blob: e45dc557ab944fcacee009faa8374953ed27b1b0 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/udp_socket_win.h"
#include <mstcpip.h>
#include "base/callback.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/rand_util.h"
#include "net/base/io_buffer.h"
#include "net/base/ip_address.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/network_activity_monitor.h"
#include "net/base/network_change_notifier.h"
#include "net/base/sockaddr_storage.h"
#include "net/base/winsock_init.h"
#include "net/base/winsock_util.h"
#include "net/log/net_log.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/log/net_log_source_type.h"
#include "net/socket/socket_descriptor.h"
#include "net/socket/socket_options.h"
#include "net/socket/socket_tag.h"
#include "net/socket/udp_net_log_parameters.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
#include "starboard/memory.h"
#include "starboard/types.h"
namespace {
const int kBindRetries = 10;
const int kPortStart = 1024;
const int kPortEnd = 65535;
} // namespace
namespace net {
// This class encapsulates all the state that has to be preserved as long as
// there is a network IO operation in progress. If the owner UDPSocketWin
// is destroyed while an operation is in progress, the Core is detached and it
// lives until the operation completes and the OS doesn't reference any resource
// declared on this class anymore.
class UDPSocketWin::Core : public base::RefCounted<Core> {
public:
explicit Core(UDPSocketWin* socket);
// Start watching for the end of a read or write operation.
void WatchForRead();
void WatchForWrite();
// The UDPSocketWin is going away.
void Detach() { socket_ = nullptr; }
// The separate OVERLAPPED variables for asynchronous operation.
OVERLAPPED read_overlapped_;
OVERLAPPED write_overlapped_;
// The buffers used in Read() and Write().
scoped_refptr<IOBuffer> read_iobuffer_;
scoped_refptr<IOBuffer> write_iobuffer_;
// The address storage passed to WSARecvFrom().
SockaddrStorage recv_addr_storage_;
private:
friend class base::RefCounted<Core>;
class ReadDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit ReadDelegate(Core* core) : core_(core) {}
~ReadDelegate() override {}
// base::ObjectWatcher::Delegate methods:
void OnObjectSignaled(HANDLE object) override;
private:
Core* const core_;
};
class WriteDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit WriteDelegate(Core* core) : core_(core) {}
~WriteDelegate() override {}
// base::ObjectWatcher::Delegate methods:
void OnObjectSignaled(HANDLE object) override;
private:
Core* const core_;
};
~Core();
// The socket that created this object.
UDPSocketWin* socket_;
// |reader_| handles the signals from |read_watcher_|.
ReadDelegate reader_;
// |writer_| handles the signals from |write_watcher_|.
WriteDelegate writer_;
// |read_watcher_| watches for events from Read().
base::win::ObjectWatcher read_watcher_;
// |write_watcher_| watches for events from Write();
base::win::ObjectWatcher write_watcher_;
DISALLOW_COPY_AND_ASSIGN(Core);
};
UDPSocketWin::Core::Core(UDPSocketWin* socket)
: socket_(socket),
reader_(this),
writer_(this) {
memset(&read_overlapped_, 0, sizeof(read_overlapped_));
memset(&write_overlapped_, 0, sizeof(write_overlapped_));
read_overlapped_.hEvent = WSACreateEvent();
write_overlapped_.hEvent = WSACreateEvent();
}
UDPSocketWin::Core::~Core() {
// Make sure the message loop is not watching this object anymore.
read_watcher_.StopWatching();
write_watcher_.StopWatching();
WSACloseEvent(read_overlapped_.hEvent);
memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_));
WSACloseEvent(write_overlapped_.hEvent);
memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_));
}
void UDPSocketWin::Core::WatchForRead() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in ReadDelegate::OnObjectSignaled().
AddRef();
read_watcher_.StartWatchingOnce(read_overlapped_.hEvent, &reader_);
}
void UDPSocketWin::Core::WatchForWrite() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in WriteDelegate::OnObjectSignaled().
AddRef();
write_watcher_.StartWatchingOnce(write_overlapped_.hEvent, &writer_);
}
void UDPSocketWin::Core::ReadDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->read_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteRead();
core_->Release();
}
void UDPSocketWin::Core::WriteDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->write_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteWrite();
core_->Release();
}
//-----------------------------------------------------------------------------
QwaveAPI::QwaveAPI() : qwave_supported_(false) {
HMODULE qwave = LoadLibrary(L"qwave.dll");
if (!qwave)
return;
create_handle_func_ =
(CreateHandleFn)GetProcAddress(qwave, "QOSCreateHandle");
close_handle_func_ =
(CloseHandleFn)GetProcAddress(qwave, "QOSCloseHandle");
add_socket_to_flow_func_ =
(AddSocketToFlowFn)GetProcAddress(qwave, "QOSAddSocketToFlow");
remove_socket_from_flow_func_ =
(RemoveSocketFromFlowFn)GetProcAddress(qwave, "QOSRemoveSocketFromFlow");
set_flow_func_ = (SetFlowFn)GetProcAddress(qwave, "QOSSetFlow");
if (create_handle_func_ && close_handle_func_ &&
add_socket_to_flow_func_ && remove_socket_from_flow_func_ &&
set_flow_func_) {
qwave_supported_ = true;
}
}
QwaveAPI& QwaveAPI::Get() {
static base::LazyInstance<QwaveAPI>::Leaky lazy_qwave =
LAZY_INSTANCE_INITIALIZER;
return lazy_qwave.Get();
}
bool QwaveAPI::qwave_supported() const {
return qwave_supported_;
}
BOOL QwaveAPI::CreateHandle(PQOS_VERSION version, PHANDLE handle) {
return create_handle_func_(version, handle);
}
BOOL QwaveAPI::CloseHandle(HANDLE handle) {
return close_handle_func_(handle);
}
BOOL QwaveAPI::AddSocketToFlow(HANDLE handle,
SOCKET socket,
PSOCKADDR addr,
QOS_TRAFFIC_TYPE traffic_type,
DWORD flags,
PQOS_FLOWID flow_id) {
return add_socket_to_flow_func_(handle,
socket,
addr,
traffic_type,
flags,
flow_id);
}
BOOL QwaveAPI::RemoveSocketFromFlow(HANDLE handle,
SOCKET socket,
QOS_FLOWID flow_id,
DWORD reserved) {
return remove_socket_from_flow_func_(handle, socket, flow_id, reserved);
}
BOOL QwaveAPI::SetFlow(HANDLE handle,
QOS_FLOWID flow_id,
QOS_SET_FLOW op,
ULONG size,
PVOID data,
DWORD reserved,
LPOVERLAPPED overlapped) {
return set_flow_func_(handle,
flow_id,
op,
size,
data,
reserved,
overlapped);
}
//-----------------------------------------------------------------------------
UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type,
net::NetLog* net_log,
const net::NetLogSource& source)
: socket_(INVALID_SOCKET),
addr_family_(0),
is_connected_(false),
socket_options_(SOCKET_OPTION_MULTICAST_LOOP),
multicast_interface_(0),
multicast_time_to_live_(1),
bind_type_(bind_type),
use_non_blocking_io_(false),
read_iobuffer_len_(0),
write_iobuffer_len_(0),
recv_from_address_(nullptr),
net_log_(NetLogWithSource::Make(net_log, NetLogSourceType::UDP_SOCKET)),
qos_handle_(nullptr),
event_pending_(this) {
EnsureWinsockInit();
net_log_.BeginEvent(NetLogEventType::SOCKET_ALIVE,
source.ToEventParametersCallback());
}
UDPSocketWin::~UDPSocketWin() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
Close();
net_log_.EndEvent(NetLogEventType::SOCKET_ALIVE);
}
int UDPSocketWin::Open(AddressFamily address_family) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_EQ(socket_, INVALID_SOCKET);
addr_family_ = ConvertAddressFamily(address_family);
socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, IPPROTO_UDP);
if (socket_ == INVALID_SOCKET)
return MapSystemError(WSAGetLastError());
if (!use_non_blocking_io_) {
core_ = new Core(this);
} else {
read_write_event_.Set(WSACreateEvent());
WSAEventSelect(socket_, read_write_event_.Get(), FD_READ | FD_WRITE);
}
return OK;
}
void UDPSocketWin::Close() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (socket_ == INVALID_SOCKET)
return;
if (qos_handle_) {
GetQwaveAPI().CloseHandle(qos_handle_);
dscp_manager_ = nullptr;
qos_handle_ = NULL;
}
// Zero out any pending read/write callback state.
read_callback_.Reset();
recv_from_address_ = nullptr;
write_callback_.Reset();
base::TimeTicks start_time = base::TimeTicks::Now();
closesocket(socket_);
UMA_HISTOGRAM_TIMES("Net.UDPSocketWinClose",
base::TimeTicks::Now() - start_time);
socket_ = INVALID_SOCKET;
addr_family_ = 0;
is_connected_ = false;
// Release buffers to free up memory.
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
read_write_watcher_.StopWatching();
read_write_event_.Close();
event_pending_.InvalidateWeakPtrs();
if (core_) {
core_->Detach();
core_ = nullptr;
}
}
int UDPSocketWin::GetPeerAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!remote_address_.get()) {
SockaddrStorage storage;
if (getpeername(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
std::unique_ptr<IPEndPoint> remote_address(new IPEndPoint());
if (!remote_address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
remote_address_ = std::move(remote_address);
}
*address = *remote_address_;
return OK;
}
int UDPSocketWin::GetLocalAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!local_address_.get()) {
SockaddrStorage storage;
if (getsockname(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
std::unique_ptr<IPEndPoint> local_address(new IPEndPoint());
if (!local_address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
local_address_ = std::move(local_address);
net_log_.AddEvent(NetLogEventType::UDP_LOCAL_ADDRESS,
CreateNetLogUDPConnectCallback(
local_address_.get(),
NetworkChangeNotifier::kInvalidNetworkHandle));
}
*address = *local_address_;
return OK;
}
int UDPSocketWin::Read(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
return RecvFrom(buf, buf_len, nullptr, std::move(callback));
}
int UDPSocketWin::RecvFrom(IOBuffer* buf,
int buf_len,
IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(INVALID_SOCKET, socket_);
CHECK(read_callback_.is_null());
DCHECK(!recv_from_address_);
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
int nread = core_ ? InternalRecvFromOverlapped(buf, buf_len, address)
: InternalRecvFromNonBlocking(buf, buf_len, address);
if (nread != ERR_IO_PENDING)
return nread;
read_callback_ = std::move(callback);
recv_from_address_ = address;
return ERR_IO_PENDING;
}
int UDPSocketWin::Write(
IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& /* traffic_annotation */) {
return SendToOrWrite(buf, buf_len, remote_address_.get(),
std::move(callback));
}
int UDPSocketWin::SendTo(IOBuffer* buf,
int buf_len,
const IPEndPoint& address,
CompletionOnceCallback callback) {
if (dscp_manager_) {
// Alert DscpManager in case this is a new remote address. Failure to
// apply Dscp code is never fatal.
int rv = dscp_manager_->PrepareForSend(address);
if (rv != OK)
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_SEND_ERROR, rv);
}
return SendToOrWrite(buf, buf_len, &address, std::move(callback));
}
int UDPSocketWin::SendToOrWrite(IOBuffer* buf,
int buf_len,
const IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(INVALID_SOCKET, socket_);
CHECK(write_callback_.is_null());
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
DCHECK(!send_to_address_.get());
int nwrite = core_ ? InternalSendToOverlapped(buf, buf_len, address)
: InternalSendToNonBlocking(buf, buf_len, address);
if (nwrite != ERR_IO_PENDING)
return nwrite;
if (address)
send_to_address_.reset(new IPEndPoint(*address));
write_callback_ = std::move(callback);
return ERR_IO_PENDING;
}
int UDPSocketWin::Connect(const IPEndPoint& address) {
DCHECK_NE(socket_, INVALID_SOCKET);
net_log_.BeginEvent(
NetLogEventType::UDP_CONNECT,
CreateNetLogUDPConnectCallback(
&address, NetworkChangeNotifier::kInvalidNetworkHandle));
int rv = InternalConnect(address);
net_log_.EndEventWithNetErrorCode(NetLogEventType::UDP_CONNECT, rv);
is_connected_ = (rv == OK);
return rv;
}
int UDPSocketWin::InternalConnect(const IPEndPoint& address) {
DCHECK(!is_connected());
DCHECK(!remote_address_.get());
int rv = 0;
if (bind_type_ == DatagramSocket::RANDOM_BIND) {
// Construct IPAddress of appropriate size (IPv4 or IPv6) of 0s,
// representing INADDR_ANY or in6addr_any.
size_t addr_size = (address.GetSockAddrFamily() == AF_INET)
? IPAddress::kIPv4AddressSize
: IPAddress::kIPv6AddressSize;
rv = RandomBind(IPAddress::AllZeros(addr_size));
}
// else connect() does the DatagramSocket::DEFAULT_BIND
if (rv < 0) {
base::UmaHistogramSparse("Net.UdpSocketRandomBindErrorCode", -rv);
return rv;
}
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
rv = connect(socket_, storage.addr, storage.addr_len);
if (rv < 0)
return MapSystemError(WSAGetLastError());
remote_address_.reset(new IPEndPoint(address));
if (dscp_manager_)
dscp_manager_->PrepareForSend(*remote_address_.get());
return rv;
}
int UDPSocketWin::Bind(const IPEndPoint& address) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK(!is_connected());
int rv = SetMulticastOptions();
if (rv < 0)
return rv;
rv = DoBind(address);
if (rv < 0)
return rv;
local_address_.reset();
is_connected_ = true;
return rv;
}
int UDPSocketWin::BindToNetwork(NetworkChangeNotifier::NetworkHandle network) {
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
}
int UDPSocketWin::SetReceiveBufferSize(int32_t size) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
int rv = SetSocketReceiveBufferSize(socket_, size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
// According to documentation, setsockopt may succeed, but we need to check
// the results via getsockopt to be sure it works on Windows.
int32_t actual_size = 0;
int option_size = sizeof(actual_size);
rv = getsockopt(socket_, SOL_SOCKET, SO_RCVBUF,
reinterpret_cast<char*>(&actual_size), &option_size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
if (actual_size >= size)
return OK;
UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableReceiveBuffer",
actual_size, 1000, 1000000, 50);
return ERR_SOCKET_RECEIVE_BUFFER_SIZE_UNCHANGEABLE;
}
int UDPSocketWin::SetSendBufferSize(int32_t size) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
int rv = SetSocketSendBufferSize(socket_, size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
// According to documentation, setsockopt may succeed, but we need to check
// the results via getsockopt to be sure it works on Windows.
int32_t actual_size = 0;
int option_size = sizeof(actual_size);
rv = getsockopt(socket_, SOL_SOCKET, SO_SNDBUF,
reinterpret_cast<char*>(&actual_size), &option_size);
if (rv != 0)
return MapSystemError(WSAGetLastError());
if (actual_size >= size)
return OK;
UMA_HISTOGRAM_CUSTOM_COUNTS("Net.SocketUnchangeableSendBuffer",
actual_size, 1000, 1000000, 50);
return ERR_SOCKET_SEND_BUFFER_SIZE_UNCHANGEABLE;
}
int UDPSocketWin::SetDoNotFragment() {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (addr_family_ == AF_INET6)
return OK;
DWORD val = 1;
int rv = setsockopt(socket_, IPPROTO_IP, IP_DONTFRAGMENT,
reinterpret_cast<const char*>(&val), sizeof(val));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
void UDPSocketWin::SetMsgConfirm(bool confirm) {}
int UDPSocketWin::AllowAddressReuse() {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
BOOL true_value = TRUE;
int rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
reinterpret_cast<const char*>(&true_value),
sizeof(true_value));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
int UDPSocketWin::SetBroadcast(bool broadcast) {
DCHECK_NE(socket_, INVALID_SOCKET);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
BOOL value = broadcast ? TRUE : FALSE;
int rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST,
reinterpret_cast<const char*>(&value), sizeof(value));
return rv == 0 ? OK : MapSystemError(WSAGetLastError());
}
void UDPSocketWin::DoReadCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!read_callback_.is_null());
// since Run may result in Read being called, clear read_callback_ up front.
std::move(read_callback_).Run(rv);
}
void UDPSocketWin::DoWriteCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!write_callback_.is_null());
// since Run may result in Write being called, clear write_callback_ up front.
std::move(write_callback_).Run(rv);
}
void UDPSocketWin::DidCompleteRead() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->read_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
// Convert address.
IPEndPoint address;
IPEndPoint* address_to_log = nullptr;
if (result >= 0) {
if (address.FromSockAddr(core_->recv_addr_storage_.addr,
core_->recv_addr_storage_.addr_len)) {
if (recv_from_address_)
*recv_from_address_ = address;
address_to_log = &address;
} else {
result = ERR_ADDRESS_INVALID;
}
}
LogRead(result, core_->read_iobuffer_->data(), address_to_log);
core_->read_iobuffer_ = nullptr;
recv_from_address_ = nullptr;
DoReadCallback(result);
}
void UDPSocketWin::DidCompleteWrite() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->write_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
LogWrite(result, core_->write_iobuffer_->data(), send_to_address_.get());
send_to_address_.reset();
core_->write_iobuffer_ = nullptr;
DoWriteCallback(result);
}
void UDPSocketWin::OnObjectSignaled(HANDLE object) {
DCHECK(object == read_write_event_.Get());
WSANETWORKEVENTS network_events;
int os_error = 0;
int rv =
WSAEnumNetworkEvents(socket_, read_write_event_.Get(), &network_events);
// Protects against trying to call the write callback if the read callback
// either closes or destroys |this|.
base::WeakPtr<UDPSocketWin> event_pending = event_pending_.GetWeakPtr();
if (rv == SOCKET_ERROR) {
os_error = WSAGetLastError();
rv = MapSystemError(os_error);
if (read_iobuffer_) {
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
recv_from_address_ = nullptr;
DoReadCallback(rv);
}
// Socket may have been closed or destroyed here.
if (event_pending && write_iobuffer_) {
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
send_to_address_.reset();
DoWriteCallback(rv);
}
return;
}
if ((network_events.lNetworkEvents & FD_READ) && read_iobuffer_)
OnReadSignaled();
if (!event_pending)
return;
if ((network_events.lNetworkEvents & FD_WRITE) && write_iobuffer_)
OnWriteSignaled();
if (!event_pending)
return;
// There's still pending read / write. Watch for further events.
if (read_iobuffer_ || write_iobuffer_)
WatchForReadWrite();
}
void UDPSocketWin::OnReadSignaled() {
int rv = InternalRecvFromNonBlocking(read_iobuffer_.get(), read_iobuffer_len_,
recv_from_address_);
if (rv == ERR_IO_PENDING)
return;
read_iobuffer_ = nullptr;
read_iobuffer_len_ = 0;
recv_from_address_ = nullptr;
DoReadCallback(rv);
}
void UDPSocketWin::OnWriteSignaled() {
int rv = InternalSendToNonBlocking(write_iobuffer_.get(), write_iobuffer_len_,
send_to_address_.get());
if (rv == ERR_IO_PENDING)
return;
write_iobuffer_ = nullptr;
write_iobuffer_len_ = 0;
send_to_address_.reset();
DoWriteCallback(rv);
}
void UDPSocketWin::WatchForReadWrite() {
if (read_write_watcher_.IsWatching())
return;
bool watched =
read_write_watcher_.StartWatchingOnce(read_write_event_.Get(), this);
DCHECK(watched);
}
void UDPSocketWin::LogRead(int result,
const char* bytes,
const IPEndPoint* address) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_RECEIVE_ERROR,
result);
return;
}
if (net_log_.IsCapturing()) {
net_log_.AddEvent(
NetLogEventType::UDP_BYTES_RECEIVED,
CreateNetLogUDPDataTranferCallback(result, bytes, address));
}
NetworkActivityMonitor::GetInstance()->IncrementBytesReceived(result);
}
void UDPSocketWin::LogWrite(int result,
const char* bytes,
const IPEndPoint* address) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_SEND_ERROR, result);
return;
}
if (net_log_.IsCapturing()) {
net_log_.AddEvent(
NetLogEventType::UDP_BYTES_SENT,
CreateNetLogUDPDataTranferCallback(result, bytes, address));
}
NetworkActivityMonitor::GetInstance()->IncrementBytesSent(result);
}
int UDPSocketWin::InternalRecvFromOverlapped(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
DCHECK(!core_->read_iobuffer_.get());
SockaddrStorage& storage = core_->recv_addr_storage_;
storage.addr_len = sizeof(storage.addr_storage);
WSABUF read_buffer;
read_buffer.buf = buf->data();
read_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
CHECK_NE(INVALID_SOCKET, socket_);
AssertEventNotSignaled(core_->read_overlapped_.hEvent);
int rv = WSARecvFrom(socket_, &read_buffer, 1, &num, &flags, storage.addr,
&storage.addr_len, &core_->read_overlapped_, nullptr);
if (rv == 0) {
if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) {
int result = num;
// Convert address.
IPEndPoint address_storage;
IPEndPoint* address_to_log = nullptr;
if (result >= 0) {
if (address_storage.FromSockAddr(core_->recv_addr_storage_.addr,
core_->recv_addr_storage_.addr_len)) {
if (address)
*address = address_storage;
address_to_log = &address_storage;
} else {
result = ERR_ADDRESS_INVALID;
}
}
LogRead(result, buf->data(), address_to_log);
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogRead(result, nullptr, nullptr);
return result;
}
}
core_->WatchForRead();
core_->read_iobuffer_ = buf;
return ERR_IO_PENDING;
}
int UDPSocketWin::InternalSendToOverlapped(IOBuffer* buf,
int buf_len,
const IPEndPoint* address) {
DCHECK(!core_->write_iobuffer_.get());
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
// Convert address.
if (!address) {
addr = nullptr;
storage.addr_len = 0;
} else {
if (!address->ToSockAddr(addr, &storage.addr_len)) {
int result = ERR_ADDRESS_INVALID;
LogWrite(result, nullptr, nullptr);
return result;
}
}
WSABUF write_buffer;
write_buffer.buf = buf->data();
write_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
AssertEventNotSignaled(core_->write_overlapped_.hEvent);
int rv = WSASendTo(socket_, &write_buffer, 1, &num, flags, addr,
storage.addr_len, &core_->write_overlapped_, nullptr);
if (rv == 0) {
if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) {
int result = num;
LogWrite(result, buf->data(), address);
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogWrite(result, nullptr, nullptr);
return result;
}
}
core_->WatchForWrite();
core_->write_iobuffer_ = buf;
return ERR_IO_PENDING;
}
int UDPSocketWin::InternalRecvFromNonBlocking(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
DCHECK(!read_iobuffer_ || read_iobuffer_.get() == buf);
SockaddrStorage storage;
storage.addr_len = sizeof(storage.addr_storage);
CHECK_NE(INVALID_SOCKET, socket_);
int rv = recvfrom(socket_, buf->data(), buf_len, 0, storage.addr,
&storage.addr_len);
if (rv == SOCKET_ERROR) {
int os_error = WSAGetLastError();
if (os_error == WSAEWOULDBLOCK) {
read_iobuffer_ = buf;
read_iobuffer_len_ = buf_len;
WatchForReadWrite();
return ERR_IO_PENDING;
}
rv = MapSystemError(os_error);
LogRead(rv, nullptr, nullptr);
return rv;
}
IPEndPoint address_storage;
IPEndPoint* address_to_log = nullptr;
if (rv >= 0) {
if (address_storage.FromSockAddr(storage.addr, storage.addr_len)) {
if (address)
*address = address_storage;
address_to_log = &address_storage;
} else {
rv = ERR_ADDRESS_INVALID;
}
}
LogRead(rv, buf->data(), address_to_log);
return rv;
}
int UDPSocketWin::InternalSendToNonBlocking(IOBuffer* buf,
int buf_len,
const IPEndPoint* address) {
DCHECK(!write_iobuffer_ || write_iobuffer_.get() == buf);
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
// Convert address.
if (address) {
if (!address->ToSockAddr(addr, &storage.addr_len)) {
int result = ERR_ADDRESS_INVALID;
LogWrite(result, nullptr, nullptr);
return result;
}
} else {
addr = nullptr;
storage.addr_len = 0;
}
int rv = sendto(socket_, buf->data(), buf_len, 0, addr, storage.addr_len);
if (rv == SOCKET_ERROR) {
int os_error = WSAGetLastError();
if (os_error == WSAEWOULDBLOCK) {
write_iobuffer_ = buf;
write_iobuffer_len_ = buf_len;
WatchForReadWrite();
return ERR_IO_PENDING;
}
rv = MapSystemError(os_error);
LogWrite(rv, nullptr, nullptr);
return rv;
}
LogWrite(rv, buf->data(), address);
return rv;
}
int UDPSocketWin::SetMulticastOptions() {
if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) {
DWORD loop = 0;
int protocol_level =
addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_LOOP: IPV6_MULTICAST_LOOP;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&loop), sizeof(loop));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (multicast_time_to_live_ != 1) {
DWORD hops = multicast_time_to_live_;
int protocol_level =
addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_TTL: IPV6_MULTICAST_HOPS;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&hops), sizeof(hops));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (multicast_interface_ != 0) {
switch (addr_family_) {
case AF_INET: {
in_addr address;
address.s_addr = htonl(multicast_interface_);
int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF,
reinterpret_cast<const char*>(&address),
sizeof(address));
if (rv)
return MapSystemError(WSAGetLastError());
break;
}
case AF_INET6: {
uint32_t interface_index = multicast_interface_;
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF,
reinterpret_cast<const char*>(&interface_index),
sizeof(interface_index));
if (rv)
return MapSystemError(WSAGetLastError());
break;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
return OK;
}
int UDPSocketWin::DoBind(const IPEndPoint& address) {
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
int rv = bind(socket_, storage.addr, storage.addr_len);
if (rv == 0)
return OK;
int last_error = WSAGetLastError();
// Map some codes that are special to bind() separately.
// * WSAEACCES: If a port is already bound to a socket, WSAEACCES may be
// returned instead of WSAEADDRINUSE, depending on whether the socket
// option SO_REUSEADDR or SO_EXCLUSIVEADDRUSE is set and whether the
// conflicting socket is owned by a different user account. See the MSDN
// page "Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE" for the gory details.
if (last_error == WSAEACCES || last_error == WSAEADDRNOTAVAIL)
return ERR_ADDRESS_IN_USE;
return MapSystemError(last_error);
}
int UDPSocketWin::RandomBind(const IPAddress& address) {
DCHECK_EQ(bind_type_, DatagramSocket::RANDOM_BIND);
for (int i = 0; i < kBindRetries; ++i) {
int rv = DoBind(IPEndPoint(
address, static_cast<uint16_t>(base::RandInt(kPortStart, kPortEnd))));
if (rv != ERR_ADDRESS_IN_USE)
return rv;
}
return DoBind(IPEndPoint(address, 0));
}
QwaveAPI& UDPSocketWin::GetQwaveAPI() {
return QwaveAPI::Get();
}
int UDPSocketWin::JoinGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq),
sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq),
sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::LeaveGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::SetMulticastInterface(uint32_t interface_index) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
multicast_interface_ = interface_index;
return OK;
}
int UDPSocketWin::SetMulticastTimeToLive(int time_to_live) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (time_to_live < 0 || time_to_live > 255)
return ERR_INVALID_ARGUMENT;
multicast_time_to_live_ = time_to_live;
return OK;
}
int UDPSocketWin::SetMulticastLoopbackMode(bool loopback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (loopback)
socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP;
else
socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP;
return OK;
}
QOS_TRAFFIC_TYPE DscpToTrafficType(DiffServCodePoint dscp) {
QOS_TRAFFIC_TYPE traffic_type = QOSTrafficTypeBestEffort;
switch (dscp) {
case DSCP_CS0:
traffic_type = QOSTrafficTypeBestEffort;
break;
case DSCP_CS1:
traffic_type = QOSTrafficTypeBackground;
break;
case DSCP_AF11:
case DSCP_AF12:
case DSCP_AF13:
case DSCP_CS2:
case DSCP_AF21:
case DSCP_AF22:
case DSCP_AF23:
case DSCP_CS3:
case DSCP_AF31:
case DSCP_AF32:
case DSCP_AF33:
case DSCP_CS4:
traffic_type = QOSTrafficTypeExcellentEffort;
break;
case DSCP_AF41:
case DSCP_AF42:
case DSCP_AF43:
case DSCP_CS5:
traffic_type = QOSTrafficTypeAudioVideo;
break;
case DSCP_EF:
case DSCP_CS6:
traffic_type = QOSTrafficTypeVoice;
break;
case DSCP_CS7:
traffic_type = QOSTrafficTypeControl;
break;
case DSCP_NO_CHANGE:
NOTREACHED();
break;
}
return traffic_type;
}
int UDPSocketWin::SetDiffServCodePoint(DiffServCodePoint dscp) {
if (dscp == DSCP_NO_CHANGE)
return OK;
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
QwaveAPI& qos(GetQwaveAPI());
if (!qos.qwave_supported())
return ERR_NOT_IMPLEMENTED;
if (!qos_handle_) {
QOS_VERSION version;
version.MajorVersion = 1;
version.MinorVersion = 0;
qos.CreateHandle(&version, &qos_handle_);
if (!qos_handle_)
return ERR_NOT_IMPLEMENTED;
}
if (!dscp_manager_)
dscp_manager_ = std::make_unique<DscpManager>(qos, socket_, qos_handle_);
dscp_manager_->Set(dscp);
if (remote_address_)
return dscp_manager_->PrepareForSend(*remote_address_.get());
return OK;
}
void UDPSocketWin::DetachFromThread() {
DETACH_FROM_THREAD(thread_checker_);
}
void UDPSocketWin::UseNonBlockingIO() {
DCHECK(!core_);
use_non_blocking_io_ = true;
}
void UDPSocketWin::ApplySocketTag(const SocketTag& tag) {
// Windows does not support any specific SocketTags so fail if any non-default
// tag is applied.
CHECK(tag == SocketTag());
}
void UDPSocketWin::SetWriteAsyncEnabled(bool enabled) {}
bool UDPSocketWin::WriteAsyncEnabled() {
return false;
}
void UDPSocketWin::SetMaxPacketSize(size_t max_packet_size) {}
void UDPSocketWin::SetWriteMultiCoreEnabled(bool enabled) {}
void UDPSocketWin::SetSendmmsgEnabled(bool enabled) {}
void UDPSocketWin::SetWriteBatchingActive(bool active) {}
int UDPSocketWin::WriteAsync(
DatagramBuffers buffers,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
}
int UDPSocketWin::WriteAsync(
const char* buffer,
size_t buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
}
DatagramBuffers UDPSocketWin::GetUnwrittenBuffers() {
DatagramBuffers result;
NOTIMPLEMENTED();
return result;
}
DscpManager::DscpManager(QwaveAPI& qos, SOCKET socket, HANDLE qos_handle)
: qos_(qos), socket_(socket), qos_handle_(qos_handle) {}
DscpManager::~DscpManager() {
if (flow_id_ != 0)
qos_.RemoveSocketFromFlow(qos_handle_, NULL, flow_id_, 0);
}
void DscpManager::Set(DiffServCodePoint dscp) {
if (dscp == DSCP_NO_CHANGE || dscp == dscp_value_)
return;
dscp_value_ = dscp;
// TODO(zstein): We could reuse the flow when the value changes
// by calling QOSSetFlow with the new traffic type and dscp value.
if (flow_id_ != 0) {
qos_.RemoveSocketFromFlow(qos_handle_, NULL, flow_id_, 0);
configured_.clear();
flow_id_ = 0;
}
}
int DscpManager::PrepareForSend(const IPEndPoint& remote_address) {
if (dscp_value_ == DSCP_NO_CHANGE) {
// No DSCP value has been set.
return OK;
}
if (configured_.find(remote_address) != configured_.end())
return OK;
SockaddrStorage storage;
if (!remote_address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
// We won't try again if we get an error.
configured_.emplace(remote_address);
// We don't need to call SetFlow if we already have a qos flow.
bool new_flow = flow_id_ == 0;
const QOS_TRAFFIC_TYPE traffic_type = DscpToTrafficType(dscp_value_);
if (!qos_.AddSocketToFlow(qos_handle_, socket_, storage.addr, traffic_type,
QOS_NON_ADAPTIVE_FLOW, &flow_id_)) {
DWORD err = GetLastError();
if (err == ERROR_DEVICE_REINITIALIZATION_NEEDED) {
qos_.CloseHandle(qos_handle_);
flow_id_ = 0;
qos_handle_ = 0;
dscp_value_ = DSCP_NO_CHANGE;
}
return MapSystemError(err);
}
if (new_flow) {
DWORD buf = dscp_value_;
// This requires admin rights, and may fail, if so we ignore it
// as AddSocketToFlow should still do *approximately* the right thing.
qos_.SetFlow(qos_handle_, flow_id_, QOSSetOutgoingDSCPValue, sizeof(buf),
&buf, 0, nullptr);
}
return OK;
}
} // namespace net