blob: 84f857d5daaa61ddbd3ca3b4b568374f728de60c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Declares a Simulator for ARM instructions if we are not generating a native
// ARM binary. This Simulator allows us to run and debug ARM code generation on
// regular desktop machines.
// V8 calls into generated code by using the GeneratedCode class,
// which will start execution in the Simulator or forwards to the real entry
// on a ARM HW platform.
#ifndef V8_EXECUTION_ARM_SIMULATOR_ARM_H_
#define V8_EXECUTION_ARM_SIMULATOR_ARM_H_
// globals.h defines USE_SIMULATOR.
#include "src/common/globals.h"
#if defined(USE_SIMULATOR)
// Running with a simulator.
#include "src/base/hashmap.h"
#include "src/base/lazy-instance.h"
#include "src/base/platform/mutex.h"
#include "src/codegen/arm/constants-arm.h"
#include "src/execution/simulator-base.h"
#include "src/utils/allocation.h"
#include "src/utils/boxed-float.h"
namespace v8 {
namespace internal {
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class Simulator : public SimulatorBase {
public:
friend class ArmDebugger;
enum Register {
no_reg = -1,
r0 = 0,
r1,
r2,
r3,
r4,
r5,
r6,
r7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
num_registers,
sp = 13,
lr = 14,
pc = 15,
s0 = 0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
s8,
s9,
s10,
s11,
s12,
s13,
s14,
s15,
s16,
s17,
s18,
s19,
s20,
s21,
s22,
s23,
s24,
s25,
s26,
s27,
s28,
s29,
s30,
s31,
num_s_registers = 32,
d0 = 0,
d1,
d2,
d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31,
num_d_registers = 32,
q0 = 0,
q1,
q2,
q3,
q4,
q5,
q6,
q7,
q8,
q9,
q10,
q11,
q12,
q13,
q14,
q15,
num_q_registers = 16
};
explicit Simulator(Isolate* isolate);
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state. Reading the pc value adheres to the ARM
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int32_t value);
V8_EXPORT_PRIVATE int32_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
void set_register_pair_from_double(int reg, double* value);
void set_dw_register(int dreg, const int* dbl);
// Support for VFP.
void get_d_register(int dreg, uint64_t* value);
void set_d_register(int dreg, const uint64_t* value);
void get_d_register(int dreg, uint32_t* value);
void set_d_register(int dreg, const uint32_t* value);
// Support for NEON.
template <typename T, int SIZE = kSimd128Size>
void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]);
template <typename T, int SIZE = kSimd128Size>
void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]);
void set_s_register(int reg, unsigned int value);
unsigned int get_s_register(int reg) const;
void set_d_register_from_double(int dreg, const Float64 dbl) {
SetVFPRegister<Float64, 2>(dreg, dbl);
}
void set_d_register_from_double(int dreg, const double dbl) {
SetVFPRegister<double, 2>(dreg, dbl);
}
Float64 get_double_from_d_register(int dreg) {
return GetFromVFPRegister<Float64, 2>(dreg);
}
void set_s_register_from_float(int sreg, const Float32 flt) {
SetVFPRegister<Float32, 1>(sreg, flt);
}
void set_s_register_from_float(int sreg, const float flt) {
SetVFPRegister<float, 1>(sreg, flt);
}
Float32 get_float_from_s_register(int sreg) {
return GetFromVFPRegister<Float32, 1>(sreg);
}
void set_s_register_from_sinteger(int sreg, const int sint) {
SetVFPRegister<int, 1>(sreg, sint);
}
int get_sinteger_from_s_register(int sreg) {
return GetFromVFPRegister<int, 1>(sreg);
}
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
V8_EXPORT_PRIVATE int32_t get_pc() const;
Address get_sp() const { return static_cast<Address>(get_register(sp)); }
// Accessor to the internal simulator stack area.
uintptr_t StackLimit(uintptr_t c_limit) const;
// Executes ARM instructions until the PC reaches end_sim_pc.
void Execute();
template <typename Return, typename... Args>
Return Call(Address entry, Args... args) {
return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
}
// Alternative: call a 2-argument double function.
template <typename Return>
Return CallFP(Address entry, double d0, double d1) {
return ConvertReturn<Return>(CallFPImpl(entry, d0, d1));
}
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Debugger input.
void set_last_debugger_input(char* input);
char* last_debugger_input() { return last_debugger_input_; }
// Redirection support.
static void SetRedirectInstruction(Instruction* instruction);
// ICache checking.
static bool ICacheMatch(void* one, void* two);
static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_lr, end_sim_pc).
bool has_bad_pc() const;
// EABI variant for double arguments in use.
bool use_eabi_hardfloat() {
#if USE_EABI_HARDFLOAT
return true;
#else
return false;
#endif
}
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count,
const intptr_t* arguments);
intptr_t CallFPImpl(Address entry, double d0, double d1);
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Checks if the current instruction should be executed based on its
// condition bits.
inline bool ConditionallyExecute(Instruction* instr);
// Helper functions to set the conditional flags in the architecture state.
void SetNZFlags(int32_t val);
void SetCFlag(bool val);
void SetVFlag(bool val);
bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition);
inline int GetCarry() { return c_flag_ ? 1 : 0; }
// Support for VFP.
void Compute_FPSCR_Flags(float val1, float val2);
void Compute_FPSCR_Flags(double val1, double val2);
void Copy_FPSCR_to_APSR();
inline float canonicalizeNaN(float value);
inline double canonicalizeNaN(double value);
inline Float32 canonicalizeNaN(Float32 value);
inline Float64 canonicalizeNaN(Float64 value);
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instruction* instr, bool* carry_out);
int32_t GetImm(Instruction* instr, bool* carry_out);
int32_t ProcessPU(Instruction* instr, int num_regs, int operand_size,
intptr_t* start_address, intptr_t* end_address);
void HandleRList(Instruction* instr, bool load);
void HandleVList(Instruction* inst);
void SoftwareInterrupt(Instruction* instr);
void DebugAtNextPC();
// Stop helper functions.
inline bool isWatchedStop(uint32_t bkpt_code);
inline bool isEnabledStop(uint32_t bkpt_code);
inline void EnableStop(uint32_t bkpt_code);
inline void DisableStop(uint32_t bkpt_code);
inline void IncreaseStopCounter(uint32_t bkpt_code);
void PrintStopInfo(uint32_t code);
// Read and write memory.
// The *Ex functions are exclusive access. The writes return the strex status:
// 0 if the write succeeds, and 1 if the write fails.
inline uint8_t ReadBU(int32_t addr);
inline int8_t ReadB(int32_t addr);
uint8_t ReadExBU(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
int WriteExB(int32_t addr, uint8_t value);
inline uint16_t ReadHU(int32_t addr);
inline int16_t ReadH(int32_t addr);
uint16_t ReadExHU(int32_t addr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value);
inline void WriteH(int32_t addr, int16_t value);
int WriteExH(int32_t addr, uint16_t value);
inline int ReadW(int32_t addr);
int ReadExW(int32_t addr);
inline void WriteW(int32_t addr, int value);
int WriteExW(int32_t addr, int value);
int32_t* ReadDW(int32_t addr);
void WriteDW(int32_t addr, int32_t value1, int32_t value2);
int32_t* ReadExDW(int32_t addr);
int WriteExDW(int32_t addr, int32_t value1, int32_t value2);
// Executing is handled based on the instruction type.
// Both type 0 and type 1 rolled into one.
void DecodeType01(Instruction* instr);
void DecodeType2(Instruction* instr);
void DecodeType3(Instruction* instr);
void DecodeType4(Instruction* instr);
void DecodeType5(Instruction* instr);
void DecodeType6(Instruction* instr);
void DecodeType7(Instruction* instr);
// CP15 coprocessor instructions.
void DecodeTypeCP15(Instruction* instr);
// Support for VFP.
void DecodeTypeVFP(Instruction* instr);
void DecodeType6CoprocessorIns(Instruction* instr);
void DecodeSpecialCondition(Instruction* instr);
void DecodeFloatingPointDataProcessing(Instruction* instr);
void DecodeUnconditional(Instruction* instr);
void DecodeAdvancedSIMDDataProcessing(Instruction* instr);
void DecodeMemoryHintsAndBarriers(Instruction* instr);
void DecodeAdvancedSIMDElementOrStructureLoadStore(Instruction* instr);
void DecodeAdvancedSIMDTwoOrThreeRegisters(Instruction* instr);
void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
void DecodeVCMP(Instruction* instr);
void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
int32_t ConvertDoubleToInt(double val, bool unsigned_integer,
VFPRoundingMode mode);
void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
// Executes one instruction.
void InstructionDecode(Instruction* instr);
// ICache.
static void CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr);
static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
int size);
static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page);
// Handle arguments and return value for runtime FP functions.
void GetFpArgs(double* x, double* y, int32_t* z);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
template <class ReturnType, int register_size>
ReturnType GetFromVFPRegister(int reg_index);
template <class InputType, int register_size>
void SetVFPRegister(int reg_index, const InputType& value);
void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
uint32_t GetFromSpecialRegister(SRegister reg);
void CallInternal(Address entry);
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
// flag, so this is left unimplemented.
int32_t registers_[16];
bool n_flag_;
bool z_flag_;
bool c_flag_;
bool v_flag_;
// VFP architecture state.
unsigned int vfp_registers_[num_d_registers * 2];
bool n_flag_FPSCR_;
bool z_flag_FPSCR_;
bool c_flag_FPSCR_;
bool v_flag_FPSCR_;
// VFP rounding mode. See ARM DDI 0406B Page A2-29.
VFPRoundingMode FPSCR_rounding_mode_;
bool FPSCR_default_NaN_mode_;
// VFP FP exception flags architecture state.
bool inv_op_vfp_flag_;
bool div_zero_vfp_flag_;
bool overflow_vfp_flag_;
bool underflow_vfp_flag_;
bool inexact_vfp_flag_;
// Simulator support.
char* stack_;
bool pc_modified_;
int icount_;
// Debugger input.
char* last_debugger_input_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
v8::internal::Isolate* isolate_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Breakpoint is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops_[code].count is unset.
// The value watched_stops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops_[kNumOfWatchedStops];
// Synchronization primitives. See ARM DDI 0406C.b, A2.9.
enum class MonitorAccess {
Open,
Exclusive,
};
enum class TransactionSize {
None = 0,
Byte = 1,
HalfWord = 2,
Word = 4,
DoubleWord = 8,
};
// The least-significant bits of the address are ignored. The number of bits
// is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3.
static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);
class LocalMonitor {
public:
LocalMonitor();
// These functions manage the state machine for the local monitor, but do
// not actually perform loads and stores. NotifyStoreExcl only returns
// true if the exclusive store is allowed; the global monitor will still
// have to be checked to see whether the memory should be updated.
void NotifyLoad(int32_t addr);
void NotifyLoadExcl(int32_t addr, TransactionSize size);
void NotifyStore(int32_t addr);
bool NotifyStoreExcl(int32_t addr, TransactionSize size);
private:
void Clear();
MonitorAccess access_state_;
int32_t tagged_addr_;
TransactionSize size_;
};
class GlobalMonitor {
public:
class Processor {
public:
Processor();
private:
friend class GlobalMonitor;
// These functions manage the state machine for the global monitor, but do
// not actually perform loads and stores.
void Clear_Locked();
void NotifyLoadExcl_Locked(int32_t addr);
void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
MonitorAccess access_state_;
int32_t tagged_addr_;
Processor* next_;
Processor* prev_;
// A strex can fail due to background cache evictions. Rather than
// simulating this, we'll just occasionally introduce cases where an
// exclusive store fails. This will happen once after every
// kMaxFailureCounter exclusive stores.
static const int kMaxFailureCounter = 5;
int failure_counter_;
};
// Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
base::Mutex mutex;
void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
void NotifyStore_Locked(int32_t addr, Processor* processor);
bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
// Called when the simulator is destroyed.
void RemoveProcessor(Processor* processor);
static GlobalMonitor* Get();
private:
// Private constructor. Call {GlobalMonitor::Get()} to get the singleton.
GlobalMonitor() = default;
friend class base::LeakyObject<GlobalMonitor>;
bool IsProcessorInLinkedList_Locked(Processor* processor) const;
void PrependProcessor_Locked(Processor* processor);
Processor* head_ = nullptr;
};
LocalMonitor local_monitor_;
GlobalMonitor::Processor global_monitor_processor_;
};
} // namespace internal
} // namespace v8
#endif // defined(USE_SIMULATOR)
#endif // V8_EXECUTION_ARM_SIMULATOR_ARM_H_