| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Declares a Simulator for ARM instructions if we are not generating a native |
| // ARM binary. This Simulator allows us to run and debug ARM code generation on |
| // regular desktop machines. |
| // V8 calls into generated code by using the GeneratedCode class, |
| // which will start execution in the Simulator or forwards to the real entry |
| // on a ARM HW platform. |
| |
| #ifndef V8_EXECUTION_ARM_SIMULATOR_ARM_H_ |
| #define V8_EXECUTION_ARM_SIMULATOR_ARM_H_ |
| |
| // globals.h defines USE_SIMULATOR. |
| #include "src/common/globals.h" |
| |
| #if defined(USE_SIMULATOR) |
| // Running with a simulator. |
| |
| #include "src/base/hashmap.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/base/platform/mutex.h" |
| #include "src/codegen/arm/constants-arm.h" |
| #include "src/execution/simulator-base.h" |
| #include "src/utils/allocation.h" |
| #include "src/utils/boxed-float.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class CachePage { |
| public: |
| static const int LINE_VALID = 0; |
| static const int LINE_INVALID = 1; |
| |
| static const int kPageShift = 12; |
| static const int kPageSize = 1 << kPageShift; |
| static const int kPageMask = kPageSize - 1; |
| static const int kLineShift = 2; // The cache line is only 4 bytes right now. |
| static const int kLineLength = 1 << kLineShift; |
| static const int kLineMask = kLineLength - 1; |
| |
| CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } |
| |
| char* ValidityByte(int offset) { |
| return &validity_map_[offset >> kLineShift]; |
| } |
| |
| char* CachedData(int offset) { return &data_[offset]; } |
| |
| private: |
| char data_[kPageSize]; // The cached data. |
| static const int kValidityMapSize = kPageSize >> kLineShift; |
| char validity_map_[kValidityMapSize]; // One byte per line. |
| }; |
| |
| class Simulator : public SimulatorBase { |
| public: |
| friend class ArmDebugger; |
| enum Register { |
| no_reg = -1, |
| r0 = 0, |
| r1, |
| r2, |
| r3, |
| r4, |
| r5, |
| r6, |
| r7, |
| r8, |
| r9, |
| r10, |
| r11, |
| r12, |
| r13, |
| r14, |
| r15, |
| num_registers, |
| sp = 13, |
| lr = 14, |
| pc = 15, |
| s0 = 0, |
| s1, |
| s2, |
| s3, |
| s4, |
| s5, |
| s6, |
| s7, |
| s8, |
| s9, |
| s10, |
| s11, |
| s12, |
| s13, |
| s14, |
| s15, |
| s16, |
| s17, |
| s18, |
| s19, |
| s20, |
| s21, |
| s22, |
| s23, |
| s24, |
| s25, |
| s26, |
| s27, |
| s28, |
| s29, |
| s30, |
| s31, |
| num_s_registers = 32, |
| d0 = 0, |
| d1, |
| d2, |
| d3, |
| d4, |
| d5, |
| d6, |
| d7, |
| d8, |
| d9, |
| d10, |
| d11, |
| d12, |
| d13, |
| d14, |
| d15, |
| d16, |
| d17, |
| d18, |
| d19, |
| d20, |
| d21, |
| d22, |
| d23, |
| d24, |
| d25, |
| d26, |
| d27, |
| d28, |
| d29, |
| d30, |
| d31, |
| num_d_registers = 32, |
| q0 = 0, |
| q1, |
| q2, |
| q3, |
| q4, |
| q5, |
| q6, |
| q7, |
| q8, |
| q9, |
| q10, |
| q11, |
| q12, |
| q13, |
| q14, |
| q15, |
| num_q_registers = 16 |
| }; |
| |
| explicit Simulator(Isolate* isolate); |
| ~Simulator(); |
| |
| // The currently executing Simulator instance. Potentially there can be one |
| // for each native thread. |
| V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); |
| |
| // Accessors for register state. Reading the pc value adheres to the ARM |
| // architecture specification and is off by a 8 from the currently executing |
| // instruction. |
| void set_register(int reg, int32_t value); |
| V8_EXPORT_PRIVATE int32_t get_register(int reg) const; |
| double get_double_from_register_pair(int reg); |
| void set_register_pair_from_double(int reg, double* value); |
| void set_dw_register(int dreg, const int* dbl); |
| |
| // Support for VFP. |
| void get_d_register(int dreg, uint64_t* value); |
| void set_d_register(int dreg, const uint64_t* value); |
| void get_d_register(int dreg, uint32_t* value); |
| void set_d_register(int dreg, const uint32_t* value); |
| // Support for NEON. |
| template <typename T, int SIZE = kSimd128Size> |
| void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]); |
| template <typename T, int SIZE = kSimd128Size> |
| void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]); |
| |
| void set_s_register(int reg, unsigned int value); |
| unsigned int get_s_register(int reg) const; |
| |
| void set_d_register_from_double(int dreg, const Float64 dbl) { |
| SetVFPRegister<Float64, 2>(dreg, dbl); |
| } |
| void set_d_register_from_double(int dreg, const double dbl) { |
| SetVFPRegister<double, 2>(dreg, dbl); |
| } |
| |
| Float64 get_double_from_d_register(int dreg) { |
| return GetFromVFPRegister<Float64, 2>(dreg); |
| } |
| |
| void set_s_register_from_float(int sreg, const Float32 flt) { |
| SetVFPRegister<Float32, 1>(sreg, flt); |
| } |
| void set_s_register_from_float(int sreg, const float flt) { |
| SetVFPRegister<float, 1>(sreg, flt); |
| } |
| |
| Float32 get_float_from_s_register(int sreg) { |
| return GetFromVFPRegister<Float32, 1>(sreg); |
| } |
| |
| void set_s_register_from_sinteger(int sreg, const int sint) { |
| SetVFPRegister<int, 1>(sreg, sint); |
| } |
| |
| int get_sinteger_from_s_register(int sreg) { |
| return GetFromVFPRegister<int, 1>(sreg); |
| } |
| |
| // Special case of set_register and get_register to access the raw PC value. |
| void set_pc(int32_t value); |
| V8_EXPORT_PRIVATE int32_t get_pc() const; |
| |
| Address get_sp() const { return static_cast<Address>(get_register(sp)); } |
| |
| // Accessor to the internal simulator stack area. |
| uintptr_t StackLimit(uintptr_t c_limit) const; |
| |
| // Executes ARM instructions until the PC reaches end_sim_pc. |
| void Execute(); |
| |
| template <typename Return, typename... Args> |
| Return Call(Address entry, Args... args) { |
| return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...); |
| } |
| |
| // Alternative: call a 2-argument double function. |
| template <typename Return> |
| Return CallFP(Address entry, double d0, double d1) { |
| return ConvertReturn<Return>(CallFPImpl(entry, d0, d1)); |
| } |
| |
| // Push an address onto the JS stack. |
| uintptr_t PushAddress(uintptr_t address); |
| |
| // Pop an address from the JS stack. |
| uintptr_t PopAddress(); |
| |
| // Debugger input. |
| void set_last_debugger_input(char* input); |
| char* last_debugger_input() { return last_debugger_input_; } |
| |
| // Redirection support. |
| static void SetRedirectInstruction(Instruction* instruction); |
| |
| // ICache checking. |
| static bool ICacheMatch(void* one, void* two); |
| static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, |
| size_t size); |
| |
| // Returns true if pc register contains one of the 'special_values' defined |
| // below (bad_lr, end_sim_pc). |
| bool has_bad_pc() const; |
| |
| // EABI variant for double arguments in use. |
| bool use_eabi_hardfloat() { |
| #if USE_EABI_HARDFLOAT |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| private: |
| enum special_values { |
| // Known bad pc value to ensure that the simulator does not execute |
| // without being properly setup. |
| bad_lr = -1, |
| // A pc value used to signal the simulator to stop execution. Generally |
| // the lr is set to this value on transition from native C code to |
| // simulated execution, so that the simulator can "return" to the native |
| // C code. |
| end_sim_pc = -2 |
| }; |
| |
| V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, |
| const intptr_t* arguments); |
| intptr_t CallFPImpl(Address entry, double d0, double d1); |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Format(Instruction* instr, const char* format); |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| inline bool ConditionallyExecute(Instruction* instr); |
| |
| // Helper functions to set the conditional flags in the architecture state. |
| void SetNZFlags(int32_t val); |
| void SetCFlag(bool val); |
| void SetVFlag(bool val); |
| bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); |
| bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1); |
| bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
| bool addition); |
| |
| inline int GetCarry() { return c_flag_ ? 1 : 0; } |
| |
| // Support for VFP. |
| void Compute_FPSCR_Flags(float val1, float val2); |
| void Compute_FPSCR_Flags(double val1, double val2); |
| void Copy_FPSCR_to_APSR(); |
| inline float canonicalizeNaN(float value); |
| inline double canonicalizeNaN(double value); |
| inline Float32 canonicalizeNaN(Float32 value); |
| inline Float64 canonicalizeNaN(Float64 value); |
| |
| // Helper functions to decode common "addressing" modes |
| int32_t GetShiftRm(Instruction* instr, bool* carry_out); |
| int32_t GetImm(Instruction* instr, bool* carry_out); |
| int32_t ProcessPU(Instruction* instr, int num_regs, int operand_size, |
| intptr_t* start_address, intptr_t* end_address); |
| void HandleRList(Instruction* instr, bool load); |
| void HandleVList(Instruction* inst); |
| void SoftwareInterrupt(Instruction* instr); |
| void DebugAtNextPC(); |
| |
| // Stop helper functions. |
| inline bool isWatchedStop(uint32_t bkpt_code); |
| inline bool isEnabledStop(uint32_t bkpt_code); |
| inline void EnableStop(uint32_t bkpt_code); |
| inline void DisableStop(uint32_t bkpt_code); |
| inline void IncreaseStopCounter(uint32_t bkpt_code); |
| void PrintStopInfo(uint32_t code); |
| |
| // Read and write memory. |
| // The *Ex functions are exclusive access. The writes return the strex status: |
| // 0 if the write succeeds, and 1 if the write fails. |
| inline uint8_t ReadBU(int32_t addr); |
| inline int8_t ReadB(int32_t addr); |
| uint8_t ReadExBU(int32_t addr); |
| inline void WriteB(int32_t addr, uint8_t value); |
| inline void WriteB(int32_t addr, int8_t value); |
| int WriteExB(int32_t addr, uint8_t value); |
| |
| inline uint16_t ReadHU(int32_t addr); |
| inline int16_t ReadH(int32_t addr); |
| uint16_t ReadExHU(int32_t addr); |
| // Note: Overloaded on the sign of the value. |
| inline void WriteH(int32_t addr, uint16_t value); |
| inline void WriteH(int32_t addr, int16_t value); |
| int WriteExH(int32_t addr, uint16_t value); |
| |
| inline int ReadW(int32_t addr); |
| int ReadExW(int32_t addr); |
| inline void WriteW(int32_t addr, int value); |
| int WriteExW(int32_t addr, int value); |
| |
| int32_t* ReadDW(int32_t addr); |
| void WriteDW(int32_t addr, int32_t value1, int32_t value2); |
| int32_t* ReadExDW(int32_t addr); |
| int WriteExDW(int32_t addr, int32_t value1, int32_t value2); |
| |
| // Executing is handled based on the instruction type. |
| // Both type 0 and type 1 rolled into one. |
| void DecodeType01(Instruction* instr); |
| void DecodeType2(Instruction* instr); |
| void DecodeType3(Instruction* instr); |
| void DecodeType4(Instruction* instr); |
| void DecodeType5(Instruction* instr); |
| void DecodeType6(Instruction* instr); |
| void DecodeType7(Instruction* instr); |
| |
| // CP15 coprocessor instructions. |
| void DecodeTypeCP15(Instruction* instr); |
| |
| // Support for VFP. |
| void DecodeTypeVFP(Instruction* instr); |
| void DecodeType6CoprocessorIns(Instruction* instr); |
| void DecodeSpecialCondition(Instruction* instr); |
| |
| void DecodeFloatingPointDataProcessing(Instruction* instr); |
| void DecodeUnconditional(Instruction* instr); |
| void DecodeAdvancedSIMDDataProcessing(Instruction* instr); |
| void DecodeMemoryHintsAndBarriers(Instruction* instr); |
| void DecodeAdvancedSIMDElementOrStructureLoadStore(Instruction* instr); |
| void DecodeAdvancedSIMDTwoOrThreeRegisters(Instruction* instr); |
| |
| void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); |
| void DecodeVCMP(Instruction* instr); |
| void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); |
| int32_t ConvertDoubleToInt(double val, bool unsigned_integer, |
| VFPRoundingMode mode); |
| void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); |
| |
| // Executes one instruction. |
| void InstructionDecode(Instruction* instr); |
| |
| // ICache. |
| static void CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr); |
| static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, |
| int size); |
| static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page); |
| |
| // Handle arguments and return value for runtime FP functions. |
| void GetFpArgs(double* x, double* y, int32_t* z); |
| void SetFpResult(const double& result); |
| void TrashCallerSaveRegisters(); |
| |
| template <class ReturnType, int register_size> |
| ReturnType GetFromVFPRegister(int reg_index); |
| |
| template <class InputType, int register_size> |
| void SetVFPRegister(int reg_index, const InputType& value); |
| |
| void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value); |
| uint32_t GetFromSpecialRegister(SRegister reg); |
| |
| void CallInternal(Address entry); |
| |
| // Architecture state. |
| // Saturating instructions require a Q flag to indicate saturation. |
| // There is currently no way to read the CPSR directly, and thus read the Q |
| // flag, so this is left unimplemented. |
| int32_t registers_[16]; |
| bool n_flag_; |
| bool z_flag_; |
| bool c_flag_; |
| bool v_flag_; |
| |
| // VFP architecture state. |
| unsigned int vfp_registers_[num_d_registers * 2]; |
| bool n_flag_FPSCR_; |
| bool z_flag_FPSCR_; |
| bool c_flag_FPSCR_; |
| bool v_flag_FPSCR_; |
| |
| // VFP rounding mode. See ARM DDI 0406B Page A2-29. |
| VFPRoundingMode FPSCR_rounding_mode_; |
| bool FPSCR_default_NaN_mode_; |
| |
| // VFP FP exception flags architecture state. |
| bool inv_op_vfp_flag_; |
| bool div_zero_vfp_flag_; |
| bool overflow_vfp_flag_; |
| bool underflow_vfp_flag_; |
| bool inexact_vfp_flag_; |
| |
| // Simulator support. |
| char* stack_; |
| bool pc_modified_; |
| int icount_; |
| |
| // Debugger input. |
| char* last_debugger_input_; |
| |
| // Registered breakpoints. |
| Instruction* break_pc_; |
| Instr break_instr_; |
| |
| v8::internal::Isolate* isolate_; |
| |
| // A stop is watched if its code is less than kNumOfWatchedStops. |
| // Only watched stops support enabling/disabling and the counter feature. |
| static const uint32_t kNumOfWatchedStops = 256; |
| |
| // Breakpoint is disabled if bit 31 is set. |
| static const uint32_t kStopDisabledBit = 1 << 31; |
| |
| // A stop is enabled, meaning the simulator will stop when meeting the |
| // instruction, if bit 31 of watched_stops_[code].count is unset. |
| // The value watched_stops_[code].count & ~(1 << 31) indicates how many times |
| // the breakpoint was hit or gone through. |
| struct StopCountAndDesc { |
| uint32_t count; |
| char* desc; |
| }; |
| StopCountAndDesc watched_stops_[kNumOfWatchedStops]; |
| |
| // Synchronization primitives. See ARM DDI 0406C.b, A2.9. |
| enum class MonitorAccess { |
| Open, |
| Exclusive, |
| }; |
| |
| enum class TransactionSize { |
| None = 0, |
| Byte = 1, |
| HalfWord = 2, |
| Word = 4, |
| DoubleWord = 8, |
| }; |
| |
| // The least-significant bits of the address are ignored. The number of bits |
| // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3. |
| static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1); |
| |
| class LocalMonitor { |
| public: |
| LocalMonitor(); |
| |
| // These functions manage the state machine for the local monitor, but do |
| // not actually perform loads and stores. NotifyStoreExcl only returns |
| // true if the exclusive store is allowed; the global monitor will still |
| // have to be checked to see whether the memory should be updated. |
| void NotifyLoad(int32_t addr); |
| void NotifyLoadExcl(int32_t addr, TransactionSize size); |
| void NotifyStore(int32_t addr); |
| bool NotifyStoreExcl(int32_t addr, TransactionSize size); |
| |
| private: |
| void Clear(); |
| |
| MonitorAccess access_state_; |
| int32_t tagged_addr_; |
| TransactionSize size_; |
| }; |
| |
| class GlobalMonitor { |
| public: |
| class Processor { |
| public: |
| Processor(); |
| |
| private: |
| friend class GlobalMonitor; |
| // These functions manage the state machine for the global monitor, but do |
| // not actually perform loads and stores. |
| void Clear_Locked(); |
| void NotifyLoadExcl_Locked(int32_t addr); |
| void NotifyStore_Locked(int32_t addr, bool is_requesting_processor); |
| bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor); |
| |
| MonitorAccess access_state_; |
| int32_t tagged_addr_; |
| Processor* next_; |
| Processor* prev_; |
| // A strex can fail due to background cache evictions. Rather than |
| // simulating this, we'll just occasionally introduce cases where an |
| // exclusive store fails. This will happen once after every |
| // kMaxFailureCounter exclusive stores. |
| static const int kMaxFailureCounter = 5; |
| int failure_counter_; |
| }; |
| |
| // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. |
| base::Mutex mutex; |
| |
| void NotifyLoadExcl_Locked(int32_t addr, Processor* processor); |
| void NotifyStore_Locked(int32_t addr, Processor* processor); |
| bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor); |
| |
| // Called when the simulator is destroyed. |
| void RemoveProcessor(Processor* processor); |
| |
| static GlobalMonitor* Get(); |
| |
| private: |
| // Private constructor. Call {GlobalMonitor::Get()} to get the singleton. |
| GlobalMonitor() = default; |
| friend class base::LeakyObject<GlobalMonitor>; |
| |
| bool IsProcessorInLinkedList_Locked(Processor* processor) const; |
| void PrependProcessor_Locked(Processor* processor); |
| |
| Processor* head_ = nullptr; |
| }; |
| |
| LocalMonitor local_monitor_; |
| GlobalMonitor::Processor global_monitor_processor_; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // defined(USE_SIMULATOR) |
| #endif // V8_EXECUTION_ARM_SIMULATOR_ARM_H_ |