vd, dst); |
| uint64_t mask = (1llu << shift) - 1llu; |
| for (int i = 0; i < kElems; i++) { |
| dst[i] = (src[i] << shift) | (dst[i] & mask); |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, dst); |
| } |
| |
| template <typename T, int SIZE> |
| void ShiftRightAndInsert(Simulator* simulator, int Vd, int Vm, int shift) { |
| static const int kElems = SIZE / sizeof(T); |
| T src[kElems]; |
| T dst[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vm, src); |
| simulator->get_neon_register<T, SIZE>(Vd, dst); |
| uint64_t mask = ~((1llu << (kBitsPerByte * SIZE - shift)) - 1llu); |
| for (int i = 0; i < kElems; i++) { |
| dst[i] = (src[i] >> shift) | (dst[i] & mask); |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, dst); |
| } |
| |
| template <typename T, typename S_T, int SIZE> |
| void ShiftByRegister(Simulator* simulator, int Vd, int Vm, int Vn) { |
| static const int kElems = SIZE / sizeof(T); |
| T src[kElems]; |
| S_T shift[kElems]; |
| simulator->get_neon_register<T, SIZE>(Vm, src); |
| simulator->get_neon_register<S_T, SIZE>(Vn, shift); |
| for (int i = 0; i < kElems; i++) { |
| // Take lowest 8 bits of shift value (see F6.1.217 of ARM Architecture |
| // Reference Manual ARMv8), as signed 8-bit value. |
| int8_t shift_value = static_cast<int8_t>(shift[i]); |
| int size = static_cast<int>(sizeof(T) * 8); |
| // When shift value is greater/equal than size, we end up relying on |
| // undefined behavior, handle that and emulate what the hardware does. |
| if ((shift_value) >= 0) { |
| // If the shift value is greater/equal than size, zero out the result. |
| if (shift_value >= size) { |
| src[i] = 0; |
| } else { |
| using unsignedT = typename std::make_unsigned<T>::type; |
| src[i] = static_cast<unsignedT>(src[i]) << shift_value; |
| } |
| } else { |
| // If the shift value is greater/equal than size, always end up with -1. |
| if (-shift_value >= size) { |
| src[i] = -1; |
| } else { |
| src[i] = ArithmeticShiftRight(src[i], -shift_value); |
| } |
| } |
| } |
| simulator->set_neon_register<T, SIZE>(Vd, src); |
| } |
| |
| template <typename T, int SIZE> |
| void CompareEqual(Simulator* simulator, int Vd, int Vm, int Vn) { |
| Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x == y ? -1 : 0; }); |
| } |
| |
| template <typename T, int SIZE> |
| void CompareGreater(Simulator* simulator, int Vd, int Vm, int Vn, bool ge) { |
| if (ge) { |
| Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x >= y ? -1 : 0; }); |
| } else { |
| Binop<T>(simulator, Vd, Vm, Vn, [](T x, T y) { return x > y ? -1 : 0; }); |
| } |
| } |
| |
| float MinMax(float a, float b, bool is_min) { |
| return is_min ? JSMin(a, b) : JSMax(a, b); |
| } |
| template <typename T> |
| T MinMax(T a, T b, bool is_min) { |
| return is_min ? std::min(a, b) : std::max(a, b); |
| } |
| |
| template <typename T, int SIZE> |
| void MinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) { |
| if (min) { |
| Binop<T>(simulator, Vd, Vm, Vn, |
| [](auto x, auto y) { return std::min<T>(x, y); }); |
| } else { |
| Binop<T>(simulator, Vd, Vm, Vn, |
| [](auto x, auto y) { return std::max<T>(x, y); }); |
| } |
| } |
| |
| template <typename T> |
| void PairwiseMinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) { |
| static const int kElems = kDoubleSize / sizeof(T); |
| static const int kPairs = kElems / 2; |
| T dst[kElems], src1[kElems], src2[kElems]; |
| simulator->get_neon_register<T, kDoubleSize>(Vn, src1); |
| simulator->get_neon_register<T, kDoubleSize>(Vm, src2); |
| for (int i = 0; i < kPairs; i++) { |
| dst[i] = MinMax(src1[i * 2], src1[i * 2 + 1], min); |
| dst[i + kPairs] = MinMax(src2[i * 2], src2[i * 2 + 1], min); |
| } |
| simulator->set_neon_register<T, kDoubleSize>(Vd, dst); |
| } |
| |
| template <typename T> |
| void PairwiseAdd(Simulator* simulator, int Vd, int Vm, int Vn) { |
| static const int kElems = kDoubleSize / sizeof(T); |
| static const int kPairs = kElems / 2; |
| T dst[kElems], src1[kElems], src2[kElems]; |
| simulator->get_neon_register<T, kDoubleSize>(Vn, src1); |
| simulator->get_neon_register<T, kDoubleSize>(Vm, src2); |
| for (int i = 0; i < kPairs; i++) { |
| dst[i] = src1[i * 2] + src1[i * 2 + 1]; |
| dst[i + kPairs] = src2[i * 2] + src2[i * 2 + 1]; |
| } |
| simulator->set_neon_register<T, kDoubleSize>(Vd, dst); |
| } |
| |
| template <typename T, int SIZE = kSimd128Size> |
| void RoundingAverageUnsigned(Simulator* simulator, int Vd, int Vm, int Vn) { |
| static_assert(std::is_unsigned<T>::value, |
| "Implemented only for unsigned types."); |
| Binop<T>(simulator, Vd, Vm, Vn, base::RoundingAverageUnsigned<T>); |
| } |
| |
| template <typename NarrowType, typename WideType> |
| void MultiplyLong(Simulator* simulator, int Vd, int Vn, int Vm) { |
| DCHECK_EQ(sizeof(WideType), 2 * sizeof(NarrowType)); |
| static const int kElems = kSimd128Size / sizeof(WideType); |
| NarrowType src1[kElems], src2[kElems]; |
| WideType dst[kElems]; |
| |
| // Get the entire d reg, then memcpy it to an array so we can address the |
| // underlying datatype easily. |
| uint64_t tmp; |
| simulator->get_d_register(Vn, &tmp); |
| memcpy(src1, &tmp, sizeof(tmp)); |
| simulator->get_d_register(Vm, &tmp); |
| memcpy(src2, &tmp, sizeof(tmp)); |
| |
| for (int i = 0; i < kElems; i++) { |
| dst[i] = WideType{src1[i]} * WideType{src2[i]}; |
| } |
| |
| simulator->set_neon_register<WideType>(Vd, dst); |
| } |
| |
| void Simulator::DecodeUnconditional(Instruction* instr) { |
| // This follows the decoding in F4.1.18 Unconditional instructions. |
| int op0 = instr->Bits(26, 25); |
| int op1 = instr->Bit(20); |
| |
| // Four classes of decoding: |
| // - Miscellaneous (omitted, no instructions used in V8). |
| // - Advanced SIMD data-processing. |
| // - Memory hints and barriers. |
| // - Advanced SIMD element or structure load/store. |
| if (op0 == 0b01) { |
| DecodeAdvancedSIMDDataProcessing(instr); |
| } else if ((op0 & 0b10) == 0b10 && op1) { |
| DecodeMemoryHintsAndBarriers(instr); |
| } else if (op0 == 0b10 && !op1) { |
| DecodeAdvancedSIMDElementOrStructureLoadStore(instr); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Simulator::DecodeAdvancedSIMDTwoOrThreeRegisters(Instruction* instr) { |
| // Advanced SIMD two registers, or three registers of different lengths. |
| int op0 = instr->Bit(24); |
| int op1 = instr->Bits(21, 20); |
| int op2 = instr->Bits(11, 10); |
| int op3 = instr->Bit(6); |
| if (!op0 && op1 == 0b11) { |
| // vext.8 Qd, Qm, Qn, imm4 |
| int imm4 = instr->Bits(11, 8); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| int Vn = instr->VFPNRegValue(kSimd128Precision); |
| uint8_t src1[16], src2[16], dst[16]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| int boundary = kSimd128Size - imm4; |
| int i = 0; |
| for (; i < boundary; i++) { |
| dst[i] = src1[i + imm4]; |
| } |
| for (; i < 16; i++) { |
| dst[i] = src2[i - boundary]; |
| } |
| set_neon_register(Vd, dst); |
| } else if (op0 && op1 == 0b11 && ((op2 >> 1) == 0)) { |
| // Advanced SIMD two registers misc |
| int size = instr->Bits(19, 18); |
| int opc1 = instr->Bits(17, 16); |
| int opc2 = instr->Bits(10, 7); |
| int q = instr->Bit(6); |
| |
| if (opc1 == 0 && (opc2 >> 2) == 0) { |
| // vrev<op>.size Qd, Qm |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18)); |
| NeonSize op = |
| static_cast<NeonSize>(static_cast<int>(Neon64) - instr->Bits(8, 7)); |
| switch (op) { |
| case Neon16: { |
| DCHECK_EQ(Neon8, size); |
| uint8_t src[16]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 16; i += 2) { |
| std::swap(src[i], src[i + 1]); |
| } |
| set_neon_register(Vd, src); |
| break; |
| } |
| case Neon32: { |
| switch (size) { |
| case Neon16: { |
| uint16_t src[8]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 8; i += 2) { |
| std::swap(src[i], src[i + 1]); |
| } |
| set_neon_register(Vd, src); |
| break; |
| } |
| case Neon8: { |
| uint8_t src[16]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 4; i++) { |
| std::swap(src[i * 4], src[i * 4 + 3]); |
| std::swap(src[i * 4 + 1], src[i * 4 + 2]); |
| } |
| set_neon_register(Vd, src); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| break; |
| } |
| case Neon64: { |
| switch (size) { |
| case Neon32: { |
| uint32_t src[4]; |
| get_neon_register(Vm, src); |
| std::swap(src[0], src[1]); |
| std::swap(src[2], src[3]); |
| set_neon_register(Vd, src); |
| break; |
| } |
| case Neon16: { |
| uint16_t src[8]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 2; i++) { |
| std::swap(src[i * 4], src[i * 4 + 3]); |
| std::swap(src[i * 4 + 1], src[i * 4 + 2]); |
| } |
| set_neon_register(Vd, src); |
| break; |
| } |
| case Neon8: { |
| uint8_t src[16]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 4; i++) { |
| std::swap(src[i], src[7 - i]); |
| std::swap(src[i + 8], src[15 - i]); |
| } |
| set_neon_register(Vd, src); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (size == 0 && opc1 == 0b10 && opc2 == 0) { |
| if (instr->Bit(6) == 0) { |
| // vswp Dd, Dm. |
| uint64_t dval, mval; |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| get_d_register(vd, &dval); |
| get_d_register(vm, &mval); |
| set_d_register(vm, &dval); |
| set_d_register(vd, &mval); |
| } else { |
| // vswp Qd, Qm. |
| uint32_t dval[4], mval[4]; |
| int vd = instr->VFPDRegValue(kSimd128Precision); |
| int vm = instr->VFPMRegValue(kSimd128Precision); |
| get_neon_register(vd, dval); |
| get_neon_register(vm, mval); |
| set_neon_register(vm, dval); |
| set_neon_register(vd, mval); |
| } |
| } else if (opc1 == 0 && opc2 == 0b1011) { |
| // vmvn Qd, Qm. |
| int vd = instr->VFPDRegValue(kSimd128Precision); |
| int vm = instr->VFPMRegValue(kSimd128Precision); |
| uint32_t q_data[4]; |
| get_neon_register(vm, q_data); |
| for (int i = 0; i < 4; i++) q_data[i] = ~q_data[i]; |
| set_neon_register(vd, q_data); |
| } else if (opc1 == 0b01 && (opc2 & 0b0111) == 0b110) { |
| // vabs<type>.<size> Qd, Qm |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| if (instr->Bit(10) != 0) { |
| // floating point (clear sign bits) |
| uint32_t src[4]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 4; i++) { |
| src[i] &= ~0x80000000; |
| } |
| set_neon_register(Vd, src); |
| } else { |
| // signed integer |
| switch (size) { |
| case Neon8: |
| Abs<int8_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Abs<int16_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Abs<int32_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| } else if (opc1 == 0b01 && (opc2 & 0b0111) == 0b111) { |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| // vneg<type>.<size> Qd, Qm (signed integer) |
| if (instr->Bit(10) != 0) { |
| // floating point (toggle sign bits) |
| uint32_t src[4]; |
| get_neon_register(Vm, src); |
| for (int i = 0; i < 4; i++) { |
| src[i] ^= 0x80000000; |
| } |
| set_neon_register(Vd, src); |
| } else { |
| // signed integer |
| switch (size) { |
| case Neon8: |
| Neg<int8_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Neg<int16_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Neg<int32_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| } else if (opc1 == 0b10 && opc2 == 0b0001) { |
| if (q) { |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| // vtrn.<size> Qd, Qm. |
| switch (size) { |
| case Neon8: |
| Transpose<uint8_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Transpose<uint16_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Transpose<uint32_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| // vtrn.<size> Dd, Dm. |
| switch (size) { |
| case Neon8: |
| Transpose<uint8_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Transpose<uint16_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Transpose<uint32_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else if (opc1 == 0b10 && (opc2 & 0b1110) == 0b0010) { |
| NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18)); |
| if (q) { |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| if (instr->Bit(7) == 1) { |
| // vzip.<size> Qd, Qm. |
| switch (size) { |
| case Neon8: |
| Zip<uint8_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Zip<uint16_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Zip<uint32_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // vuzp.<size> Qd, Qm. |
| switch (size) { |
| case Neon8: |
| Unzip<uint8_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Unzip<uint16_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| case Neon32: |
| Unzip<uint32_t, kSimd128Size>(this, Vd, Vm); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| if (instr->Bit(7) == 1) { |
| // vzip.<size> Dd, Dm. |
| switch (size) { |
| case Neon8: |
| Zip<uint8_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Zip<uint16_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon32: |
| UNIMPLEMENTED(); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // vuzp.<size> Dd, Dm. |
| switch (size) { |
| case Neon8: |
| Unzip<uint8_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon16: |
| Unzip<uint16_t, kDoubleSize>(this, Vd, Vm); |
| break; |
| case Neon32: |
| UNIMPLEMENTED(); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } else if (opc1 == 0b10 && (opc2 & 0b1110) == 0b0100) { |
| // vqmovn.<type><size> Dd, Qm. |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18)); |
| bool dst_unsigned = instr->Bit(6) != 0; |
| bool src_unsigned = instr->Bits(7, 6) == 0b11; |
| DCHECK_IMPLIES(src_unsigned, dst_unsigned); |
| switch (size) { |
| case Neon8: { |
| if (src_unsigned) { |
| SaturatingNarrow<uint16_t, uint8_t>(this, Vd, Vm); |
| } else if (dst_unsigned) { |
| SaturatingUnsignedNarrow<int16_t, uint8_t>(this, Vd, Vm); |
| } else { |
| SaturatingNarrow<int16_t, int8_t>(this, Vd, Vm); |
| } |
| break; |
| } |
| case Neon16: { |
| if (src_unsigned) { |
| SaturatingNarrow<uint32_t, uint16_t>(this, Vd, Vm); |
| } else if (dst_unsigned) { |
| SaturatingUnsignedNarrow<int32_t, uint16_t>(this, Vd, Vm); |
| } else { |
| SaturatingNarrow<int32_t, int16_t>(this, Vd, Vm); |
| } |
| break; |
| } |
| case Neon32: { |
| if (src_unsigned) { |
| SaturatingNarrow<uint64_t, uint32_t>(this, Vd, Vm); |
| } else if (dst_unsigned) { |
| SaturatingUnsignedNarrow<int64_t, uint32_t>(this, Vd, Vm); |
| } else { |
| SaturatingNarrow<int64_t, int32_t>(this, Vd, Vm); |
| } |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } else if (opc1 == 0b10 && instr->Bit(10) == 1) { |
| // vrint<q>.<dt> <Dd>, <Dm> |
| // vrint<q>.<dt> <Qd>, <Qm> |
| // See F6.1.205 |
| int regs = instr->Bit(6) + 1; |
| int rounding_mode = instr->Bits(9, 7); |
| float (*fproundint)(float) = nullptr; |
| switch (rounding_mode) { |
| case 0: |
| fproundint = &nearbyintf; |
| break; |
| case 3: |
| fproundint = &truncf; |
| break; |
| case 5: |
| fproundint = &floorf; |
| break; |
| case 7: |
| fproundint = &ceilf; |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| |
| float floats[2]; |
| for (int r = 0; r < regs; r++) { |
| // We cannot simply use GetVFPSingleValue since our Q registers |
| // might not map to any S registers at all. |
| get_neon_register<float, kDoubleSize>(vm + r, floats); |
| for (int e = 0; e < 2; e++) { |
| floats[e] = canonicalizeNaN(fproundint(floats[e])); |
| } |
| set_neon_register<float, kDoubleSize>(vd + r, floats); |
| } |
| } else if (opc1 == 0b11 && (opc2 & 0b1100) == 0b1000) { |
| // vrecpe/vrsqrte.f32 Qd, Qm. |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| uint32_t src[4]; |
| get_neon_register(Vm, src); |
| if (instr->Bit(7) == 0) { |
| for (int i = 0; i < 4; i++) { |
| float denom = bit_cast<float>(src[i]); |
| div_zero_vfp_flag_ = (denom == 0); |
| float result = 1.0f / denom; |
| result = canonicalizeNaN(result); |
| src[i] = bit_cast<uint32_t>(result); |
| } |
| } else { |
| for (int i = 0; i < 4; i++) { |
| float radicand = bit_cast<float>(src[i]); |
| float result = 1.0f / std::sqrt(radicand); |
| result = canonicalizeNaN(result); |
| src[i] = bit_cast<uint32_t>(result); |
| } |
| } |
| set_neon_register(Vd, src); |
| } else if (opc1 == 0b11 && (opc2 & 0b1100) == 0b1100) { |
| // vcvt.<Td>.<Tm> Qd, Qm. |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| uint32_t q_data[4]; |
| get_neon_register(Vm, q_data); |
| int op = instr->Bits(8, 7); |
| for (int i = 0; i < 4; i++) { |
| switch (op) { |
| case 0: |
| // f32 <- s32, round towards nearest. |
| q_data[i] = bit_cast<uint32_t>( |
| std::round(static_cast<float>(bit_cast<int32_t>(q_data[i])))); |
| break; |
| case 1: |
| // f32 <- u32, round towards nearest. |
| q_data[i] = |
| bit_cast<uint32_t>(std::round(static_cast<float>(q_data[i]))); |
| break; |
| case 2: |
| // s32 <- f32, round to zero. |
| q_data[i] = static_cast<uint32_t>( |
| ConvertDoubleToInt(bit_cast<float>(q_data[i]), false, RZ)); |
| break; |
| case 3: |
| // u32 <- f32, round to zero. |
| q_data[i] = static_cast<uint32_t>( |
| ConvertDoubleToInt(bit_cast<float>(q_data[i]), true, RZ)); |
| break; |
| } |
| } |
| set_neon_register(Vd, q_data); |
| } |
| } else if (op0 && op1 == 0b11 && op2 == 0b10) { |
| // vtb[l,x] Dd, <list>, Dm. |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| int vn = instr->VFPNRegValue(kDoublePrecision); |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| int table_len = (instr->Bits(9, 8) + 1) * kDoubleSize; |
| bool vtbx = instr->Bit(6) != 0; // vtbl / vtbx |
| uint64_t destination = 0, indices = 0, result = 0; |
| get_d_register(vd, &destination); |
| get_d_register(vm, &indices); |
| for (int i = 0; i < kDoubleSize; i++) { |
| int shift = i * kBitsPerByte; |
| int index = (indices >> shift) & 0xFF; |
| if (index < table_len) { |
| uint64_t table; |
| get_d_register(vn + index / kDoubleSize, &table); |
| result |= ((table >> ((index % kDoubleSize) * kBitsPerByte)) & 0xFF) |
| << shift; |
| } else if (vtbx) { |
| result |= destination & (0xFFull << shift); |
| } |
| } |
| set_d_register(vd, &result); |
| } else if (op0 && op1 == 0b11 && op2 == 0b11) { |
| // Advanced SIMD duplicate (scalar) |
| if (instr->Bits(9, 7) == 0) { |
| // vdup.<size> Dd, Dm[index]. |
| // vdup.<size> Qd, Dm[index]. |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| int imm4 = instr->Bits(19, 16); |
| int size = 0, index = 0, mask = 0; |
| if ((imm4 & 0x1) != 0) { |
| size = 8; |
| index = imm4 >> 1; |
| mask = 0xFFu; |
| } else if ((imm4 & 0x2) != 0) { |
| size = 16; |
| index = imm4 >> 2; |
| mask = 0xFFFFu; |
| } else { |
| size = 32; |
| index = imm4 >> 3; |
| mask = 0xFFFFFFFFu; |
| } |
| uint64_t d_data; |
| get_d_register(vm, &d_data); |
| uint32_t scalar = (d_data >> (size * index)) & mask; |
| uint32_t duped = scalar; |
| for (int i = 1; i < 32 / size; i++) { |
| scalar <<= size; |
| duped |= scalar; |
| } |
| uint32_t result[4] = {duped, duped, duped, duped}; |
| if (instr->Bit(6) == 0) { |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| set_d_register(vd, result); |
| } else { |
| int vd = instr->VFPDRegValue(kSimd128Precision); |
| set_neon_register(vd, result); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } else if (op1 != 0b11 && !op3) { |
| // Advanced SIMD three registers of different lengths. |
| int u = instr->Bit(24); |
| int opc = instr->Bits(11, 8); |
| if (opc == 0b1000) { |
| // vmlal.u<size> Qd, Dn, Dm |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| if (size != Neon32) UNIMPLEMENTED(); |
| |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vn = instr->VFPNRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| uint64_t src1, src2, dst[2]; |
| |
| get_neon_register<uint64_t>(Vd, dst); |
| get_d_register(Vn, &src1); |
| get_d_register(Vm, &src2); |
| dst[0] += (src1 & 0xFFFFFFFFULL) * (src2 & 0xFFFFFFFFULL); |
| dst[1] += (src1 >> 32) * (src2 >> 32); |
| set_neon_register<uint64_t>(Vd, dst); |
| } else if (opc == 0b1100) { |
| if (u) { |
| // vmull.u<size> Qd, Dn, Dm |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vn = instr->VFPNRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| switch (size) { |
| case Neon32: { |
| MultiplyLong<uint32_t, uint64_t>(this, Vd, Vn, Vm); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else { |
| // vmull.s<size> Qd, Dn, Dm |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vn = instr->VFPNRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| switch (size) { |
| case Neon16: { |
| MultiplyLong<int16_t, int32_t>(this, Vd, Vn, Vm); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } |
| } |
| } else if (op1 != 0b11 && op3) { |
| // The instructions specified by this encoding are not used in V8. |
| UNIMPLEMENTED(); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Simulator::DecodeAdvancedSIMDDataProcessing(Instruction* instr) { |
| int op0 = instr->Bit(23); |
| int op1 = instr->Bit(4); |
| |
| if (op0 == 0) { |
| // Advanced SIMD three registers of same length. |
| int u = instr->Bit(24); |
| int opc = instr->Bits(11, 8); |
| int q = instr->Bit(6); |
| int sz = instr->Bits(21, 20); |
| int Vd, Vm, Vn; |
| if (q) { |
| Vd = instr->VFPDRegValue(kSimd128Precision); |
| Vm = instr->VFPMRegValue(kSimd128Precision); |
| Vn = instr->VFPNRegValue(kSimd128Precision); |
| } else { |
| Vd = instr->VFPDRegValue(kDoublePrecision); |
| Vm = instr->VFPMRegValue(kDoublePrecision); |
| Vn = instr->VFPNRegValue(kDoublePrecision); |
| } |
| |
| if (!u && opc == 0 && op1) { |
| // vqadd.s<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| AddSat<int8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| AddSat<int16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| AddSat<int32_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 1 && sz == 2 && q && op1) { |
| // vmov Qd, Qm. |
| // vorr, Qd, Qm, Qn. |
| uint32_t src1[4]; |
| get_neon_register(Vm, src1); |
| if (Vm != Vn) { |
| uint32_t src2[4]; |
| get_neon_register(Vn, src2); |
| for (int i = 0; i < 4; i++) { |
| src1[i] = src1[i] | src2[i]; |
| } |
| } |
| set_neon_register(Vd, src1); |
| } else if (!u && opc == 1 && sz == 0 && q && op1) { |
| // vand Qd, Qm, Qn. |
| uint32_t src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) { |
| src1[i] = src1[i] & src2[i]; |
| } |
| set_neon_register(Vd, src1); |
| } else if (!u && opc == 1 && sz == 1 && q && op1) { |
| // vbic Qd, Qm, Qn. |
| uint32_t src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) { |
| src1[i] = src1[i] & ~src2[i]; |
| } |
| set_neon_register(Vd, src1); |
| } else if (!u && opc == 2 && op1) { |
| // vqsub.s<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| SubSat<int8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| SubSat<int16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| SubSat<int32_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon64: |
| SubSat<int64_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 3) { |
| // vcge/vcgt.s<size> Qd, Qm, Qn. |
| bool ge = instr->Bit(4) == 1; |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| CompareGreater<int8_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| case Neon16: |
| CompareGreater<int16_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| case Neon32: |
| CompareGreater<int32_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 4 && !op1) { |
| // vshl s<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| ShiftByRegister<int8_t, int8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| ShiftByRegister<int16_t, int16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| ShiftByRegister<int32_t, int32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon64: |
| ShiftByRegister<int64_t, int64_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 6) { |
| // vmin/vmax.s<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| bool min = instr->Bit(4) != 0; |
| switch (size) { |
| case Neon8: |
| MinMax<int8_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon16: |
| MinMax<int16_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon32: |
| MinMax<int32_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 8 && op1) { |
| // vtst.i<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| Test<uint8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| Test<uint16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| Test<uint32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 8 && !op1) { |
| // vadd.i<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| Add<uint8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| Add<uint16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| Add<uint32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon64: |
| Add<uint64_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| } |
| } else if (opc == 9 && op1) { |
| // vmul.i<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| Mul<uint8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| Mul<uint16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| Mul<uint32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 0xA) { |
| // vpmin/vpmax.s<size> Dd, Dm, Dn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| bool min = instr->Bit(4) != 0; |
| switch (size) { |
| case Neon8: |
| PairwiseMinMax<int8_t>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon16: |
| PairwiseMinMax<int16_t>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon32: |
| PairwiseMinMax<int32_t>(this, Vd, Vm, Vn, min); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 0xB) { |
| // vpadd.i<size> Dd, Dm, Dn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| PairwiseAdd<int8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| PairwiseAdd<int16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| PairwiseAdd<int32_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (!u && opc == 0xD && !op1) { |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) { |
| if (instr->Bit(21) == 0) { |
| // vadd.f32 Qd, Qm, Qn. |
| src1[i] = src1[i] + src2[i]; |
| } else { |
| // vsub.f32 Qd, Qm, Qn. |
| src1[i] = src1[i] - src2[i]; |
| } |
| } |
| set_neon_register(Vd, src1); |
| } else if (!u && opc == 0xE && !sz && !op1) { |
| // vceq.f32. |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| uint32_t dst[4]; |
| for (int i = 0; i < 4; i++) { |
| dst[i] = (src1[i] == src2[i]) ? 0xFFFFFFFF : 0; |
| } |
| set_neon_register(Vd, dst); |
| } else if (!u && opc == 0xF && op1) { |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| if (instr->Bit(21) == 0) { |
| // vrecps.f32 Qd, Qm, Qn. |
| for (int i = 0; i < 4; i++) { |
| src1[i] = 2.0f - src1[i] * src2[i]; |
| } |
| } else { |
| // vrsqrts.f32 Qd, Qm, Qn. |
| for (int i = 0; i < 4; i++) { |
| src1[i] = (3.0f - src1[i] * src2[i]) * 0.5f; |
| } |
| } |
| set_neon_register(Vd, src1); |
| } else if (!u && opc == 0xF && !op1) { |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| // vmin/vmax.f32 Qd, Qm, Qn. |
| bool min = instr->Bit(21) == 1; |
| bool saved = FPSCR_default_NaN_mode_; |
| FPSCR_default_NaN_mode_ = true; |
| for (int i = 0; i < 4; i++) { |
| // vmin returns default NaN if any input is NaN. |
| src1[i] = canonicalizeNaN(MinMax(src1[i], src2[i], min)); |
| } |
| FPSCR_default_NaN_mode_ = saved; |
| set_neon_register(Vd, src1); |
| } else if (u && opc == 0 && op1) { |
| // vqadd.u<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| AddSat<uint8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| AddSat<uint16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| AddSat<uint32_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 1 && sz == 1 && op1) { |
| // vbsl.size Qd, Qm, Qn. |
| uint32_t dst[4], src1[4], src2[4]; |
| get_neon_register(Vd, dst); |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) { |
| dst[i] = (dst[i] & src1[i]) | (~dst[i] & src2[i]); |
| } |
| set_neon_register(Vd, dst); |
| } else if (u && opc == 1 && sz == 0 && !q && op1) { |
| // veor Dd, Dn, Dm |
| uint64_t src1, src2; |
| get_d_register(Vn, &src1); |
| get_d_register(Vm, &src2); |
| src1 ^= src2; |
| set_d_register(Vd, &src1); |
| } else if (u && opc == 1 && sz == 0 && q && op1) { |
| // veor Qd, Qn, Qm |
| uint32_t src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) src1[i] ^= src2[i]; |
| set_neon_register(Vd, src1); |
| } else if (u && opc == 1 && !op1) { |
| // vrhadd.u<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| RoundingAverageUnsigned<uint8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| RoundingAverageUnsigned<uint16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| RoundingAverageUnsigned<uint32_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 2 && op1) { |
| // vqsub.u<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| SubSat<uint8_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| SubSat<uint16_t>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| SubSat<uint32_t>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 3) { |
| // vcge/vcgt.u<size> Qd, Qm, Qn. |
| bool ge = instr->Bit(4) == 1; |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| CompareGreater<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| case Neon16: |
| CompareGreater<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| case Neon32: |
| CompareGreater<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, ge); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 4 && !op1) { |
| // vshl u<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| ShiftByRegister<uint8_t, int8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| ShiftByRegister<uint16_t, int16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| ShiftByRegister<uint32_t, int32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon64: |
| ShiftByRegister<uint64_t, int64_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 6) { |
| // vmin/vmax.u<size> Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| bool min = instr->Bit(4) != 0; |
| switch (size) { |
| case Neon8: |
| MinMax<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon16: |
| MinMax<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon32: |
| MinMax<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, min); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 8 && !op1) { |
| // vsub.size Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| Sub<uint8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| Sub<uint16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| Sub<uint32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon64: |
| Sub<uint64_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| } |
| } else if (u && opc == 8 && op1) { |
| // vceq.size Qd, Qm, Qn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| switch (size) { |
| case Neon8: |
| CompareEqual<uint8_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon16: |
| CompareEqual<uint16_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| case Neon32: |
| CompareEqual<uint32_t, kSimd128Size>(this, Vd, Vm, Vn); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 0xA) { |
| // vpmin/vpmax.u<size> Dd, Dm, Dn. |
| NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20)); |
| bool min = instr->Bit(4) != 0; |
| switch (size) { |
| case Neon8: |
| PairwiseMinMax<uint8_t>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon16: |
| PairwiseMinMax<uint16_t>(this, Vd, Vm, Vn, min); |
| break; |
| case Neon32: |
| PairwiseMinMax<uint32_t>(this, Vd, Vm, Vn, min); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && opc == 0xD && sz == 0 && q && op1) { |
| // vmul.f32 Qd, Qn, Qm |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| for (int i = 0; i < 4; i++) { |
| src1[i] = src1[i] * src2[i]; |
| } |
| set_neon_register(Vd, src1); |
| } else if (u && opc == 0xD && sz == 0 && !q && !op1) { |
| // vpadd.f32 Dd, Dn, Dm |
| PairwiseAdd<float>(this, Vd, Vm, Vn); |
| } else if (u && opc == 0xE && !op1) { |
| // vcge/vcgt.f32 Qd, Qm, Qn |
| bool ge = instr->Bit(21) == 0; |
| float src1[4], src2[4]; |
| get_neon_register(Vn, src1); |
| get_neon_register(Vm, src2); |
| uint32_t dst[4]; |
| for (int i = 0; i < 4; i++) { |
| if (ge) { |
| dst[i] = src1[i] >= src2[i] ? 0xFFFFFFFFu : 0; |
| } else { |
| dst[i] = src1[i] > src2[i] ? 0xFFFFFFFFu : 0; |
| } |
| } |
| set_neon_register(Vd, dst); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| return; |
| } else if (op0 == 1 && op1 == 0) { |
| DecodeAdvancedSIMDTwoOrThreeRegisters(instr); |
| } else if (op0 == 1 && op1 == 1) { |
| // Advanced SIMD shifts and immediate generation. |
| if (instr->Bits(21, 19) == 0 && instr->Bit(7) == 0) { |
| VmovImmediate(this, instr); |
| } else { |
| // Advanced SIMD two registers and shift amount. |
| int u = instr->Bit(24); |
| int imm3H = instr->Bits(21, 19); |
| int imm3L = instr->Bits(18, 16); |
| int opc = instr->Bits(11, 8); |
| int l = instr->Bit(7); |
| int q = instr->Bit(6); |
| int imm3H_L = imm3H << 1 | l; |
| |
| if (imm3H_L != 0 && opc == 0) { |
| // vshr.s<size> Qd, Qm, shift |
| int imm7 = instr->Bits(21, 16); |
| if (instr->Bit(7) != 0) imm7 += 64; |
| int size = base::bits::RoundDownToPowerOfTwo32(imm7); |
| int shift = 2 * size - imm7; |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| NeonSize ns = |
| static_cast<NeonSize>(base::bits::WhichPowerOfTwo(size >> 3)); |
| if (u) { |
| switch (ns) { |
| case Neon8: |
| ShiftRight<uint8_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon16: |
| ShiftRight<uint16_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon32: |
| ShiftRight<uint32_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon64: |
| ShiftRight<uint64_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| } |
| } else { |
| switch (ns) { |
| case Neon8: |
| ArithmeticShiftRight<int8_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon16: |
| ArithmeticShiftRight<int16_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon32: |
| ArithmeticShiftRight<int32_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon64: |
| ArithmeticShiftRight<int64_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| } |
| } |
| } else if (imm3H_L != 0 && imm3L == 0 && opc == 0b1010 && !q) { |
| if (u) { |
| // vmovl unsigned |
| if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| int imm3 = instr->Bits(21, 19); |
| switch (imm3) { |
| case 1: |
| Widen<uint8_t, uint16_t>(this, Vd, Vm); |
| break; |
| case 2: |
| Widen<uint16_t, uint32_t>(this, Vd, Vm); |
| break; |
| case 4: |
| Widen<uint32_t, uint64_t>(this, Vd, Vm); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } else { |
| // vmovl signed |
| if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| int imm3 = instr->Bits(21, 19); |
| switch (imm3) { |
| case 1: |
| Widen<int8_t, int16_t>(this, Vd, Vm); |
| break; |
| case 2: |
| Widen<int16_t, int32_t>(this, Vd, Vm); |
| break; |
| case 4: |
| Widen<int32_t, int64_t>(this, Vd, Vm); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| } else if (!u && imm3H_L != 0 && opc == 0b0101) { |
| // vshl.i<size> Qd, Qm, shift |
| int imm7 = instr->Bits(21, 16); |
| if (instr->Bit(7) != 0) imm7 += 64; |
| int size = base::bits::RoundDownToPowerOfTwo32(imm7); |
| int shift = imm7 - size; |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| NeonSize ns = |
| static_cast<NeonSize>(base::bits::WhichPowerOfTwo(size >> 3)); |
| switch (ns) { |
| case Neon8: |
| ShiftLeft<uint8_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon16: |
| ShiftLeft<uint16_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon32: |
| ShiftLeft<uint32_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| case Neon64: |
| ShiftLeft<uint64_t, kSimd128Size>(this, Vd, Vm, shift); |
| break; |
| } |
| } else if (u && imm3H_L != 0 && opc == 0b0100) { |
| // vsri.<size> Dd, Dm, shift |
| int imm7 = instr->Bits(21, 16); |
| if (instr->Bit(7) != 0) imm7 += 64; |
| int size = base::bits::RoundDownToPowerOfTwo32(imm7); |
| int shift = 2 * size - imm7; |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| switch (size) { |
| case 8: |
| ShiftRightAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 16: |
| ShiftRightAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 32: |
| ShiftRightAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 64: |
| ShiftRightAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else if (u && imm3H_L != 0 && opc == 0b0101) { |
| // vsli.<size> Dd, Dm, shift |
| int imm7 = instr->Bits(21, 16); |
| if (instr->Bit(7) != 0) imm7 += 64; |
| int size = base::bits::RoundDownToPowerOfTwo32(imm7); |
| int shift = imm7 - size; |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| switch (size) { |
| case 8: |
| ShiftLeftAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 16: |
| ShiftLeftAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 32: |
| ShiftLeftAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| case 64: |
| ShiftLeftAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return; |
| } |
| } |
| |
| void Simulator::DecodeMemoryHintsAndBarriers(Instruction* instr) { |
| switch (instr->SpecialValue()) { |
| case 0xA: |
| case 0xB: |
| if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) { |
| // pld: ignore instruction. |
| } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) { |
| // dsb, dmb, isb: ignore instruction for now. |
| // TODO(binji): implement |
| // Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15. |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| default: |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Simulator::DecodeAdvancedSIMDElementOrStructureLoadStore( |
| Instruction* instr) { |
| switch (instr->SpecialValue()) { |
| case 8: |
| if (instr->Bits(21, 20) == 0) { |
| // vst1 |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int type = instr->Bits(11, 8); |
| int Rm = instr->VmValue(); |
| int32_t address = get_register(Rn); |
| int regs = 0; |
| switch (type) { |
| case nlt_1: |
| regs = 1; |
| break; |
| case nlt_2: |
| regs = 2; |
| break; |
| case nlt_3: |
| regs = 3; |
| break; |
| case nlt_4: |
| regs = 4; |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| int r = 0; |
| while (r < regs) { |
| uint32_t data[2]; |
| get_d_register(Vd + r, data); |
| WriteW(address, data[0]); |
| WriteW(address + 4, data[1]); |
| address += 8; |
| r++; |
| } |
| if (Rm != 15) { |
| if (Rm == 13) { |
| set_register(Rn, address); |
| } else { |
| set_register(Rn, get_register(Rn) + get_register(Rm)); |
| } |
| } |
| } else if (instr->Bits(21, 20) == 2) { |
| // vld1 |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int type = instr->Bits(11, 8); |
| int Rm = instr->VmValue(); |
| int32_t address = get_register(Rn); |
| int regs = 0; |
| switch (type) { |
| case nlt_1: |
| regs = 1; |
| break; |
| case nlt_2: |
| regs = 2; |
| break; |
| case nlt_3: |
| regs = 3; |
| break; |
| case nlt_4: |
| regs = 4; |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| int r = 0; |
| while (r < regs) { |
| uint32_t data[2]; |
| data[0] = ReadW(address); |
| data[1] = ReadW(address + 4); |
| set_d_register(Vd + r, data); |
| address += 8; |
| r++; |
| } |
| if (Rm != 15) { |
| if (Rm == 13) { |
| set_register(Rn, address); |
| } else { |
| set_register(Rn, get_register(Rn) + get_register(Rm)); |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| case 9: { |
| if (instr->Bits(21, 20) == 2) { |
| // Bits(11, 8) is the B field in A7.7 Advanced SIMD element or structure |
| // load/store instructions. See table A7-21. |
| if (instr->Bits(11, 8) == 0xC) { |
| // vld1 (single element to all lanes). |
| DCHECK_EQ(instr->Bits(11, 8), 0b1100); // Type field. |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int Rm = instr->VmValue(); |
| int32_t address = get_register(Rn); |
| int regs = instr->Bit(5) + 1; |
| int size = instr->Bits(7, 6); |
| uint32_t q_data[2]; |
| switch (size) { |
| case Neon8: { |
| uint8_t data = ReadBU(address); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(q_data); |
| for (int i = 0; i < 8; i++) { |
| dst[i] = data; |
| } |
| break; |
| } |
| case Neon16: { |
| uint16_t data = ReadHU(address); |
| uint16_t* dst = reinterpret_cast<uint16_t*>(q_data); |
| for (int i = 0; i < 4; i++) { |
| dst[i] = data; |
| } |
| break; |
| } |
| case Neon32: { |
| uint32_t data = ReadW(address); |
| for (int i = 0; i < 2; i++) { |
| q_data[i] = data; |
| } |
| break; |
| } |
| } |
| for (int r = 0; r < regs; r++) { |
| set_neon_register<uint32_t, kDoubleSize>(Vd + r, q_data); |
| } |
| if (Rm != 15) { |
| if (Rm == 13) { |
| set_register(Rn, address); |
| } else { |
| set_register(Rn, get_register(Rn) + get_register(Rm)); |
| } |
| } |
| } else if (instr->Bits(11, 8) == 8 || |
| ((instr->Bits(11, 8) & 0b1011) == 0)) { |
| // vld1 (single element to one lane) |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int Rm = instr->VmValue(); |
| int32_t address = get_register(Rn); |
| int size = instr->Bits(11, 10); |
| uint64_t dreg; |
| get_d_register(Vd, &dreg); |
| switch (size) { |
| case Neon8: { |
| uint64_t data = ReadBU(address); |
| DCHECK_EQ(0, instr->Bit(4)); |
| int i = instr->Bits(7, 5) * 8; |
| dreg = (dreg & ~(uint64_t{0xff} << i)) | (data << i); |
| break; |
| } |
| case Neon16: { |
| DCHECK_EQ(0, instr->Bits(5, 4)); // Alignment not supported. |
| uint64_t data = ReadHU(address); |
| int i = instr->Bits(7, 6) * 16; |
| dreg = (dreg & ~(uint64_t{0xffff} << i)) | (data << i); |
| break; |
| } |
| case Neon32: { |
| DCHECK_EQ(0, instr->Bits(6, 4)); // Alignment not supported. |
| uint64_t data = static_cast<unsigned>(ReadW(address)); |
| int i = instr->Bit(7) * 32; |
| dreg = (dreg & ~(uint64_t{0xffffffff} << i)) | (data << i); |
| break; |
| } |
| case Neon64: { |
| // Should have been handled by vld1 (single element to all lanes). |
| UNREACHABLE(); |
| } |
| } |
| set_d_register(Vd, &dreg); |
| |
| // write back |
| if (Rm != 15) { |
| if (Rm == 13) { |
| set_register(Rn, address); |
| } else { |
| set_register(Rn, get_register(Rn) + get_register(Rm)); |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void Simulator::DecodeFloatingPointDataProcessing(Instruction* instr) { |
| switch (instr->SpecialValue()) { |
| case 0x1D: |
| if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 && |
| instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) { |
| if (instr->SzValue() == 0x1) { |
| int vm = instr->VFPMRegValue(kDoublePrecision); |
| int vd = instr->VFPDRegValue(kDoublePrecision); |
| double dm_value = get_double_from_d_register(vm).get_scalar(); |
| double dd_value = 0.0; |
| int rounding_mode = instr->Bits(17, 16); |
| switch (rounding_mode) { |
| case 0x0: // vrinta - round with ties to away from zero |
| dd_value = round(dm_value); |
| break; |
| case 0x1: { // vrintn - round with ties to even |
| dd_value = nearbyint(dm_value); |
| break; |
| } |
| case 0x2: // vrintp - ceil |
| dd_value = ceil(dm_value); |
| break; |
| case 0x3: // vrintm - floor |
| dd_value = floor(dm_value); |
| break; |
| default: |
| UNREACHABLE(); // Case analysis is exhaustive. |
| break; |
| } |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(vd, dd_value); |
| } else { |
| int m = instr->VFPMRegValue(kSinglePrecision); |
| int d = instr->VFPDRegValue(kSinglePrecision); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value = 0.0; |
| int rounding_mode = instr->Bits(17, 16); |
| switch (rounding_mode) { |
| case 0x0: // vrinta - round with ties to away from zero |
| sd_value = roundf(sm_value); |
| break; |
| case 0x1: { // vrintn - round with ties to even |
| sd_value = nearbyintf(sm_value); |
| break; |
| } |
| case 0x2: // vrintp - ceil |
| sd_value = ceilf(sm_value); |
| break; |
| case 0x3: // vrintm - floor |
| sd_value = floorf(sm_value); |
| break; |
| default: |
| UNREACHABLE(); // Case analysis is exhaustive. |
| break; |
| } |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) && |
| (instr->Bit(4) == 0x0)) { |
| if (instr->SzValue() == 0x1) { |
| int m = instr->VFPMRegValue(kDoublePrecision); |
| int n = instr->VFPNRegValue(kDoublePrecision); |
| int d = instr->VFPDRegValue(kDoublePrecision); |
| double dn_value = get_double_from_d_register(n).get_scalar(); |
| double dm_value = get_double_from_d_register(m).get_scalar(); |
| double dd_value; |
| if (instr->Bit(6) == 0x1) { // vminnm |
| if ((dn_value < dm_value) || std::isnan(dm_value)) { |
| dd_value = dn_value; |
| } else if ((dm_value < dn_value) || std::isnan(dn_value)) { |
| dd_value = dm_value; |
| } else { |
| DCHECK_EQ(dn_value, dm_value); |
| // Make sure that we pick the most negative sign for +/-0. |
| dd_value = std::signbit(dn_value) ? dn_value : dm_value; |
| } |
| } else { // vmaxnm |
| if ((dn_value > dm_value) || std::isnan(dm_value)) { |
| dd_value = dn_value; |
| } else if ((dm_value > dn_value) || std::isnan(dn_value)) { |
| dd_value = dm_value; |
| } else { |
| DCHECK_EQ(dn_value, dm_value); |
| // Make sure that we pick the most positive sign for +/-0. |
| dd_value = std::signbit(dn_value) ? dm_value : dn_value; |
| } |
| } |
| dd_value = canonicalizeNaN(dd_value); |
| set_d_register_from_double(d, dd_value); |
| } else { |
| int m = instr->VFPMRegValue(kSinglePrecision); |
| int n = instr->VFPNRegValue(kSinglePrecision); |
| int d = instr->VFPDRegValue(kSinglePrecision); |
| float sn_value = get_float_from_s_register(n).get_scalar(); |
| float sm_value = get_float_from_s_register(m).get_scalar(); |
| float sd_value; |
| if (instr->Bit(6) == 0x1) { // vminnm |
| if ((sn_value < sm_value) || std::isnan(sm_value)) { |
| sd_value = sn_value; |
| } else if ((sm_value < sn_value) || std::isnan(sn_value)) { |
| sd_value = sm_value; |
| } else { |
| DCHECK_EQ(sn_value, sm_value); |
| // Make sure that we pick the most negative sign for +/-0. |
| sd_value = std::signbit(sn_value) ? sn_value : sm_value; |
| } |
| } else { // vmaxnm |
| if ((sn_value > sm_value) || std::isnan(sm_value)) { |
| sd_value = sn_value; |
| } else if ((sm_value > sn_value) || std::isnan(sn_value)) { |
| sd_value = sm_value; |
| } else { |
| DCHECK_EQ(sn_value, sm_value); |
| // Make sure that we pick the most positive sign for +/-0. |
| sd_value = std::signbit(sn_value) ? sm_value : sn_value; |
| } |
| } |
| sd_value = canonicalizeNaN(sd_value); |
| set_s_register_from_float(d, sd_value); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| case 0x1C: |
| if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) && |
| (instr->Bit(4) == 0)) { |
| // VSEL* (floating-point) |
| bool condition_holds; |
| switch (instr->Bits(21, 20)) { |
| case 0x0: // VSELEQ |
| condition_holds = (z_flag_ == 1); |
| break; |
| case 0x1: // VSELVS |
| condition_holds = (v_flag_ == 1); |
| break; |
| case 0x2: // VSELGE |
| condition_holds = (n_flag_ == v_flag_); |
| break; |
| case 0x3: // VSELGT |
| condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_)); |
| break; |
| default: |
| UNREACHABLE(); // Case analysis is exhaustive. |
| break; |
| } |
| if (instr->SzValue() == 0x1) { |
| int n = instr->VFPNRegValue(kDoublePrecision); |
| int m = instr->VFPMRegValue(kDoublePrecision); |
| int d = instr->VFPDRegValue(kDoublePrecision); |
| Float64 result = get_double_from_d_register(condition_holds ? n : m); |
| set_d_register_from_double(d, result); |
| } else { |
| int n = instr->VFPNRegValue(kSinglePrecision); |
| int m = instr->VFPMRegValue(kSinglePrecision); |
| int d = instr->VFPDRegValue(kSinglePrecision); |
| Float32 result = get_float_from_s_register(condition_holds ? n : m); |
| set_s_register_from_float(d, result); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| |
| void Simulator::DecodeSpecialCondition(Instruction* instr) { |
| int op0 = instr->Bits(25, 24); |
| int op1 = instr->Bits(11, 9); |
| int op2 = instr->Bit(4); |
| |
| if (instr->Bit(27) == 0) { |
| DecodeUnconditional(instr); |
| } else if ((instr->Bits(27, 26) == 0b11) && (op0 == 0b10) && |
| ((op1 >> 1) == 0b10) && !op2) { |
| DecodeFloatingPointDataProcessing(instr); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| // Executes the current instruction. |
| void Simulator::InstructionDecode(Instruction* instr) { |
| if (v8::internal::FLAG_check_icache) { |
| CheckICache(i_cache(), instr); |
| } |
| pc_modified_ = false; |
| if (::v8::internal::FLAG_trace_sim) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr), |
| buffer.begin()); |
| } |
| if (instr->ConditionField() == kSpecialCondition) { |
| DecodeSpecialCondition(instr); |
| } else if (ConditionallyExecute(instr)) { |
| switch (instr->TypeValue()) { |
| case 0: |
| case 1: { |
| DecodeType01(instr); |
| break; |
| } |
| case 2: { |
| DecodeType2(instr); |
| break; |
| } |
| case 3: { |
| DecodeType3(instr); |
| break; |
| } |
| case 4: { |
| DecodeType4(instr); |
| break; |
| } |
| case 5: { |
| DecodeType5(instr); |
| break; |
| } |
| case 6: { |
| DecodeType6(instr); |
| break; |
| } |
| case 7: { |
| DecodeType7(instr); |
| break; |
| } |
| default: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| } |
| } |
| if (!pc_modified_) { |
| set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize); |
| } |
| } |
| |
| void Simulator::Execute() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| int program_counter = get_pc(); |
| |
| if (::v8::internal::FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_ = base::AddWithWraparound(icount_, 1); |
| InstructionDecode(instr); |
| program_counter = get_pc(); |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instruction count. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_ = base::AddWithWraparound(icount_, 1); |
| if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| ArmDebugger dbg(this); |
| dbg.Debug(); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| } |
| |
| void Simulator::CallInternal(Address entry) { |
| // Adjust JS-based stack limit to C-based stack limit. |
| isolate_->stack_guard()->AdjustStackLimitForSimulator(); |
| |
| // Prepare to execute the code at entry |
| set_register(pc, static_cast<int32_t>(entry)); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(lr, end_sim_pc); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t r4_val = get_register(r4); |
| int32_t r5_val = get_register(r5); |
| int32_t r6_val = get_register(r6); |
| int32_t r7_val = get_register(r7); |
| int32_t r8_val = get_register(r8); |
| int32_t r9_val = get_register(r9); |
| int32_t r10_val = get_register(r10); |
| int32_t r11_val = get_register(r11); |
| |
| // Set up the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across JS execution. |
| int32_t callee_saved_value = icount_; |
| set_register(r4, callee_saved_value); |
| set_register(r5, callee_saved_value); |
| set_register(r6, callee_saved_value); |
| set_register(r7, callee_saved_value); |
| set_register(r8, callee_saved_value); |
| set_register(r9, callee_saved_value); |
| set_register(r10, callee_saved_value); |
| set_register(r11, callee_saved_value); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| CHECK_EQ(callee_saved_value, get_register(r4)); |
| CHECK_EQ(callee_saved_value, get_register(r5)); |
| CHECK_EQ(callee_saved_value, get_register(r6)); |
| CHECK_EQ(callee_saved_value, get_register(r7)); |
| CHECK_EQ(callee_saved_value, get_register(r8)); |
| CHECK_EQ(callee_saved_value, get_register(r9)); |
| CHECK_EQ(callee_saved_value, get_register(r10)); |
| CHECK_EQ(callee_saved_value, get_register(r11)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(r4, r4_val); |
| set_register(r5, r5_val); |
| set_register(r6, r6_val); |
| set_register(r7, r7_val); |
| set_register(r8, r8_val); |
| set_register(r9, r9_val); |
| set_register(r10, r10_val); |
| set_register(r11, r11_val); |
| } |
| |
| intptr_t Simulator::CallImpl(Address entry, int argument_count, |
| const intptr_t* arguments) { |
| // Set up arguments |
| |
| // First four arguments passed in registers. |
| int reg_arg_count = std::min(4, argument_count); |
| if (reg_arg_count > 0) set_register(r0, arguments[0]); |
| if (reg_arg_count > 1) set_register(r1, arguments[1]); |
| if (reg_arg_count > 2) set_register(r2, arguments[2]); |
| if (reg_arg_count > 3) set_register(r3, arguments[3]); |
| |
| // Remaining arguments passed on stack. |
| int original_stack = get_register(sp); |
| // Compute position of stack on entry to generated code. |
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); |
| if (base::OS::ActivationFrameAlignment() != 0) { |
| entry_stack &= -base::OS::ActivationFrameAlignment(); |
| } |
| // Store remaining arguments on stack, from low to high memory. |
| memcpy(reinterpret_cast<intptr_t*>(entry_stack), |
| arguments + reg_arg_count, |
| (argument_count - reg_arg_count) * sizeof(*arguments)); |
| set_register(sp, entry_stack); |
| |
| CallInternal(entry); |
| |
| // Pop stack passed arguments. |
| CHECK_EQ(entry_stack, get_register(sp)); |
| set_register(sp, original_stack); |
| |
| return get_register(r0); |
| } |
| |
| intptr_t Simulator::CallFPImpl(Address entry, double d0, double d1) { |
| if (use_eabi_hardfloat()) { |
| set_d_register_from_double(0, d0); |
| set_d_register_from_double(1, d1); |
| } else { |
| set_register_pair_from_double(0, &d0); |
| set_register_pair_from_double(2, &d1); |
| } |
| CallInternal(entry); |
| return get_register(r0); |
| } |
| |
| uintptr_t Simulator::PushAddress(uintptr_t address) { |
| int new_sp = get_register(sp) - sizeof(uintptr_t); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| *stack_slot = address; |
| set_register(sp, new_sp); |
| return new_sp; |
| } |
| |
| uintptr_t Simulator::PopAddress() { |
| int current_sp = get_register(sp); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| uintptr_t address = *stack_slot; |
| set_register(sp, current_sp + sizeof(uintptr_t)); |
| return address; |
| } |
| |
| Simulator::LocalMonitor::LocalMonitor() |
| : access_state_(MonitorAccess::Open), |
| tagged_addr_(0), |
| size_(TransactionSize::None) {} |
| |
| void Simulator::LocalMonitor::Clear() { |
| access_state_ = MonitorAccess::Open; |
| tagged_addr_ = 0; |
| size_ = TransactionSize::None; |
| } |
| |
| void Simulator::LocalMonitor::NotifyLoad(int32_t addr) { |
| if (access_state_ == MonitorAccess::Exclusive) { |
| // A load could cause a cache eviction which will affect the monitor. As a |
| // result, it's most strict to unconditionally clear the local monitor on |
| // load. |
| Clear(); |
| } |
| } |
| |
| void Simulator::LocalMonitor::NotifyLoadExcl(int32_t addr, |
| TransactionSize size) { |
| access_state_ = MonitorAccess::Exclusive; |
| tagged_addr_ = addr; |
| size_ = size; |
| } |
| |
| void Simulator::LocalMonitor::NotifyStore(int32_t addr) { |
| if (access_state_ == MonitorAccess::Exclusive) { |
| // It is implementation-defined whether a non-exclusive store to an address |
| // covered by the local monitor during exclusive access transitions to open |
| // or exclusive access. See ARM DDI 0406C.b, A3.4.1. |
| // |
| // However, a store could cause a cache eviction which will affect the |
| // monitor. As a result, it's most strict to unconditionally clear the |
| // local monitor on store. |
| Clear(); |
| } |
| } |
| |
| bool Simulator::LocalMonitor::NotifyStoreExcl(int32_t addr, |
| TransactionSize size) { |
| if (access_state_ == MonitorAccess::Exclusive) { |
| // It is allowed for a processor to require that the address matches |
| // exactly (A3.4.5), so this comparison does not mask addr. |
| if (addr == tagged_addr_ && size_ == size) { |
| Clear(); |
| return true; |
| } else { |
| // It is implementation-defined whether an exclusive store to a |
| // non-tagged address will update memory. Behavior is unpredictable if |
| // the transaction size of the exclusive store differs from that of the |
| // exclusive load. See ARM DDI 0406C.b, A3.4.5. |
| Clear(); |
| return false; |
| } |
| } else { |
| DCHECK(access_state_ == MonitorAccess::Open); |
| return false; |
| } |
| } |
| |
| Simulator::GlobalMonitor::Processor::Processor() |
| : access_state_(MonitorAccess::Open), |
| tagged_addr_(0), |
| next_(nullptr), |
| prev_(nullptr), |
| failure_counter_(0) {} |
| |
| void Simulator::GlobalMonitor::Processor::Clear_Locked() { |
| access_state_ = MonitorAccess::Open; |
| tagged_addr_ = 0; |
| } |
| |
| void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(int32_t addr) { |
| access_state_ = MonitorAccess::Exclusive; |
| tagged_addr_ = addr; |
| } |
| |
| void Simulator::GlobalMonitor::Processor::NotifyStore_Locked( |
| int32_t addr, bool is_requesting_processor) { |
| if (access_state_ == MonitorAccess::Exclusive) { |
| // It is implementation-defined whether a non-exclusive store by the |
| // requesting processor to an address covered by the global monitor |
| // during exclusive access transitions to open or exclusive access. |
| // |
| // For any other processor, the access state always transitions to open |
| // access. |
| // |
| // See ARM DDI 0406C.b, A3.4.2. |
| // |
| // However, similar to the local monitor, it is possible that a store |
| // caused a cache eviction, which can affect the montior, so |
| // conservatively, we always clear the monitor. |
| Clear_Locked(); |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked( |
| int32_t addr, bool is_requesting_processor) { |
| if (access_state_ == MonitorAccess::Exclusive) { |
| if (is_requesting_processor) { |
| // It is allowed for a processor to require that the address matches |
| // exactly (A3.4.5), so this comparison does not mask addr. |
| if (addr == tagged_addr_) { |
| // The access state for the requesting processor after a successful |
| // exclusive store is implementation-defined, but according to the ARM |
| // DDI, this has no effect on the subsequent operation of the global |
| // monitor. |
| Clear_Locked(); |
| // Introduce occasional strex failures. This is to simulate the |
| // behavior of hardware, which can randomly fail due to background |
| // cache evictions. |
| if (failure_counter_++ >= kMaxFailureCounter) { |
| failure_counter_ = 0; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| } else if ((addr & kExclusiveTaggedAddrMask) == |
| (tagged_addr_ & kExclusiveTaggedAddrMask)) { |
| // Check the masked addresses when responding to a successful lock by |
| // another processor so the implementation is more conservative (i.e. the |
| // granularity of locking is as large as possible.) |
| Clear_Locked(); |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(int32_t addr, |
| Processor* processor) { |
| processor->NotifyLoadExcl_Locked(addr); |
| PrependProcessor_Locked(processor); |
| } |
| |
| void Simulator::GlobalMonitor::NotifyStore_Locked(int32_t addr, |
| Processor* processor) { |
| // Notify each processor of the store operation. |
| for (Processor* iter = head_; iter; iter = iter->next_) { |
| bool is_requesting_processor = iter == processor; |
| iter->NotifyStore_Locked(addr, is_requesting_processor); |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(int32_t addr, |
| Processor* processor) { |
| DCHECK(IsProcessorInLinkedList_Locked(processor)); |
| if (processor->NotifyStoreExcl_Locked(addr, true)) { |
| // Notify the other processors that this StoreExcl succeeded. |
| for (Processor* iter = head_; iter; iter = iter->next_) { |
| if (iter != processor) { |
| iter->NotifyStoreExcl_Locked(addr, false); |
| } |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked( |
| Processor* processor) const { |
| return head_ == processor || processor->next_ || processor->prev_; |
| } |
| |
| void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) { |
| if (IsProcessorInLinkedList_Locked(processor)) { |
| return; |
| } |
| |
| if (head_) { |
| head_->prev_ = processor; |
| } |
| processor->prev_ = nullptr; |
| processor->next_ = head_; |
| head_ = processor; |
| } |
| |
| void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) { |
| base::MutexGuard lock_guard(&mutex); |
| if (!IsProcessorInLinkedList_Locked(processor)) { |
| return; |
| } |
| |
| if (processor->prev_) { |
| processor->prev_->next_ = processor->next_; |
| } else { |
| head_ = processor->next_; |
| } |
| if (processor->next_) { |
| processor->next_->prev_ = processor->prev_; |
| } |
| processor->prev_ = nullptr; |
| processor->next_ = nullptr; |
| } |
| |
| #undef SScanF |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // USE_SIMULATOR |