| // © 2016 and later: Unicode, Inc. and others. | 
 | // License & terms of use: http://www.unicode.org/copyright.html | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Decimal Number arithmetic module                                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Copyright (c) IBM Corporation, 2000-2014.  All rights reserved.    */ | 
 | /*                                                                    */ | 
 | /* This software is made available under the terms of the             */ | 
 | /* ICU License -- ICU 1.8.1 and later.                                */ | 
 | /*                                                                    */ | 
 | /* The description and User's Guide ("The decNumber C Library") for   */ | 
 | /* this software is called decNumber.pdf.  This document is           */ | 
 | /* available, together with arithmetic and format specifications,     */ | 
 | /* testcases, and Web links, on the General Decimal Arithmetic page.  */ | 
 | /*                                                                    */ | 
 | /* Please send comments, suggestions, and corrections to the author:  */ | 
 | /*   mfc@uk.ibm.com                                                   */ | 
 | /*   Mike Cowlishaw, IBM Fellow                                       */ | 
 | /*   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         */ | 
 | /* ------------------------------------------------------------------ */ | 
 |  | 
 | /* Modified version, for use from within ICU. | 
 |  *    Renamed public functions, to avoid an unwanted export of the  | 
 |  *    standard names from the ICU library. | 
 |  * | 
 |  *    Use ICU's uprv_malloc() and uprv_free() | 
 |  * | 
 |  *    Revert comment syntax to plain C | 
 |  * | 
 |  *    Remove a few compiler warnings. | 
 |  */ | 
 |  | 
 | /* This module comprises the routines for arbitrary-precision General */ | 
 | /* Decimal Arithmetic as defined in the specification which may be    */ | 
 | /* found on the General Decimal Arithmetic pages.  It implements both */ | 
 | /* the full ('extended') arithmetic and the simpler ('subset')        */ | 
 | /* arithmetic.                                                        */ | 
 | /*                                                                    */ | 
 | /* Usage notes:                                                       */ | 
 | /*                                                                    */ | 
 | /* 1. This code is ANSI C89 except:                                   */ | 
 | /*                                                                    */ | 
 | /*    a) C99 line comments (double forward slash) are used.  (Most C  */ | 
 | /*       compilers accept these.  If yours does not, a simple script  */ | 
 | /*       can be used to convert them to ANSI C comments.)             */ | 
 | /*                                                                    */ | 
 | /*    b) Types from C99 stdint.h are used.  If you do not have this   */ | 
 | /*       header file, see the User's Guide section of the decNumber   */ | 
 | /*       documentation; this lists the necessary definitions.         */ | 
 | /*                                                                    */ | 
 | /*    c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and       */ | 
 | /*       uint64_t types may be used.  To avoid these, set DECUSE64=0  */ | 
 | /*       and DECDPUN<=4 (see documentation).                          */ | 
 | /*                                                                    */ | 
 | /*    The code also conforms to C99 restrictions; in particular,      */ | 
 | /*    strict aliasing rules are observed.                             */ | 
 | /*                                                                    */ | 
 | /* 2. The decNumber format which this library uses is optimized for   */ | 
 | /*    efficient processing of relatively short numbers; in particular */ | 
 | /*    it allows the use of fixed sized structures and minimizes copy  */ | 
 | /*    and move operations.  It does, however, support arbitrary       */ | 
 | /*    precision (up to 999,999,999 digits) and arbitrary exponent     */ | 
 | /*    range (Emax in the range 0 through 999,999,999 and Emin in the  */ | 
 | /*    range -999,999,999 through 0).  Mathematical functions (for     */ | 
 | /*    example decNumberExp) as identified below are restricted more   */ | 
 | /*    tightly: digits, emax, and -emin in the context must be <=      */ | 
 | /*    DEC_MAX_MATH (999999), and their operand(s) must be within      */ | 
 | /*    these bounds.                                                   */ | 
 | /*                                                                    */ | 
 | /* 3. Logical functions are further restricted; their operands must   */ | 
 | /*    be finite, positive, have an exponent of zero, and all digits   */ | 
 | /*    must be either 0 or 1.  The result will only contain digits     */ | 
 | /*    which are 0 or 1 (and will have exponent=0 and a sign of 0).    */ | 
 | /*                                                                    */ | 
 | /* 4. Operands to operator functions are never modified unless they   */ | 
 | /*    are also specified to be the result number (which is always     */ | 
 | /*    permitted).  Other than that case, operands must not overlap.   */ | 
 | /*                                                                    */ | 
 | /* 5. Error handling: the type of the error is ORed into the status   */ | 
 | /*    flags in the current context (decContext structure).  The       */ | 
 | /*    SIGFPE signal is then raised if the corresponding trap-enabler  */ | 
 | /*    flag in the decContext is set (is 1).                           */ | 
 | /*                                                                    */ | 
 | /*    It is the responsibility of the caller to clear the status      */ | 
 | /*    flags as required.                                              */ | 
 | /*                                                                    */ | 
 | /*    The result of any routine which returns a number will always    */ | 
 | /*    be a valid number (which may be a special value, such as an     */ | 
 | /*    Infinity or NaN).                                               */ | 
 | /*                                                                    */ | 
 | /* 6. The decNumber format is not an exchangeable concrete            */ | 
 | /*    representation as it comprises fields which may be machine-     */ | 
 | /*    dependent (packed or unpacked, or special length, for example). */ | 
 | /*    Canonical conversions to and from strings are provided; other   */ | 
 | /*    conversions are available in separate modules.                  */ | 
 | /*                                                                    */ | 
 | /* 7. Normally, input operands are assumed to be valid.  Set DECCHECK */ | 
 | /*    to 1 for extended operand checking (including NULL operands).   */ | 
 | /*    Results are undefined if a badly-formed structure (or a NULL    */ | 
 | /*    pointer to a structure) is provided, though with DECCHECK       */ | 
 | /*    enabled the operator routines are protected against exceptions. */ | 
 | /*    (Except if the result pointer is NULL, which is unrecoverable.) */ | 
 | /*                                                                    */ | 
 | /*    However, the routines will never cause exceptions if they are   */ | 
 | /*    given well-formed operands, even if the value of the operands   */ | 
 | /*    is inappropriate for the operation and DECCHECK is not set.     */ | 
 | /*    (Except for SIGFPE, as and where documented.)                   */ | 
 | /*                                                                    */ | 
 | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1.   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Implementation notes for maintenance of this module:               */ | 
 | /*                                                                    */ | 
 | /* 1. Storage leak protection:  Routines which use malloc are not     */ | 
 | /*    permitted to use return for fastpath or error exits (i.e.,      */ | 
 | /*    they follow strict structured programming conventions).         */ | 
 | /*    Instead they have a do{}while(0); construct surrounding the     */ | 
 | /*    code which is protected -- break may be used to exit this.      */ | 
 | /*    Other routines can safely use the return statement inline.      */ | 
 | /*                                                                    */ | 
 | /*    Storage leak accounting can be enabled using DECALLOC.          */ | 
 | /*                                                                    */ | 
 | /* 2. All loops use the for(;;) construct.  Any do construct does     */ | 
 | /*    not loop; it is for allocation protection as just described.    */ | 
 | /*                                                                    */ | 
 | /* 3. Setting status in the context must always be the very last      */ | 
 | /*    action in a routine, as non-0 status may raise a trap and hence */ | 
 | /*    the call to set status may not return (if the handler uses long */ | 
 | /*    jump).  Therefore all cleanup must be done first.  In general,  */ | 
 | /*    to achieve this status is accumulated and is only applied just  */ | 
 | /*    before return by calling decContextSetStatus (via decStatus).   */ | 
 | /*                                                                    */ | 
 | /*    Routines which allocate storage cannot, in general, use the     */ | 
 | /*    'top level' routines which could cause a non-returning          */ | 
 | /*    transfer of control.  The decXxxxOp routines are safe (do not   */ | 
 | /*    call decStatus even if traps are set in the context) and should */ | 
 | /*    be used instead (they are also a little faster).                */ | 
 | /*                                                                    */ | 
 | /* 4. Exponent checking is minimized by allowing the exponent to      */ | 
 | /*    grow outside its limits during calculations, provided that      */ | 
 | /*    the decFinalize function is called later.  Multiplication and   */ | 
 | /*    division, and intermediate calculations in exponentiation,      */ | 
 | /*    require more careful checks because of the risk of 31-bit       */ | 
 | /*    overflow (the most negative valid exponent is -1999999997, for  */ | 
 | /*    a 999999999-digit number with adjusted exponent of -999999999). */ | 
 | /*                                                                    */ | 
 | /* 5. Rounding is deferred until finalization of results, with any    */ | 
 | /*    'off to the right' data being represented as a single digit     */ | 
 | /*    residue (in the range -1 through 9).  This avoids any double-   */ | 
 | /*    rounding when more than one shortening takes place (for         */ | 
 | /*    example, when a result is subnormal).                           */ | 
 | /*                                                                    */ | 
 | /* 6. The digits count is allowed to rise to a multiple of DECDPUN    */ | 
 | /*    during many operations, so whole Units are handled and exact    */ | 
 | /*    accounting of digits is not needed.  The correct digits value   */ | 
 | /*    is found by decGetDigits, which accounts for leading zeros.     */ | 
 | /*    This must be called before any rounding if the number of digits */ | 
 | /*    is not known exactly.                                           */ | 
 | /*                                                                    */ | 
 | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning     */ | 
 | /*    numbers up to four digits, using appropriate constants.  This   */ | 
 | /*    is not useful for longer numbers because overflow of 32 bits    */ | 
 | /*    would lead to 4 multiplies, which is almost as expensive as     */ | 
 | /*    a divide (unless a floating-point or 64-bit multiply is         */ | 
 | /*    assumed to be available).                                       */ | 
 | /*                                                                    */ | 
 | /* 8. Unusual abbreviations that may be used in the commentary:       */ | 
 | /*      lhs -- left hand side (operand, of an operation)              */ | 
 | /*      lsd -- least significant digit (of coefficient)               */ | 
 | /*      lsu -- least significant Unit (of coefficient)                */ | 
 | /*      msd -- most significant digit (of coefficient)                */ | 
 | /*      msi -- most significant item (in an array)                    */ | 
 | /*      msu -- most significant Unit (of coefficient)                 */ | 
 | /*      rhs -- right hand side (operand, of an operation)             */ | 
 | /*      +ve -- positive                                               */ | 
 | /*      -ve -- negative                                               */ | 
 | /*      **  -- raise to the power                                     */ | 
 | /* ------------------------------------------------------------------ */ | 
 |  | 
 | #if defined(STARBOARD) | 
 | #include "starboard/client_porting/poem/assert_poem.h" | 
 | #include "starboard/client_porting/poem/string_poem.h" | 
 | #endif  // defined(STARBOARD) | 
 |  | 
 | #include <stdlib.h>                /* for malloc, free, etc.  */ | 
 |  | 
 | #if !defined(STARBOARD) | 
 | /*  #include <stdio.h>   */        /* for printf [if needed]  */ | 
 | #include <string.h>                /* for strcpy  */ | 
 | #include <ctype.h>                 /* for lower  */ | 
 | #endif | 
 |  | 
 | #include "cmemory.h"               /* for uprv_malloc, etc., in ICU */ | 
 | #include "decNumber.h"             /* base number library  */ | 
 | #include "decNumberLocal.h"        /* decNumber local types, etc.  */ | 
 | #include "uassert.h" | 
 |  | 
 | /* Constants */ | 
 | /* Public lookup table used by the D2U macro  */ | 
 | static const uByte d2utable[DECMAXD2U+1]=D2UTABLE; | 
 |  | 
 | #define DECVERB     1              /* set to 1 for verbose DECCHECK  */ | 
 | #define powers      DECPOWERS      /* old internal name  */ | 
 |  | 
 | /* Local constants  */ | 
 | #define DIVIDE      0x80           /* Divide operators  */ | 
 | #define REMAINDER   0x40           /* ..  */ | 
 | #define DIVIDEINT   0x20           /* ..  */ | 
 | #define REMNEAR     0x10           /* ..  */ | 
 | #define COMPARE     0x01           /* Compare operators  */ | 
 | #define COMPMAX     0x02           /* ..  */ | 
 | #define COMPMIN     0x03           /* ..  */ | 
 | #define COMPTOTAL   0x04           /* ..  */ | 
 | #define COMPNAN     0x05           /* .. [NaN processing]  */ | 
 | #define COMPSIG     0x06           /* .. [signaling COMPARE]  */ | 
 | #define COMPMAXMAG  0x07           /* ..  */ | 
 | #define COMPMINMAG  0x08           /* ..  */ | 
 |  | 
 | #define DEC_sNaN     0x40000000    /* local status: sNaN signal  */ | 
 | #define BADINT  (Int)0x80000000    /* most-negative Int; error indicator  */ | 
 | /* Next two indicate an integer >= 10**6, and its parity (bottom bit)  */ | 
 | #define BIGEVEN (Int)0x80000002 | 
 | #define BIGODD  (Int)0x80000003 | 
 |  | 
 | static const Unit uarrone[1]={1};   /* Unit array of 1, used for incrementing  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* round-for-reround digits                                           */ | 
 | /* ------------------------------------------------------------------ */ | 
 | #if 0 | 
 | static const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */ | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Powers of ten (powers[n]==10**n, 0<=n<=9)                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000, | 
 |                           10000000, 100000000, 1000000000}; | 
 |  | 
 |  | 
 | /* Granularity-dependent code */ | 
 | #if DECDPUN<=4 | 
 |   #define eInt  Int           /* extended integer  */ | 
 |   #define ueInt uInt          /* unsigned extended integer  */ | 
 |   /* Constant multipliers for divide-by-power-of five using reciprocal  */ | 
 |   /* multiply, after removing powers of 2 by shifting, and final shift  */ | 
 |   /* of 17 [we only need up to **4]  */ | 
 |   static const uInt multies[]={131073, 26215, 5243, 1049, 210}; | 
 |   /* QUOT10 -- macro to return the quotient of unit u divided by 10**n  */ | 
 |   #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) | 
 | #else | 
 |   /* For DECDPUN>4 non-ANSI-89 64-bit types are needed.  */ | 
 |   #if !DECUSE64 | 
 |     #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 | 
 |   #endif | 
 |   #define eInt  Long          /* extended integer  */ | 
 |   #define ueInt uLong         /* unsigned extended integer  */ | 
 | #endif | 
 |  | 
 | /* Local routines */ | 
 | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, | 
 |                               decContext *, uByte, uInt *); | 
 | static Flag        decBiStr(const char *, const char *, const char *); | 
 | static uInt        decCheckMath(const decNumber *, decContext *, uInt *); | 
 | static void        decApplyRound(decNumber *, decContext *, Int, uInt *); | 
 | static Int         decCompare(const decNumber *lhs, const decNumber *rhs, Flag); | 
 | static decNumber * decCompareOp(decNumber *, const decNumber *, | 
 |                               const decNumber *, decContext *, | 
 |                               Flag, uInt *); | 
 | static void        decCopyFit(decNumber *, const decNumber *, decContext *, | 
 |                               Int *, uInt *); | 
 | static decNumber * decDecap(decNumber *, Int); | 
 | static decNumber * decDivideOp(decNumber *, const decNumber *, | 
 |                               const decNumber *, decContext *, Flag, uInt *); | 
 | static decNumber * decExpOp(decNumber *, const decNumber *, | 
 |                               decContext *, uInt *); | 
 | static void        decFinalize(decNumber *, decContext *, Int *, uInt *); | 
 | static Int         decGetDigits(Unit *, Int); | 
 | static Int         decGetInt(const decNumber *); | 
 | static decNumber * decLnOp(decNumber *, const decNumber *, | 
 |                               decContext *, uInt *); | 
 | static decNumber * decMultiplyOp(decNumber *, const decNumber *, | 
 |                               const decNumber *, decContext *, | 
 |                               uInt *); | 
 | static decNumber * decNaNs(decNumber *, const decNumber *, | 
 |                               const decNumber *, decContext *, uInt *); | 
 | static decNumber * decQuantizeOp(decNumber *, const decNumber *, | 
 |                               const decNumber *, decContext *, Flag, | 
 |                               uInt *); | 
 | static void        decReverse(Unit *, Unit *); | 
 | static void        decSetCoeff(decNumber *, decContext *, const Unit *, | 
 |                               Int, Int *, uInt *); | 
 | static void        decSetMaxValue(decNumber *, decContext *); | 
 | static void        decSetOverflow(decNumber *, decContext *, uInt *); | 
 | static void        decSetSubnormal(decNumber *, decContext *, Int *, uInt *); | 
 | static Int         decShiftToLeast(Unit *, Int, Int); | 
 | static Int         decShiftToMost(Unit *, Int, Int); | 
 | static void        decStatus(decNumber *, uInt, decContext *); | 
 | static void        decToString(const decNumber *, char[], Flag); | 
 | static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *); | 
 | static Int         decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, | 
 |                               Unit *, Int); | 
 | static Int         decUnitCompare(const Unit *, Int, const Unit *, Int, Int); | 
 |  | 
 | #if !DECSUBSET | 
 | /* decFinish == decFinalize when no subset arithmetic needed */ | 
 | #define decFinish(a,b,c,d) decFinalize(a,b,c,d) | 
 | #else | 
 | static void        decFinish(decNumber *, decContext *, Int *, uInt *); | 
 | static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); | 
 | #endif | 
 |  | 
 | /* Local macros */ | 
 | /* masked special-values bits  */ | 
 | #define SPECIALARG  (rhs->bits & DECSPECIAL) | 
 | #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) | 
 |  | 
 | /* For use in ICU */ | 
 | #define malloc(a) uprv_malloc(a) | 
 | #define free(a) uprv_free(a) | 
 |  | 
 | /* Diagnostic macros, etc. */ | 
 | #if DECALLOC | 
 | /* Handle malloc/free accounting.  If enabled, our accountable routines  */ | 
 | /* are used; otherwise the code just goes straight to the system malloc  */ | 
 | /* and free routines.  */ | 
 | #define malloc(a) decMalloc(a) | 
 | #define free(a) decFree(a) | 
 | #define DECFENCE 0x5a              /* corruption detector  */ | 
 | /* 'Our' malloc and free:  */ | 
 | static void *decMalloc(size_t); | 
 | static void  decFree(void *); | 
 | uInt decAllocBytes=0;              /* count of bytes allocated  */ | 
 | /* Note that DECALLOC code only checks for storage buffer overflow.  */ | 
 | /* To check for memory leaks, the decAllocBytes variable must be  */ | 
 | /* checked to be 0 at appropriate times (e.g., after the test  */ | 
 | /* harness completes a set of tests).  This checking may be unreliable  */ | 
 | /* if the testing is done in a multi-thread environment.  */ | 
 | #endif | 
 |  | 
 | #if DECCHECK | 
 | /* Optional checking routines.  Enabling these means that decNumber  */ | 
 | /* and decContext operands to operator routines are checked for  */ | 
 | /* correctness.  This roughly doubles the execution time of the  */ | 
 | /* fastest routines (and adds 600+ bytes), so should not normally be  */ | 
 | /* used in 'production'.  */ | 
 | /* decCheckInexact is used to check that inexact results have a full  */ | 
 | /* complement of digits (where appropriate -- this is not the case  */ | 
 | /* for Quantize, for example)  */ | 
 | #define DECUNRESU ((decNumber *)(void *)0xffffffff) | 
 | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) | 
 | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) | 
 | static Flag decCheckOperands(decNumber *, const decNumber *, | 
 |                              const decNumber *, decContext *); | 
 | static Flag decCheckNumber(const decNumber *); | 
 | static void decCheckInexact(const decNumber *, decContext *); | 
 | #endif | 
 |  | 
 | #if DECTRACE || DECCHECK | 
 | /* Optional trace/debugging routines (may or may not be used)  */ | 
 | void decNumberShow(const decNumber *);  /* displays the components of a number  */ | 
 | static void decDumpAr(char, const Unit *, Int); | 
 | #endif | 
 |  | 
 | /* ================================================================== */ | 
 | /* Conversions                                                        */ | 
 | /* ================================================================== */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* from-int32 -- conversion from Int or uInt                          */ | 
 | /*                                                                    */ | 
 | /*  dn is the decNumber to receive the integer                        */ | 
 | /*  in or uin is the integer to be converted                          */ | 
 | /*  returns dn                                                        */ | 
 | /*                                                                    */ | 
 | /* No error is possible.                                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromInt32(decNumber *dn, Int in) { | 
 |   uInt unsig; | 
 |   if (in>=0) unsig=in; | 
 |    else {                               /* negative (possibly BADINT)  */ | 
 |     if (in==BADINT) unsig=(uInt)1073741824*2; /* special case  */ | 
 |      else unsig=-in;                    /* invert  */ | 
 |     } | 
 |   /* in is now positive  */ | 
 |   uprv_decNumberFromUInt32(dn, unsig); | 
 |   if (in<0) dn->bits=DECNEG;            /* sign needed  */ | 
 |   return dn; | 
 |   } /* decNumberFromInt32  */ | 
 |  | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromUInt32(decNumber *dn, uInt uin) { | 
 |   Unit *up;                             /* work pointer  */ | 
 |   uprv_decNumberZero(dn);                    /* clean  */ | 
 |   if (uin==0) return dn;                /* [or decGetDigits bad call]  */ | 
 |   for (up=dn->lsu; uin>0; up++) { | 
 |     *up=(Unit)(uin%(DECDPUNMAX+1)); | 
 |     uin=uin/(DECDPUNMAX+1); | 
 |     } | 
 |   dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(up - dn->lsu)); | 
 |   return dn; | 
 |   } /* decNumberFromUInt32  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* to-int32 -- conversion to Int or uInt                              */ | 
 | /*                                                                    */ | 
 | /*  dn is the decNumber to convert                                    */ | 
 | /*  set is the context for reporting errors                           */ | 
 | /*  returns the converted decNumber, or 0 if Invalid is set           */ | 
 | /*                                                                    */ | 
 | /* Invalid is set if the decNumber does not have exponent==0 or if    */ | 
 | /* it is a NaN, Infinite, or out-of-range.                            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI Int U_EXPORT2 uprv_decNumberToInt32(const decNumber *dn, decContext *set) { | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
 |   #endif | 
 |  | 
 |   /* special or too many digits, or bad exponent  */ | 
 |   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad  */ | 
 |    else { /* is a finite integer with 10 or fewer digits  */ | 
 |     Int d;                         /* work  */ | 
 |     const Unit *up;                /* ..  */ | 
 |     uInt hi=0, lo;                 /* ..  */ | 
 |     up=dn->lsu;                    /* -> lsu  */ | 
 |     lo=*up;                        /* get 1 to 9 digits  */ | 
 |     #if DECDPUN>1                  /* split to higher  */ | 
 |       hi=lo/10; | 
 |       lo=lo%10; | 
 |     #endif | 
 |     up++; | 
 |     /* collect remaining Units, if any, into hi  */ | 
 |     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; | 
 |     /* now low has the lsd, hi the remainder  */ | 
 |     if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range?  */ | 
 |       /* most-negative is a reprieve  */ | 
 |       if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; | 
 |       /* bad -- drop through  */ | 
 |       } | 
 |      else { /* in-range always  */ | 
 |       Int i=X10(hi)+lo; | 
 |       if (dn->bits&DECNEG) return -i; | 
 |       return i; | 
 |       } | 
 |     } /* integer  */ | 
 |   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */ | 
 |   return 0; | 
 |   } /* decNumberToInt32  */ | 
 |  | 
 | U_CAPI uInt U_EXPORT2 uprv_decNumberToUInt32(const decNumber *dn, decContext *set) { | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
 |   #endif | 
 |   /* special or too many digits, or bad exponent, or negative (<0)  */ | 
 |   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 | 
 |     || (dn->bits&DECNEG && !ISZERO(dn)));                   /* bad  */ | 
 |    else { /* is a finite integer with 10 or fewer digits  */ | 
 |     Int d;                         /* work  */ | 
 |     const Unit *up;                /* ..  */ | 
 |     uInt hi=0, lo;                 /* ..  */ | 
 |     up=dn->lsu;                    /* -> lsu  */ | 
 |     lo=*up;                        /* get 1 to 9 digits  */ | 
 |     #if DECDPUN>1                  /* split to higher  */ | 
 |       hi=lo/10; | 
 |       lo=lo%10; | 
 |     #endif | 
 |     up++; | 
 |     /* collect remaining Units, if any, into hi  */ | 
 |     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; | 
 |  | 
 |     /* now low has the lsd, hi the remainder  */ | 
 |     if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible  */ | 
 |      else return X10(hi)+lo; | 
 |     } /* integer  */ | 
 |   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */ | 
 |   return 0; | 
 |   } /* decNumberToUInt32  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* to-scientific-string -- conversion to numeric string               */ | 
 | /* to-engineering-string -- conversion to numeric string              */ | 
 | /*                                                                    */ | 
 | /*   decNumberToString(dn, string);                                   */ | 
 | /*   decNumberToEngString(dn, string);                                */ | 
 | /*                                                                    */ | 
 | /*  dn is the decNumber to convert                                    */ | 
 | /*  string is the string where the result will be laid out            */ | 
 | /*                                                                    */ | 
 | /*  string must be at least dn->digits+14 characters long             */ | 
 | /*                                                                    */ | 
 | /*  No error is possible, and no status can be set.                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI char * U_EXPORT2 uprv_decNumberToString(const decNumber *dn, char *string){ | 
 |   decToString(dn, string, 0); | 
 |   return string; | 
 |   } /* DecNumberToString  */ | 
 |  | 
 | U_CAPI char * U_EXPORT2 uprv_decNumberToEngString(const decNumber *dn, char *string){ | 
 |   decToString(dn, string, 1); | 
 |   return string; | 
 |   } /* DecNumberToEngString  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* to-number -- conversion from numeric string                        */ | 
 | /*                                                                    */ | 
 | /* decNumberFromString -- convert string to decNumber                 */ | 
 | /*   dn        -- the number structure to fill                        */ | 
 | /*   chars[]   -- the string to convert ('\0' terminated)             */ | 
 | /*   set       -- the context used for processing any error,          */ | 
 | /*                determining the maximum precision available         */ | 
 | /*                (set.digits), determining the maximum and minimum   */ | 
 | /*                exponent (set.emax and set.emin), determining if    */ | 
 | /*                extended values are allowed, and checking the       */ | 
 | /*                rounding mode if overflow occurs or rounding is     */ | 
 | /*                needed.                                             */ | 
 | /*                                                                    */ | 
 | /* The length of the coefficient and the size of the exponent are     */ | 
 | /* checked by this routine, so the correct error (Underflow or        */ | 
 | /* Overflow) can be reported or rounding applied, as necessary.       */ | 
 | /*                                                                    */ | 
 | /* If bad syntax is detected, the result will be a quiet NaN.         */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromString(decNumber *dn, const char chars[], | 
 |                                 decContext *set) { | 
 |   Int   exponent=0;                /* working exponent [assume 0]  */ | 
 |   uByte bits=0;                    /* working flags [assume +ve]  */ | 
 |   Unit  *res;                      /* where result will be built  */ | 
 |   Unit  resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary  */ | 
 |                                    /* [+9 allows for ln() constants]  */ | 
 |   Unit  *allocres=NULL;            /* -> allocated result, iff allocated  */ | 
 |   Int   d=0;                       /* count of digits found in decimal part  */ | 
 |   const char *dotchar=NULL;        /* where dot was found  */ | 
 |   const char *cfirst=chars;        /* -> first character of decimal part  */ | 
 |   const char *last=NULL;           /* -> last digit of decimal part  */ | 
 |   const char *c;                   /* work  */ | 
 |   Unit  *up;                       /* ..  */ | 
 |   #if DECDPUN>1 | 
 |   Int   cut, out;                  /* ..  */ | 
 |   #endif | 
 |   Int   residue;                   /* rounding residue  */ | 
 |   uInt  status=0;                  /* error code  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) | 
 |     return uprv_decNumberZero(dn); | 
 |   #endif | 
 |  | 
 |   do {                             /* status & malloc protection  */ | 
 |     for (c=chars;; c++) {          /* -> input character  */ | 
 |       if (*c>='0' && *c<='9') {    /* test for Arabic digit  */ | 
 |         last=c; | 
 |         d++;                       /* count of real digits  */ | 
 |         continue;                  /* still in decimal part  */ | 
 |         } | 
 |       if (*c=='.' && dotchar==NULL) { /* first '.'  */ | 
 |         dotchar=c;                 /* record offset into decimal part  */ | 
 |         if (c==cfirst) cfirst++;   /* first digit must follow  */ | 
 |         continue;} | 
 |       if (c==chars) {              /* first in string...  */ | 
 |         if (*c=='-') {             /* valid - sign  */ | 
 |           cfirst++; | 
 |           bits=DECNEG; | 
 |           continue;} | 
 |         if (*c=='+') {             /* valid + sign  */ | 
 |           cfirst++; | 
 |           continue;} | 
 |         } | 
 |       /* *c is not a digit, or a valid +, -, or '.'  */ | 
 |       break; | 
 |       } /* c  */ | 
 |  | 
 |     if (last==NULL) {              /* no digits yet  */ | 
 |       status=DEC_Conversion_syntax;/* assume the worst  */ | 
 |       if (*c=='\0') break;         /* and no more to come...  */ | 
 |       #if DECSUBSET | 
 |       /* if subset then infinities and NaNs are not allowed  */ | 
 |       if (!set->extended) break;   /* hopeless  */ | 
 |       #endif | 
 |       /* Infinities and NaNs are possible, here  */ | 
 |       if (dotchar!=NULL) break;    /* .. unless had a dot  */ | 
 |       uprv_decNumberZero(dn);           /* be optimistic  */ | 
 |       if (decBiStr(c, "infinity", "INFINITY") | 
 |        || decBiStr(c, "inf", "INF")) { | 
 |         dn->bits=bits | DECINF; | 
 |         status=0;                  /* is OK  */ | 
 |         break; /* all done  */ | 
 |         } | 
 |       /* a NaN expected  */ | 
 |       /* 2003.09.10 NaNs are now permitted to have a sign  */ | 
 |       dn->bits=bits | DECNAN;      /* assume simple NaN  */ | 
 |       if (*c=='s' || *c=='S') {    /* looks like an sNaN  */ | 
 |         c++; | 
 |         dn->bits=bits | DECSNAN; | 
 |         } | 
 |       if (*c!='n' && *c!='N') break;    /* check caseless "NaN"  */ | 
 |       c++; | 
 |       if (*c!='a' && *c!='A') break;    /* ..  */ | 
 |       c++; | 
 |       if (*c!='n' && *c!='N') break;    /* ..  */ | 
 |       c++; | 
 |       /* now either nothing, or nnnn payload, expected  */ | 
 |       /* -> start of integer and skip leading 0s [including plain 0]  */ | 
 |       for (cfirst=c; *cfirst=='0';) cfirst++; | 
 |       if (*cfirst=='\0') {         /* "NaN" or "sNaN", maybe with all 0s  */ | 
 |         status=0;                  /* it's good  */ | 
 |         break;                     /* ..  */ | 
 |         } | 
 |       /* something other than 0s; setup last and d as usual [no dots]  */ | 
 |       for (c=cfirst;; c++, d++) { | 
 |         if (*c<'0' || *c>'9') break; /* test for Arabic digit  */ | 
 |         last=c; | 
 |         } | 
 |       if (*c!='\0') break;         /* not all digits  */ | 
 |       if (d>set->digits-1) { | 
 |         /* [NB: payload in a decNumber can be full length unless  */ | 
 |         /* clamped, in which case can only be digits-1]  */ | 
 |         if (set->clamp) break; | 
 |         if (d>set->digits) break; | 
 |         } /* too many digits?  */ | 
 |       /* good; drop through to convert the integer to coefficient  */ | 
 |       status=0;                    /* syntax is OK  */ | 
 |       bits=dn->bits;               /* for copy-back  */ | 
 |       } /* last==NULL  */ | 
 |  | 
 |      else if (*c!='\0') {          /* more to process...  */ | 
 |       /* had some digits; exponent is only valid sequence now  */ | 
 |       Flag nege;                   /* 1=negative exponent  */ | 
 |       const char *firstexp;        /* -> first significant exponent digit  */ | 
 |       status=DEC_Conversion_syntax;/* assume the worst  */ | 
 |       if (*c!='e' && *c!='E') break; | 
 |       /* Found 'e' or 'E' -- now process explicit exponent */ | 
 |       /* 1998.07.11: sign no longer required  */ | 
 |       nege=0; | 
 |       c++;                         /* to (possible) sign  */ | 
 |       if (*c=='-') {nege=1; c++;} | 
 |        else if (*c=='+') c++; | 
 |       if (*c=='\0') break; | 
 |  | 
 |       for (; *c=='0' && *(c+1)!='\0';) c++;  /* strip insignificant zeros  */ | 
 |       firstexp=c;                            /* save exponent digit place  */ | 
 |       uInt uexponent = 0;   /* Avoid undefined behavior on signed int overflow */ | 
 |       for (; ;c++) { | 
 |         if (*c<'0' || *c>'9') break;         /* not a digit  */ | 
 |         uexponent=X10(uexponent)+(uInt)*c-(uInt)'0'; | 
 |         } /* c  */ | 
 |       exponent = (Int)uexponent; | 
 |       /* if not now on a '\0', *c must not be a digit  */ | 
 |       if (*c!='\0') break; | 
 |  | 
 |       /* (this next test must be after the syntax checks)  */ | 
 |       /* if it was too long the exponent may have wrapped, so check  */ | 
 |       /* carefully and set it to a certain overflow if wrap possible  */ | 
 |       if (c>=firstexp+9+1) { | 
 |         if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; | 
 |         /* [up to 1999999999 is OK, for example 1E-1000000998]  */ | 
 |         } | 
 |       if (nege) exponent=-exponent;     /* was negative  */ | 
 |       status=0;                         /* is OK  */ | 
 |       } /* stuff after digits  */ | 
 |  | 
 |     /* Here when whole string has been inspected; syntax is good  */ | 
 |     /* cfirst->first digit (never dot), last->last digit (ditto)  */ | 
 |  | 
 |     /* strip leading zeros/dot [leave final 0 if all 0's]  */ | 
 |     if (*cfirst=='0') {                 /* [cfirst has stepped over .]  */ | 
 |       for (c=cfirst; c<last; c++, cfirst++) { | 
 |         if (*c=='.') continue;          /* ignore dots  */ | 
 |         if (*c!='0') break;             /* non-zero found  */ | 
 |         d--;                            /* 0 stripped  */ | 
 |         } /* c  */ | 
 |       #if DECSUBSET | 
 |       /* make a rapid exit for easy zeros if !extended  */ | 
 |       if (*cfirst=='0' && !set->extended) { | 
 |         uprv_decNumberZero(dn);              /* clean result  */ | 
 |         break;                          /* [could be return]  */ | 
 |         } | 
 |       #endif | 
 |       } /* at least one leading 0  */ | 
 |  | 
 |     /* Handle decimal point...  */ | 
 |     if (dotchar!=NULL && dotchar<last)  /* non-trailing '.' found?  */ | 
 |       exponent -= static_cast<int32_t>(last-dotchar);         /* adjust exponent  */ | 
 |     /* [we can now ignore the .]  */ | 
 |  | 
 |     /* OK, the digits string is good.  Assemble in the decNumber, or in  */ | 
 |     /* a temporary units array if rounding is needed  */ | 
 |     if (d<=set->digits) res=dn->lsu;    /* fits into supplied decNumber  */ | 
 |      else {                             /* rounding needed  */ | 
 |       Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed  */ | 
 |       res=resbuff;                      /* assume use local buffer  */ | 
 |       if (needbytes>(Int)sizeof(resbuff)) { /* too big for local  */ | 
 |         allocres=(Unit *)malloc(needbytes); | 
 |         if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} | 
 |         res=allocres; | 
 |         } | 
 |       } | 
 |     /* res now -> number lsu, buffer, or allocated storage for Unit array  */ | 
 |  | 
 |     /* Place the coefficient into the selected Unit array  */ | 
 |     /* [this is often 70% of the cost of this function when DECDPUN>1]  */ | 
 |     #if DECDPUN>1 | 
 |     out=0;                         /* accumulator  */ | 
 |     up=res+D2U(d)-1;               /* -> msu  */ | 
 |     cut=d-(up-res)*DECDPUN;        /* digits in top unit  */ | 
 |     for (c=cfirst;; c++) {         /* along the digits  */ | 
 |       if (*c=='.') continue;       /* ignore '.' [don't decrement cut]  */ | 
 |       out=X10(out)+(Int)*c-(Int)'0'; | 
 |       if (c==last) break;          /* done [never get to trailing '.']  */ | 
 |       cut--; | 
 |       if (cut>0) continue;         /* more for this unit  */ | 
 |       *up=(Unit)out;               /* write unit  */ | 
 |       up--;                        /* prepare for unit below..  */ | 
 |       cut=DECDPUN;                 /* ..  */ | 
 |       out=0;                       /* ..  */ | 
 |       } /* c  */ | 
 |     *up=(Unit)out;                 /* write lsu  */ | 
 |  | 
 |     #else | 
 |     /* DECDPUN==1  */ | 
 |     up=res;                        /* -> lsu  */ | 
 |     for (c=last; c>=cfirst; c--) { /* over each character, from least  */ | 
 |       if (*c=='.') continue;       /* ignore . [don't step up]  */ | 
 |       *up=(Unit)((Int)*c-(Int)'0'); | 
 |       up++; | 
 |       } /* c  */ | 
 |     #endif | 
 |  | 
 |     dn->bits=bits; | 
 |     dn->exponent=exponent; | 
 |     dn->digits=d; | 
 |  | 
 |     /* if not in number (too long) shorten into the number  */ | 
 |     if (d>set->digits) { | 
 |       residue=0; | 
 |       decSetCoeff(dn, set, res, d, &residue, &status); | 
 |       /* always check for overflow or subnormal and round as needed  */ | 
 |       decFinalize(dn, set, &residue, &status); | 
 |       } | 
 |      else { /* no rounding, but may still have overflow or subnormal  */ | 
 |       /* [these tests are just for performance; finalize repeats them]  */ | 
 |       if ((dn->exponent-1<set->emin-dn->digits) | 
 |        || (dn->exponent-1>set->emax-set->digits)) { | 
 |         residue=0; | 
 |         decFinalize(dn, set, &residue, &status); | 
 |         } | 
 |       } | 
 |     /* decNumberShow(dn);  */ | 
 |     } while(0);                         /* [for break]  */ | 
 |  | 
 |   if (allocres!=NULL) free(allocres);   /* drop any storage used  */ | 
 |   if (status!=0) decStatus(dn, status, set); | 
 |   return dn; | 
 |   } /* decNumberFromString */ | 
 |  | 
 | /* ================================================================== */ | 
 | /* Operators                                                          */ | 
 | /* ================================================================== */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberAbs -- absolute value operator                            */ | 
 | /*                                                                    */ | 
 | /*   This computes C = abs(A)                                         */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* See also decNumberCopyAbs for a quiet bitwise version of this.     */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This has the same effect as decNumberPlus unless A is negative,    */ | 
 | /* in which case it has the same effect as decNumberMinus.            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAbs(decNumber *res, const decNumber *rhs, | 
 |                          decContext *set) { | 
 |   decNumber dzero;                      /* for 0  */ | 
 |   uInt status=0;                        /* accumulator  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   uprv_decNumberZero(&dzero);                /* set 0  */ | 
 |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */ | 
 |   decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberAbs  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberAdd -- add two Numbers                                    */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A + B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This just calls the routine shared with Subtract                   */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAdd(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decAddOp(res, lhs, rhs, set, 0, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberAdd  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberAnd -- AND two Numbers, digitwise                         */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A & B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X&X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context (used for result length and error report)     */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Logical function restrictions apply (see above); a NaN is          */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAnd(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   const Unit *ua, *ub;                  /* -> operands  */ | 
 |   const Unit *msua, *msub;              /* -> operand msus  */ | 
 |   Unit *uc,  *msuc;                     /* -> result and its msu  */ | 
 |   Int   msudigs;                        /* digits in res msu  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
 |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
 |     decStatus(res, DEC_Invalid_operation, set); | 
 |     return res; | 
 |     } | 
 |  | 
 |   /* operands are valid  */ | 
 |   ua=lhs->lsu;                          /* bottom-up  */ | 
 |   ub=rhs->lsu;                          /* ..  */ | 
 |   uc=res->lsu;                          /* ..  */ | 
 |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */ | 
 |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */ | 
 |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */ | 
 |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */ | 
 |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
 |     Unit a, b;                          /* extract units  */ | 
 |     if (ua>msua) a=0; | 
 |      else a=*ua; | 
 |     if (ub>msub) b=0; | 
 |      else b=*ub; | 
 |     *uc=0;                              /* can now write back  */ | 
 |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
 |       Int i, j; | 
 |       *uc=0;                            /* can now write back  */ | 
 |       /* This loop could be unrolled and/or use BIN2BCD tables  */ | 
 |       for (i=0; i<DECDPUN; i++) { | 
 |         if (a&b&1) *uc=*uc+(Unit)powers[i];  /* effect AND  */ | 
 |         j=a%10; | 
 |         a=a/10; | 
 |         j|=b%10; | 
 |         b=b/10; | 
 |         if (j>1) { | 
 |           decStatus(res, DEC_Invalid_operation, set); | 
 |           return res; | 
 |           } | 
 |         if (uc==msuc && i==msudigs-1) break; /* just did final digit  */ | 
 |         } /* each digit  */ | 
 |       } /* both OK  */ | 
 |     } /* each unit  */ | 
 |   /* [here uc-1 is the msu of the result]  */ | 
 |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu)); | 
 |   res->exponent=0;                      /* integer  */ | 
 |   res->bits=0;                          /* sign=0  */ | 
 |   return res;  /* [no status to set]  */ | 
 |   } /* decNumberAnd  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCompare -- compare two Numbers                            */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for one digit (or NaN).                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompare(decNumber *res, const decNumber *lhs, | 
 |                              const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPARE, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberCompare  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCompareSignal -- compare, signalling on all NaNs          */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for one digit (or NaN).                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareSignal(decNumber *res, const decNumber *lhs, | 
 |                                    const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPSIG, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberCompareSignal  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B, under total ordering                    */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for one digit; the result will always be one of  */ | 
 | /* -1, 0, or 1.                                                       */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotal(decNumber *res, const decNumber *lhs, | 
 |                                   const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberCompareTotal  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes  */ | 
 | /*                                                                    */ | 
 | /*   This computes C = |A| ? |B|, under total ordering                */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for one digit; the result will always be one of  */ | 
 | /* -1, 0, or 1.                                                       */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, | 
 |                                      const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                   /* accumulator  */ | 
 |   uInt needbytes;                  /* for space calculations  */ | 
 |   decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0  */ | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber bufb[D2N(DECBUFFER+1)]; | 
 |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */ | 
 |   decNumber *a, *b;                /* temporary pointers  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                                  /* protect allocated storage  */ | 
 |     /* if either is negative, take a copy and absolute  */ | 
 |     if (decNumberIsNegative(lhs)) {     /* lhs<0  */ | 
 |       a=bufa; | 
 |       needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); | 
 |       if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
 |         allocbufa=(decNumber *)malloc(needbytes); | 
 |         if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
 |           status|=DEC_Insufficient_storage; | 
 |           break;} | 
 |         a=allocbufa;                    /* use the allocated space  */ | 
 |         } | 
 |       uprv_decNumberCopy(a, lhs);            /* copy content  */ | 
 |       a->bits&=~DECNEG;                 /* .. and clear the sign  */ | 
 |       lhs=a;                            /* use copy from here on  */ | 
 |       } | 
 |     if (decNumberIsNegative(rhs)) {     /* rhs<0  */ | 
 |       b=bufb; | 
 |       needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
 |       if (needbytes>sizeof(bufb)) {     /* need malloc space  */ | 
 |         allocbufb=(decNumber *)malloc(needbytes); | 
 |         if (allocbufb==NULL) {          /* hopeless -- abandon  */ | 
 |           status|=DEC_Insufficient_storage; | 
 |           break;} | 
 |         b=allocbufb;                    /* use the allocated space  */ | 
 |         } | 
 |       uprv_decNumberCopy(b, rhs);            /* copy content  */ | 
 |       b->bits&=~DECNEG;                 /* .. and clear the sign  */ | 
 |       rhs=b;                            /* use copy from here on  */ | 
 |       } | 
 |     decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */ | 
 |   if (allocbufb!=NULL) free(allocbufb); /* ..  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberCompareTotalMag  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberDivide -- divide one number by another                    */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A / B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivide(decNumber *res, const decNumber *lhs, | 
 |                             const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decDivideOp(res, lhs, rhs, set, DIVIDE, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberDivide  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberDivideInteger -- divide and return integer quotient       */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A # B, where # is the integer divide operator  */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X#X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivideInteger(decNumber *res, const decNumber *lhs, | 
 |                                    const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberDivideInteger  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberExp -- exponentiation                                     */ | 
 | /*                                                                    */ | 
 | /*   This computes C = exp(A)                                         */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /*                                                                    */ | 
 | /* Finite results will always be full precision and Inexact, except   */ | 
 | /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */ | 
 | /*                                                                    */ | 
 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This is a wrapper for decExpOp which can handle the slightly wider */ | 
 | /* (double) range needed by Ln (which has to be able to calculate     */ | 
 | /* exp(-a) where a can be the tiniest number (Ntiny).                 */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberExp(decNumber *res, const decNumber *rhs, | 
 |                          decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   #if DECSUBSET | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */ | 
 |   #endif | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* Check restrictions; these restrictions ensure that if h=8 (see  */ | 
 |   /* decExpOp) then the result will either overflow or underflow to 0.  */ | 
 |   /* Other math functions restrict the input range, too, for inverses.  */ | 
 |   /* If not violated then carry out the operation.  */ | 
 |   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operand and set lostDigits status, as needed  */ | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     decExpOp(res, rhs, set, &status); | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */ | 
 |   #endif | 
 |   /* apply significant status  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberExp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberFMA -- fused multiply add                                 */ | 
 | /*                                                                    */ | 
 | /*   This computes D = (A * B) + C with only one rounding             */ | 
 | /*                                                                    */ | 
 | /*   res is D, the result.  D may be A or B or C (e.g., X=FMA(X,X,X)) */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   fhs is C [far hand side]                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFMA(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, const decNumber *fhs, | 
 |                          decContext *set) { | 
 |   uInt status=0;                   /* accumulator  */ | 
 |   decContext dcmul;                /* context for the multiplication  */ | 
 |   uInt needbytes;                  /* for space calculations  */ | 
 |   decNumber bufa[D2N(DECBUFFER*2+1)]; | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *acc;                  /* accumulator pointer  */ | 
 |   decNumber dzero;                 /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                                  /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) {               /* [undefined if subset]  */ | 
 |       status|=DEC_Invalid_operation; | 
 |       break;} | 
 |     #endif | 
 |     /* Check math restrictions [these ensure no overflow or underflow]  */ | 
 |     if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) | 
 |      || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) | 
 |      || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; | 
 |     /* set up context for multiply  */ | 
 |     dcmul=*set; | 
 |     dcmul.digits=lhs->digits+rhs->digits; /* just enough  */ | 
 |     /* [The above may be an over-estimate for subset arithmetic, but that's OK]  */ | 
 |     dcmul.emax=DEC_MAX_EMAX;            /* effectively unbounded ..  */ | 
 |     dcmul.emin=DEC_MIN_EMIN;            /* [thanks to Math restrictions]  */ | 
 |     /* set up decNumber space to receive the result of the multiply  */ | 
 |     acc=bufa;                           /* may fit  */ | 
 |     needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); | 
 |     if (needbytes>sizeof(bufa)) {       /* need malloc space  */ | 
 |       allocbufa=(decNumber *)malloc(needbytes); | 
 |       if (allocbufa==NULL) {            /* hopeless -- abandon  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       acc=allocbufa;                    /* use the allocated space  */ | 
 |       } | 
 |     /* multiply with extended range and necessary precision  */ | 
 |     /*printf("emin=%ld\n", dcmul.emin);  */ | 
 |     decMultiplyOp(acc, lhs, rhs, &dcmul, &status); | 
 |     /* Only Invalid operation (from sNaN or Inf * 0) is possible in  */ | 
 |     /* status; if either is seen than ignore fhs (in case it is  */ | 
 |     /* another sNaN) and set acc to NaN unless we had an sNaN  */ | 
 |     /* [decMultiplyOp leaves that to caller]  */ | 
 |     /* Note sNaN has to go through addOp to shorten payload if  */ | 
 |     /* necessary  */ | 
 |     if ((status&DEC_Invalid_operation)!=0) { | 
 |       if (!(status&DEC_sNaN)) {         /* but be true invalid  */ | 
 |         uprv_decNumberZero(res);             /* acc not yet set  */ | 
 |         res->bits=DECNAN; | 
 |         break; | 
 |         } | 
 |       uprv_decNumberZero(&dzero);            /* make 0 (any non-NaN would do)  */ | 
 |       fhs=&dzero;                       /* use that  */ | 
 |       } | 
 |     #if DECCHECK | 
 |      else { /* multiply was OK  */ | 
 |       if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); | 
 |       } | 
 |     #endif | 
 |     /* add the third operand and result -> res, and all is done  */ | 
 |     decAddOp(res, acc, fhs, set, 0, &status); | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberFMA  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberInvert -- invert a Number, digitwise                      */ | 
 | /*                                                                    */ | 
 | /*   This computes C = ~A                                             */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A (e.g., X=~X)                   */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context (used for result length and error report)     */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Logical function restrictions apply (see above); a NaN is          */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberInvert(decNumber *res, const decNumber *rhs, | 
 |                             decContext *set) { | 
 |   const Unit *ua, *msua;                /* -> operand and its msu  */ | 
 |   Unit  *uc, *msuc;                     /* -> result and its msu  */ | 
 |   Int   msudigs;                        /* digits in res msu  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
 |     decStatus(res, DEC_Invalid_operation, set); | 
 |     return res; | 
 |     } | 
 |   /* operand is valid  */ | 
 |   ua=rhs->lsu;                          /* bottom-up  */ | 
 |   uc=res->lsu;                          /* ..  */ | 
 |   msua=ua+D2U(rhs->digits)-1;           /* -> msu of rhs  */ | 
 |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */ | 
 |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */ | 
 |   for (; uc<=msuc; ua++, uc++) {        /* Unit loop  */ | 
 |     Unit a;                             /* extract unit  */ | 
 |     Int  i, j;                          /* work  */ | 
 |     if (ua>msua) a=0; | 
 |      else a=*ua; | 
 |     *uc=0;                              /* can now write back  */ | 
 |     /* always need to examine all bits in rhs  */ | 
 |     /* This loop could be unrolled and/or use BIN2BCD tables  */ | 
 |     for (i=0; i<DECDPUN; i++) { | 
 |       if ((~a)&1) *uc=*uc+(Unit)powers[i];   /* effect INVERT  */ | 
 |       j=a%10; | 
 |       a=a/10; | 
 |       if (j>1) { | 
 |         decStatus(res, DEC_Invalid_operation, set); | 
 |         return res; | 
 |         } | 
 |       if (uc==msuc && i==msudigs-1) break;   /* just did final digit  */ | 
 |       } /* each digit  */ | 
 |     } /* each unit  */ | 
 |   /* [here uc-1 is the msu of the result]  */ | 
 |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu)); | 
 |   res->exponent=0;                      /* integer  */ | 
 |   res->bits=0;                          /* sign=0  */ | 
 |   return res;  /* [no status to set]  */ | 
 |   } /* decNumberInvert  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberLn -- natural logarithm                                   */ | 
 | /*                                                                    */ | 
 | /*   This computes C = ln(A)                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Notable cases:                                                     */ | 
 | /*   A<0 -> Invalid                                                   */ | 
 | /*   A=0 -> -Infinity (Exact)                                         */ | 
 | /*   A=+Infinity -> +Infinity (Exact)                                 */ | 
 | /*   A=1 exactly -> 0 (Exact)                                         */ | 
 | /*                                                                    */ | 
 | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /*                                                                    */ | 
 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This is a wrapper for decLnOp which can handle the slightly wider  */ | 
 | /* (+11) range needed by Ln, Log10, etc. (which may have to be able   */ | 
 | /* to calculate at p+e+2).                                            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLn(decNumber *res, const decNumber *rhs, | 
 |                         decContext *set) { | 
 |   uInt status=0;                   /* accumulator  */ | 
 |   #if DECSUBSET | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */ | 
 |   #endif | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* Check restrictions; this is a math function; if not violated  */ | 
 |   /* then carry out the operation.  */ | 
 |   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operand and set lostDigits status, as needed  */ | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       /* special check in subset for rhs=0  */ | 
 |       if (ISZERO(rhs)) {                /* +/- zeros -> error  */ | 
 |         status|=DEC_Invalid_operation; | 
 |         break;} | 
 |       } /* extended=0  */ | 
 |     #endif | 
 |     decLnOp(res, rhs, set, &status); | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */ | 
 |   #endif | 
 |   /* apply significant status  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberLn  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberLogB - get adjusted exponent, by 754 rules                */ | 
 | /*                                                                    */ | 
 | /*   This computes C = adjustedexponent(A)                            */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context, used only for digits and status              */ | 
 | /*                                                                    */ | 
 | /* C must have space for 10 digits (A might have 10**9 digits and     */ | 
 | /* an exponent of +999999999, or one digit and an exponent of         */ | 
 | /* -1999999999).                                                      */ | 
 | /*                                                                    */ | 
 | /* This returns the adjusted exponent of A after (in theory) padding  */ | 
 | /* with zeros on the right to set->digits digits while keeping the    */ | 
 | /* same value.  The exponent is not limited by emin/emax.             */ | 
 | /*                                                                    */ | 
 | /* Notable cases:                                                     */ | 
 | /*   A<0 -> Use |A|                                                   */ | 
 | /*   A=0 -> -Infinity (Division by zero)                              */ | 
 | /*   A=Infinite -> +Infinity (Exact)                                  */ | 
 | /*   A=1 exactly -> 0 (Exact)                                         */ | 
 | /*   NaNs are propagated as usual                                     */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLogB(decNumber *res, const decNumber *rhs, | 
 |                           decContext *set) { | 
 |   uInt status=0;                   /* accumulator  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* NaNs as usual; Infinities return +Infinity; 0->oops  */ | 
 |   if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); | 
 |    else if (decNumberIsInfinite(rhs)) uprv_decNumberCopyAbs(res, rhs); | 
 |    else if (decNumberIsZero(rhs)) { | 
 |     uprv_decNumberZero(res);                 /* prepare for Infinity  */ | 
 |     res->bits=DECNEG|DECINF;            /* -Infinity  */ | 
 |     status|=DEC_Division_by_zero;       /* as per 754  */ | 
 |     } | 
 |    else { /* finite non-zero  */ | 
 |     Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent  */ | 
 |     uprv_decNumberFromInt32(res, ae);        /* lay it out  */ | 
 |     } | 
 |  | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberLogB  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberLog10 -- logarithm in base 10                             */ | 
 | /*                                                                    */ | 
 | /*   This computes C = log10(A)                                       */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Notable cases:                                                     */ | 
 | /*   A<0 -> Invalid                                                   */ | 
 | /*   A=0 -> -Infinity (Exact)                                         */ | 
 | /*   A=+Infinity -> +Infinity (Exact)                                 */ | 
 | /*   A=10**n (if n is an integer) -> n (Exact)                        */ | 
 | /*                                                                    */ | 
 | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /*                                                                    */ | 
 | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This calculates ln(A)/ln(10) using appropriate precision.  For     */ | 
 | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the      */ | 
 | /* requested digits and t is the number of digits in the exponent     */ | 
 | /* (maximum 6).  For ln(10) it is p + 3; this is often handled by the */ | 
 | /* fastpath in decLnOp.  The final division is done to the requested  */ | 
 | /* precision.                                                         */ | 
 | /* ------------------------------------------------------------------ */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic push | 
 | #pragma GCC diagnostic ignored "-Warray-bounds" | 
 | #endif | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLog10(decNumber *res, const decNumber *rhs, | 
 |                           decContext *set) { | 
 |   uInt status=0, ignore=0;         /* status accumulators  */ | 
 |   uInt needbytes;                  /* for space calculations  */ | 
 |   Int p;                           /* working precision  */ | 
 |   Int t;                           /* digits in exponent of A  */ | 
 |  | 
 |   /* buffers for a and b working decimals  */ | 
 |   /* (adjustment calculator, same size)  */ | 
 |   decNumber bufa[D2N(DECBUFFER+2)]; | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *a=bufa;               /* temporary a  */ | 
 |   decNumber bufb[D2N(DECBUFFER+2)]; | 
 |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */ | 
 |   decNumber *b=bufb;               /* temporary b  */ | 
 |   decNumber bufw[D2N(10)];         /* working 2-10 digit number  */ | 
 |   decNumber *w=bufw;               /* ..  */ | 
 |   #if DECSUBSET | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */ | 
 |   #endif | 
 |  | 
 |   decContext aset;                 /* working context  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* Check restrictions; this is a math function; if not violated  */ | 
 |   /* then carry out the operation.  */ | 
 |   if (!decCheckMath(rhs, set, &status)) do { /* protect malloc  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operand and set lostDigits status, as needed  */ | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       /* special check in subset for rhs=0  */ | 
 |       if (ISZERO(rhs)) {                /* +/- zeros -> error  */ | 
 |         status|=DEC_Invalid_operation; | 
 |         break;} | 
 |       } /* extended=0  */ | 
 |     #endif | 
 |  | 
 |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */ | 
 |  | 
 |     /* handle exact powers of 10; only check if +ve finite  */ | 
 |     if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { | 
 |       Int residue=0;               /* (no residue)  */ | 
 |       uInt copystat=0;             /* clean status  */ | 
 |  | 
 |       /* round to a single digit...  */ | 
 |       aset.digits=1; | 
 |       decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten  */ | 
 |       /* if exact and the digit is 1, rhs is a power of 10  */ | 
 |       if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { | 
 |         /* the exponent, conveniently, is the power of 10; making  */ | 
 |         /* this the result needs a little care as it might not fit,  */ | 
 |         /* so first convert it into the working number, and then move  */ | 
 |         /* to res  */ | 
 |         uprv_decNumberFromInt32(w, w->exponent); | 
 |         residue=0; | 
 |         decCopyFit(res, w, set, &residue, &status); /* copy & round  */ | 
 |         decFinish(res, set, &residue, &status);     /* cleanup/set flags  */ | 
 |         break; | 
 |         } /* not a power of 10  */ | 
 |       } /* not a candidate for exact  */ | 
 |  | 
 |     /* simplify the information-content calculation to use 'total  */ | 
 |     /* number of digits in a, including exponent' as compared to the  */ | 
 |     /* requested digits, as increasing this will only rarely cost an  */ | 
 |     /* iteration in ln(a) anyway  */ | 
 |     t=6;                                /* it can never be >6  */ | 
 |  | 
 |     /* allocate space when needed...  */ | 
 |     p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; | 
 |     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); | 
 |     if (needbytes>sizeof(bufa)) {       /* need malloc space  */ | 
 |       allocbufa=(decNumber *)malloc(needbytes); | 
 |       if (allocbufa==NULL) {            /* hopeless -- abandon  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       a=allocbufa;                      /* use the allocated space  */ | 
 |       } | 
 |     aset.digits=p;                      /* as calculated  */ | 
 |     aset.emax=DEC_MAX_MATH;             /* usual bounds  */ | 
 |     aset.emin=-DEC_MAX_MATH;            /* ..  */ | 
 |     aset.clamp=0;                       /* and no concrete format  */ | 
 |     decLnOp(a, rhs, &aset, &status);    /* a=ln(rhs)  */ | 
 |  | 
 |     /* skip the division if the result so far is infinite, NaN, or  */ | 
 |     /* zero, or there was an error; note NaN from sNaN needs copy  */ | 
 |     if (status&DEC_NaNs && !(status&DEC_sNaN)) break; | 
 |     if (a->bits&DECSPECIAL || ISZERO(a)) { | 
 |       uprv_decNumberCopy(res, a);            /* [will fit]  */ | 
 |       break;} | 
 |  | 
 |     /* for ln(10) an extra 3 digits of precision are needed  */ | 
 |     p=set->digits+3; | 
 |     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); | 
 |     if (needbytes>sizeof(bufb)) {       /* need malloc space  */ | 
 |       allocbufb=(decNumber *)malloc(needbytes); | 
 |       if (allocbufb==NULL) {            /* hopeless -- abandon  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       b=allocbufb;                      /* use the allocated space  */ | 
 |       } | 
 |     uprv_decNumberZero(w);                   /* set up 10...  */ | 
 |     #if DECDPUN==1 | 
 |     w->lsu[1]=1; w->lsu[0]=0;           /* ..  */ | 
 |     #else | 
 |     w->lsu[0]=10;                       /* ..  */ | 
 |     #endif | 
 |     w->digits=2;                        /* ..  */ | 
 |  | 
 |     aset.digits=p; | 
 |     decLnOp(b, w, &aset, &ignore);      /* b=ln(10)  */ | 
 |  | 
 |     aset.digits=set->digits;            /* for final divide  */ | 
 |     decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result  */ | 
 |     } while(0);                         /* [for break]  */ | 
 |  | 
 |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */ | 
 |   if (allocbufb!=NULL) free(allocbufb); /* ..  */ | 
 |   #if DECSUBSET | 
 |   if (allocrhs !=NULL) free(allocrhs);  /* ..  */ | 
 |   #endif | 
 |   /* apply significant status  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberLog10  */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic pop | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMax -- compare two Numbers and return the maximum         */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B, returning the maximum by 754 rules      */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMax(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPMAX, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMax  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMaxMag -- compare and return the maximum by magnitude     */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B, returning the maximum by 754 rules      */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMaxMag(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMaxMag  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMin -- compare two Numbers and return the minimum         */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B, returning the minimum by 754 rules      */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMin(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPMIN, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMin  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMinMag -- compare and return the minimum by magnitude     */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B, returning the minimum by 754 rules      */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinMag(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMinMag  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMinus -- prefix minus operator                            */ | 
 | /*                                                                    */ | 
 | /*   This computes C = 0 - A                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* See also decNumberCopyNegate for a quiet bitwise version of this.  */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Simply use AddOp for the subtract, which will do the necessary.    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinus(decNumber *res, const decNumber *rhs, | 
 |                            decContext *set) { | 
 |   decNumber dzero; | 
 |   uInt status=0;                        /* accumulator  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   uprv_decNumberZero(&dzero);                /* make 0  */ | 
 |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */ | 
 |   decAddOp(res, &dzero, rhs, set, DECNEG, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMinus  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberNextMinus -- next towards -Infinity                       */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A - infinitesimal, rounded towards -Infinity   */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* This is a generalization of 754 NextDown.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextMinus(decNumber *res, const decNumber *rhs, | 
 |                                decContext *set) { | 
 |   decNumber dtiny;                           /* constant  */ | 
 |   decContext workset=*set;                   /* work  */ | 
 |   uInt status=0;                             /* accumulator  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* +Infinity is the special case  */ | 
 |   if ((rhs->bits&(DECINF|DECNEG))==DECINF) { | 
 |     decSetMaxValue(res, set);                /* is +ve  */ | 
 |     /* there is no status to set  */ | 
 |     return res; | 
 |     } | 
 |   uprv_decNumberZero(&dtiny);                     /* start with 0  */ | 
 |   dtiny.lsu[0]=1;                            /* make number that is ..  */ | 
 |   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */ | 
 |   workset.round=DEC_ROUND_FLOOR; | 
 |   decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); | 
 |   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberNextMinus  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberNextPlus -- next towards +Infinity                        */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A + infinitesimal, rounded towards +Infinity   */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* This is a generalization of 754 NextUp.                            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextPlus(decNumber *res, const decNumber *rhs, | 
 |                               decContext *set) { | 
 |   decNumber dtiny;                           /* constant  */ | 
 |   decContext workset=*set;                   /* work  */ | 
 |   uInt status=0;                             /* accumulator  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* -Infinity is the special case  */ | 
 |   if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
 |     decSetMaxValue(res, set); | 
 |     res->bits=DECNEG;                        /* negative  */ | 
 |     /* there is no status to set  */ | 
 |     return res; | 
 |     } | 
 |   uprv_decNumberZero(&dtiny);                     /* start with 0  */ | 
 |   dtiny.lsu[0]=1;                            /* make number that is ..  */ | 
 |   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */ | 
 |   workset.round=DEC_ROUND_CEILING; | 
 |   decAddOp(res, rhs, &dtiny, &workset, 0, &status); | 
 |   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberNextPlus  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberNextToward -- next towards rhs                            */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A +/- infinitesimal, rounded towards           */ | 
 | /*   +/-Infinity in the direction of B, as per 754-1985 nextafter     */ | 
 | /*   modified during revision but dropped from 754-2008.              */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A or B.                          */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* This is a generalization of 754-1985 NextAfter.                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextToward(decNumber *res, const decNumber *lhs, | 
 |                                 const decNumber *rhs, decContext *set) { | 
 |   decNumber dtiny;                           /* constant  */ | 
 |   decContext workset=*set;                   /* work  */ | 
 |   Int result;                                /* ..  */ | 
 |   uInt status=0;                             /* accumulator  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { | 
 |     decNaNs(res, lhs, rhs, set, &status); | 
 |     } | 
 |    else { /* Is numeric, so no chance of sNaN Invalid, etc.  */ | 
 |     result=decCompare(lhs, rhs, 0);     /* sign matters  */ | 
 |     if (result==BADINT) status|=DEC_Insufficient_storage; /* rare  */ | 
 |      else { /* valid compare  */ | 
 |       if (result==0) uprv_decNumberCopySign(res, lhs, rhs); /* easy  */ | 
 |        else { /* differ: need NextPlus or NextMinus  */ | 
 |         uByte sub;                      /* add or subtract  */ | 
 |         if (result<0) {                 /* lhs<rhs, do nextplus  */ | 
 |           /* -Infinity is the special case  */ | 
 |           if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
 |             decSetMaxValue(res, set); | 
 |             res->bits=DECNEG;           /* negative  */ | 
 |             return res;                 /* there is no status to set  */ | 
 |             } | 
 |           workset.round=DEC_ROUND_CEILING; | 
 |           sub=0;                        /* add, please  */ | 
 |           } /* plus  */ | 
 |          else {                         /* lhs>rhs, do nextminus  */ | 
 |           /* +Infinity is the special case  */ | 
 |           if ((lhs->bits&(DECINF|DECNEG))==DECINF) { | 
 |             decSetMaxValue(res, set); | 
 |             return res;                 /* there is no status to set  */ | 
 |             } | 
 |           workset.round=DEC_ROUND_FLOOR; | 
 |           sub=DECNEG;                   /* subtract, please  */ | 
 |           } /* minus  */ | 
 |         uprv_decNumberZero(&dtiny);          /* start with 0  */ | 
 |         dtiny.lsu[0]=1;                 /* make number that is ..  */ | 
 |         dtiny.exponent=DEC_MIN_EMIN-1;  /* .. smaller than tiniest  */ | 
 |         decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or -  */ | 
 |         /* turn off exceptions if the result is a normal number  */ | 
 |         /* (including Nmin), otherwise let all status through  */ | 
 |         if (uprv_decNumberIsNormal(res, set)) status=0; | 
 |         } /* unequal  */ | 
 |       } /* compare OK  */ | 
 |     } /* numeric  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberNextToward  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberOr -- OR two Numbers, digitwise                           */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A | B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X|X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context (used for result length and error report)     */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Logical function restrictions apply (see above); a NaN is          */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberOr(decNumber *res, const decNumber *lhs, | 
 |                         const decNumber *rhs, decContext *set) { | 
 |   const Unit *ua, *ub;                  /* -> operands  */ | 
 |   const Unit *msua, *msub;              /* -> operand msus  */ | 
 |   Unit  *uc, *msuc;                     /* -> result and its msu  */ | 
 |   Int   msudigs;                        /* digits in res msu  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
 |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
 |     decStatus(res, DEC_Invalid_operation, set); | 
 |     return res; | 
 |     } | 
 |   /* operands are valid  */ | 
 |   ua=lhs->lsu;                          /* bottom-up  */ | 
 |   ub=rhs->lsu;                          /* ..  */ | 
 |   uc=res->lsu;                          /* ..  */ | 
 |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */ | 
 |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */ | 
 |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */ | 
 |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */ | 
 |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
 |     Unit a, b;                          /* extract units  */ | 
 |     if (ua>msua) a=0; | 
 |      else a=*ua; | 
 |     if (ub>msub) b=0; | 
 |      else b=*ub; | 
 |     *uc=0;                              /* can now write back  */ | 
 |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
 |       Int i, j; | 
 |       /* This loop could be unrolled and/or use BIN2BCD tables  */ | 
 |       for (i=0; i<DECDPUN; i++) { | 
 |         if ((a|b)&1) *uc=*uc+(Unit)powers[i];     /* effect OR  */ | 
 |         j=a%10; | 
 |         a=a/10; | 
 |         j|=b%10; | 
 |         b=b/10; | 
 |         if (j>1) { | 
 |           decStatus(res, DEC_Invalid_operation, set); | 
 |           return res; | 
 |           } | 
 |         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */ | 
 |         } /* each digit  */ | 
 |       } /* non-zero  */ | 
 |     } /* each unit  */ | 
 |   /* [here uc-1 is the msu of the result]  */ | 
 |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu)); | 
 |   res->exponent=0;                      /* integer  */ | 
 |   res->bits=0;                          /* sign=0  */ | 
 |   return res;  /* [no status to set]  */ | 
 |   } /* decNumberOr  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberPlus -- prefix plus operator                              */ | 
 | /*                                                                    */ | 
 | /*   This computes C = 0 + A                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* See also decNumberCopy for a quiet bitwise version of this.        */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This simply uses AddOp; Add will take fast path after preparing A. */ | 
 | /* Performance is a concern here, as this routine is often used to    */ | 
 | /* check operands and apply rounding and overflow/underflow testing.  */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberPlus(decNumber *res, const decNumber *rhs, | 
 |                           decContext *set) { | 
 |   decNumber dzero; | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   uprv_decNumberZero(&dzero);                /* make 0  */ | 
 |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */ | 
 |   decAddOp(res, &dzero, rhs, set, 0, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberPlus  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberMultiply -- multiply two Numbers                          */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A x B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMultiply(decNumber *res, const decNumber *lhs, | 
 |                               const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                   /* accumulator  */ | 
 |   decMultiplyOp(res, lhs, rhs, set, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberMultiply  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberPower -- raise a number to a power                        */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ** B                                         */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X**X)        */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /*                                                                    */ | 
 | /* However, if 1999999997<=B<=999999999 and B is an integer then the  */ | 
 | /* restrictions on A and the context are relaxed to the usual bounds, */ | 
 | /* for compatibility with the earlier (integer power only) version    */ | 
 | /* of this function.                                                  */ | 
 | /*                                                                    */ | 
 | /* When B is an integer, the result may be exact, even if rounded.    */ | 
 | /*                                                                    */ | 
 | /* The final result is rounded according to the context; it will      */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberPower(decNumber *res, const decNumber *lhs, | 
 |                            const decNumber *rhs, decContext *set) { | 
 |   #if DECSUBSET | 
 |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */ | 
 |   decNumber *allocrhs=NULL;        /* .., rhs  */ | 
 |   #endif | 
 |   decNumber *allocdac=NULL;        /* -> allocated acc buffer, iff used  */ | 
 |   decNumber *allocinv=NULL;        /* -> allocated 1/x buffer, iff used  */ | 
 |   Int   reqdigits=set->digits;     /* requested DIGITS  */ | 
 |   Int   n;                         /* rhs in binary  */ | 
 |   Flag  rhsint=0;                  /* 1 if rhs is an integer  */ | 
 |   Flag  useint=0;                  /* 1 if can use integer calculation  */ | 
 |   Flag  isoddint=0;                /* 1 if rhs is an integer and odd  */ | 
 |   Int   i;                         /* work  */ | 
 |   #if DECSUBSET | 
 |   Int   dropped;                   /* ..  */ | 
 |   #endif | 
 |   uInt  needbytes;                 /* buffer size needed  */ | 
 |   Flag  seenbit;                   /* seen a bit while powering  */ | 
 |   Int   residue=0;                 /* rounding residue  */ | 
 |   uInt  status=0;                  /* accumulators  */ | 
 |   uByte bits=0;                    /* result sign if errors  */ | 
 |   decContext aset;                 /* working context  */ | 
 |   decNumber dnOne;                 /* work value 1...  */ | 
 |   /* local accumulator buffer [a decNumber, with digits+elength+1 digits]  */ | 
 |   decNumber dacbuff[D2N(DECBUFFER+9)]; | 
 |   decNumber *dac=dacbuff;          /* -> result accumulator  */ | 
 |   /* same again for possible 1/lhs calculation  */ | 
 |   decNumber invbuff[D2N(DECBUFFER+9)]; | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { /* reduce operands and set status, as needed  */ | 
 |       if (lhs->digits>reqdigits) { | 
 |         alloclhs=decRoundOperand(lhs, set, &status); | 
 |         if (alloclhs==NULL) break; | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>reqdigits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* handle NaNs and rhs Infinity (lhs infinity is harder)  */ | 
 |     if (SPECIALARGS) { | 
 |       if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs  */ | 
 |         decNaNs(res, lhs, rhs, set, &status); | 
 |         break;} | 
 |       if (decNumberIsInfinite(rhs)) {   /* rhs Infinity  */ | 
 |         Flag rhsneg=rhs->bits&DECNEG;   /* save rhs sign  */ | 
 |         if (decNumberIsNegative(lhs)    /* lhs<0  */ | 
 |          && !decNumberIsZero(lhs))      /* ..  */ | 
 |           status|=DEC_Invalid_operation; | 
 |          else {                         /* lhs >=0  */ | 
 |           uprv_decNumberZero(&dnOne);        /* set up 1  */ | 
 |           dnOne.lsu[0]=1; | 
 |           uprv_decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1  */ | 
 |           uprv_decNumberZero(res);           /* prepare for 0/1/Infinity  */ | 
 |           if (decNumberIsNegative(dac)) {    /* lhs<1  */ | 
 |             if (rhsneg) res->bits|=DECINF;   /* +Infinity [else is +0]  */ | 
 |             } | 
 |            else if (dac->lsu[0]==0) {        /* lhs=1  */ | 
 |             /* 1**Infinity is inexact, so return fully-padded 1.0000  */ | 
 |             Int shift=set->digits-1; | 
 |             *res->lsu=1;                     /* was 0, make int 1  */ | 
 |             res->digits=decShiftToMost(res->lsu, 1, shift); | 
 |             res->exponent=-shift;            /* make 1.0000...  */ | 
 |             status|=DEC_Inexact|DEC_Rounded; /* deemed inexact  */ | 
 |             } | 
 |            else {                            /* lhs>1  */ | 
 |             if (!rhsneg) res->bits|=DECINF;  /* +Infinity [else is +0]  */ | 
 |             } | 
 |           } /* lhs>=0  */ | 
 |         break;} | 
 |       /* [lhs infinity drops through]  */ | 
 |       } /* specials  */ | 
 |  | 
 |     /* Original rhs may be an integer that fits and is in range  */ | 
 |     n=decGetInt(rhs); | 
 |     if (n!=BADINT) {                    /* it is an integer  */ | 
 |       rhsint=1;                         /* record the fact for 1**n  */ | 
 |       isoddint=(Flag)n&1;               /* [works even if big]  */ | 
 |       if (n!=BIGEVEN && n!=BIGODD)      /* can use integer path?  */ | 
 |         useint=1;                       /* looks good  */ | 
 |       } | 
 |  | 
 |     if (decNumberIsNegative(lhs)        /* -x ..  */ | 
 |       && isoddint) bits=DECNEG;         /* .. to an odd power  */ | 
 |  | 
 |     /* handle LHS infinity  */ | 
 |     if (decNumberIsInfinite(lhs)) {     /* [NaNs already handled]  */ | 
 |       uByte rbits=rhs->bits;            /* save  */ | 
 |       uprv_decNumberZero(res);               /* prepare  */ | 
 |       if (n==0) *res->lsu=1;            /* [-]Inf**0 => 1  */ | 
 |        else { | 
 |         /* -Inf**nonint -> error  */ | 
 |         if (!rhsint && decNumberIsNegative(lhs)) { | 
 |           status|=DEC_Invalid_operation;     /* -Inf**nonint is error  */ | 
 |           break;} | 
 |         if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n  */ | 
 |         /* [otherwise will be 0 or -0]  */ | 
 |         res->bits=bits; | 
 |         } | 
 |       break;} | 
 |  | 
 |     /* similarly handle LHS zero  */ | 
 |     if (decNumberIsZero(lhs)) { | 
 |       if (n==0) {                            /* 0**0 => Error  */ | 
 |         #if DECSUBSET | 
 |         if (!set->extended) {                /* [unless subset]  */ | 
 |           uprv_decNumberZero(res); | 
 |           *res->lsu=1;                       /* return 1  */ | 
 |           break;} | 
 |         #endif | 
 |         status|=DEC_Invalid_operation; | 
 |         } | 
 |        else {                                /* 0**x  */ | 
 |         uByte rbits=rhs->bits;               /* save  */ | 
 |         if (rbits & DECNEG) {                /* was a 0**(-n)  */ | 
 |           #if DECSUBSET | 
 |           if (!set->extended) {              /* [bad if subset]  */ | 
 |             status|=DEC_Invalid_operation; | 
 |             break;} | 
 |           #endif | 
 |           bits|=DECINF; | 
 |           } | 
 |         uprv_decNumberZero(res);                  /* prepare  */ | 
 |         /* [otherwise will be 0 or -0]  */ | 
 |         res->bits=bits; | 
 |         } | 
 |       break;} | 
 |  | 
 |     /* here both lhs and rhs are finite; rhs==0 is handled in the  */ | 
 |     /* integer path.  Next handle the non-integer cases  */ | 
 |     if (!useint) {                      /* non-integral rhs  */ | 
 |       /* any -ve lhs is bad, as is either operand or context out of  */ | 
 |       /* bounds  */ | 
 |       if (decNumberIsNegative(lhs)) { | 
 |         status|=DEC_Invalid_operation; | 
 |         break;} | 
 |       if (decCheckMath(lhs, set, &status) | 
 |        || decCheckMath(rhs, set, &status)) break; /* variable status  */ | 
 |  | 
 |       uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */ | 
 |       aset.emax=DEC_MAX_MATH;           /* usual bounds  */ | 
 |       aset.emin=-DEC_MAX_MATH;          /* ..  */ | 
 |       aset.clamp=0;                     /* and no concrete format  */ | 
 |  | 
 |       /* calculate the result using exp(ln(lhs)*rhs), which can  */ | 
 |       /* all be done into the accumulator, dac.  The precision needed  */ | 
 |       /* is enough to contain the full information in the lhs (which  */ | 
 |       /* is the total digits, including exponent), or the requested  */ | 
 |       /* precision, if larger, + 4; 6 is used for the exponent  */ | 
 |       /* maximum length, and this is also used when it is shorter  */ | 
 |       /* than the requested digits as it greatly reduces the >0.5 ulp  */ | 
 |       /* cases at little cost (because Ln doubles digits each  */ | 
 |       /* iteration so a few extra digits rarely causes an extra  */ | 
 |       /* iteration)  */ | 
 |       aset.digits=MAXI(lhs->digits, set->digits)+6+4; | 
 |       } /* non-integer rhs  */ | 
 |  | 
 |      else { /* rhs is in-range integer  */ | 
 |       if (n==0) {                       /* x**0 = 1  */ | 
 |         /* (0**0 was handled above)  */ | 
 |         uprv_decNumberZero(res);             /* result=1  */ | 
 |         *res->lsu=1;                    /* ..  */ | 
 |         break;} | 
 |       /* rhs is a non-zero integer  */ | 
 |       if (n<0) n=-n;                    /* use abs(n)  */ | 
 |  | 
 |       aset=*set;                        /* clone the context  */ | 
 |       aset.round=DEC_ROUND_HALF_EVEN;   /* internally use balanced  */ | 
 |       /* calculate the working DIGITS  */ | 
 |       aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; | 
 |       #if DECSUBSET | 
 |       if (!set->extended) aset.digits--;     /* use classic precision  */ | 
 |       #endif | 
 |       /* it's an error if this is more than can be handled  */ | 
 |       if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} | 
 |       } /* integer path  */ | 
 |  | 
 |     /* aset.digits is the count of digits for the accumulator needed  */ | 
 |     /* if accumulator is too long for local storage, then allocate  */ | 
 |     needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); | 
 |     /* [needbytes also used below if 1/lhs needed]  */ | 
 |     if (needbytes>sizeof(dacbuff)) { | 
 |       allocdac=(decNumber *)malloc(needbytes); | 
 |       if (allocdac==NULL) {   /* hopeless -- abandon  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       dac=allocdac;           /* use the allocated space  */ | 
 |       } | 
 |     /* here, aset is set up and accumulator is ready for use  */ | 
 |  | 
 |     if (!useint) {                           /* non-integral rhs  */ | 
 |       /* x ** y; special-case x=1 here as it will otherwise always  */ | 
 |       /* reduce to integer 1; decLnOp has a fastpath which detects  */ | 
 |       /* the case of x=1  */ | 
 |       decLnOp(dac, lhs, &aset, &status);     /* dac=ln(lhs)  */ | 
 |       /* [no error possible, as lhs 0 already handled]  */ | 
 |       if (ISZERO(dac)) {                     /* x==1, 1.0, etc.  */ | 
 |         /* need to return fully-padded 1.0000 etc., but rhsint->1  */ | 
 |         *dac->lsu=1;                         /* was 0, make int 1  */ | 
 |         if (!rhsint) {                       /* add padding  */ | 
 |           Int shift=set->digits-1; | 
 |           dac->digits=decShiftToMost(dac->lsu, 1, shift); | 
 |           dac->exponent=-shift;              /* make 1.0000...  */ | 
 |           status|=DEC_Inexact|DEC_Rounded;   /* deemed inexact  */ | 
 |           } | 
 |         } | 
 |        else { | 
 |         decMultiplyOp(dac, dac, rhs, &aset, &status);  /* dac=dac*rhs  */ | 
 |         decExpOp(dac, dac, &aset, &status);            /* dac=exp(dac)  */ | 
 |         } | 
 |       /* and drop through for final rounding  */ | 
 |       } /* non-integer rhs  */ | 
 |  | 
 |      else {                             /* carry on with integer  */ | 
 |       uprv_decNumberZero(dac);               /* acc=1  */ | 
 |       *dac->lsu=1;                      /* ..  */ | 
 |  | 
 |       /* if a negative power the constant 1 is needed, and if not subset  */ | 
 |       /* invert the lhs now rather than inverting the result later  */ | 
 |       if (decNumberIsNegative(rhs)) {   /* was a **-n [hence digits>0]  */ | 
 |         decNumber *inv=invbuff;         /* asssume use fixed buffer  */ | 
 |         uprv_decNumberCopy(&dnOne, dac);     /* dnOne=1;  [needed now or later]  */ | 
 |         #if DECSUBSET | 
 |         if (set->extended) {            /* need to calculate 1/lhs  */ | 
 |         #endif | 
 |           /* divide lhs into 1, putting result in dac [dac=1/dac]  */ | 
 |           decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); | 
 |           /* now locate or allocate space for the inverted lhs  */ | 
 |           if (needbytes>sizeof(invbuff)) { | 
 |             allocinv=(decNumber *)malloc(needbytes); | 
 |             if (allocinv==NULL) {       /* hopeless -- abandon  */ | 
 |               status|=DEC_Insufficient_storage; | 
 |               break;} | 
 |             inv=allocinv;               /* use the allocated space  */ | 
 |             } | 
 |           /* [inv now points to big-enough buffer or allocated storage]  */ | 
 |           uprv_decNumberCopy(inv, dac);      /* copy the 1/lhs  */ | 
 |           uprv_decNumberCopy(dac, &dnOne);   /* restore acc=1  */ | 
 |           lhs=inv;                      /* .. and go forward with new lhs  */ | 
 |         #if DECSUBSET | 
 |           } | 
 |         #endif | 
 |         } | 
 |  | 
 |       /* Raise-to-the-power loop...  */ | 
 |       seenbit=0;                   /* set once a 1-bit is encountered  */ | 
 |       for (i=1;;i++){              /* for each bit [top bit ignored]  */ | 
 |         /* abandon if had overflow or terminal underflow  */ | 
 |         if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */ | 
 |           if (status&DEC_Overflow || ISZERO(dac)) break; | 
 |           } | 
 |         /* [the following two lines revealed an optimizer bug in a C++  */ | 
 |         /* compiler, with symptom: 5**3 -> 25, when n=n+n was used]  */ | 
 |         n=n<<1;                    /* move next bit to testable position  */ | 
 |         if (n<0) {                 /* top bit is set  */ | 
 |           seenbit=1;               /* OK, significant bit seen  */ | 
 |           decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x  */ | 
 |           } | 
 |         if (i==31) break;          /* that was the last bit  */ | 
 |         if (!seenbit) continue;    /* no need to square 1  */ | 
 |         decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square]  */ | 
 |         } /*i*/ /* 32 bits  */ | 
 |  | 
 |       /* complete internal overflow or underflow processing  */ | 
 |       if (status & (DEC_Overflow|DEC_Underflow)) { | 
 |         #if DECSUBSET | 
 |         /* If subset, and power was negative, reverse the kind of -erflow  */ | 
 |         /* [1/x not yet done]  */ | 
 |         if (!set->extended && decNumberIsNegative(rhs)) { | 
 |           if (status & DEC_Overflow) | 
 |             status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; | 
 |            else { /* trickier -- Underflow may or may not be set  */ | 
 |             status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both]  */ | 
 |             status|=DEC_Overflow; | 
 |             } | 
 |           } | 
 |         #endif | 
 |         dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign  */ | 
 |         /* round subnormals [to set.digits rather than aset.digits]  */ | 
 |         /* or set overflow result similarly as required  */ | 
 |         decFinalize(dac, set, &residue, &status); | 
 |         uprv_decNumberCopy(res, dac);   /* copy to result (is now OK length)  */ | 
 |         break; | 
 |         } | 
 |  | 
 |       #if DECSUBSET | 
 |       if (!set->extended &&                  /* subset math  */ | 
 |           decNumberIsNegative(rhs)) {        /* was a **-n [hence digits>0]  */ | 
 |         /* so divide result into 1 [dac=1/dac]  */ | 
 |         decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); | 
 |         } | 
 |       #endif | 
 |       } /* rhs integer path  */ | 
 |  | 
 |     /* reduce result to the requested length and copy to result  */ | 
 |     decCopyFit(res, dac, set, &residue, &status); | 
 |     decFinish(res, set, &residue, &status);  /* final cleanup  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros  */ | 
 |     #endif | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocdac!=NULL) free(allocdac);   /* drop any storage used  */ | 
 |   if (allocinv!=NULL) free(allocinv);   /* ..  */ | 
 |   #if DECSUBSET | 
 |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */ | 
 |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */ | 
 |   #endif | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberPower  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberQuantize -- force exponent to requested value             */ | 
 | /*                                                                    */ | 
 | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
 | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
 | /*   of C has exponent of B.  The numerical value of C will equal A,  */ | 
 | /*   except for the effects of any rounding that occurred.            */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A or B                           */ | 
 | /*   lhs is A, the number to adjust                                   */ | 
 | /*   rhs is B, the number with exponent to match                      */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Unless there is an error or the result is infinite, the exponent   */ | 
 | /* after the operation is guaranteed to be equal to that of B.        */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberQuantize(decNumber *res, const decNumber *lhs, | 
 |                               const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decQuantizeOp(res, lhs, rhs, set, 1, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberQuantize  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberReduce -- remove trailing zeros                           */ | 
 | /*                                                                    */ | 
 | /*   This computes C = 0 + A, and normalizes the result               */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Previously known as Normalize  */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNormalize(decNumber *res, const decNumber *rhs, | 
 |                                decContext *set) { | 
 |   return uprv_decNumberReduce(res, rhs, set); | 
 |   } /* decNumberNormalize  */ | 
 |  | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberReduce(decNumber *res, const decNumber *rhs, | 
 |                             decContext *set) { | 
 |   #if DECSUBSET | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */ | 
 |   #endif | 
 |   uInt status=0;                   /* as usual  */ | 
 |   Int  residue=0;                  /* as usual  */ | 
 |   Int  dropped;                    /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operand and set lostDigits status, as needed  */ | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* Infinities copy through; NaNs need usual treatment  */ | 
 |     if (decNumberIsNaN(rhs)) { | 
 |       decNaNs(res, rhs, NULL, set, &status); | 
 |       break; | 
 |       } | 
 |  | 
 |     /* reduce result to the requested length and copy to result  */ | 
 |     decCopyFit(res, rhs, set, &residue, &status); /* copy & round  */ | 
 |     decFinish(res, set, &residue, &status);       /* cleanup/set flags  */ | 
 |     decTrim(res, set, 1, 0, &dropped);            /* normalize in place  */ | 
 |                                                   /* [may clamp]  */ | 
 |     } while(0);                              /* end protected  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   if (allocrhs !=NULL) free(allocrhs);       /* ..  */ | 
 |   #endif | 
 |   if (status!=0) decStatus(res, status, set);/* then report status  */ | 
 |   return res; | 
 |   } /* decNumberReduce  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberRescale -- force exponent to requested value              */ | 
 | /*                                                                    */ | 
 | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
 | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
 | /*   of C has the value B.  The numerical value of C will equal A,    */ | 
 | /*   except for the effects of any rounding that occurred.            */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A or B                           */ | 
 | /*   lhs is A, the number to adjust                                   */ | 
 | /*   rhs is B, the requested exponent                                 */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Unless there is an error or the result is infinite, the exponent   */ | 
 | /* after the operation is guaranteed to be equal to B.                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRescale(decNumber *res, const decNumber *lhs, | 
 |                              const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decQuantizeOp(res, lhs, rhs, set, 0, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberRescale  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberRemainder -- divide and return remainder                  */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A % B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainder(decNumber *res, const decNumber *lhs, | 
 |                                const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decDivideOp(res, lhs, rhs, set, REMAINDER, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberRemainder  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberRemainderNear -- divide and return remainder from nearest */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A % B, where % is the IEEE remainder operator  */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainderNear(decNumber *res, const decNumber *lhs, | 
 |                                    const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |   decDivideOp(res, lhs, rhs, set, REMNEAR, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberRemainderNear  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberRotate -- rotate the coefficient of a Number left/right   */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A rot B  (in base ten and rotating set->digits */ | 
 | /*   digits).                                                         */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=XrotX)       */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B, the number of digits to rotate (-ve to right)          */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* The digits of the coefficient of A are rotated to the left (if B   */ | 
 | /* is positive) or to the right (if B is negative) without adjusting  */ | 
 | /* the exponent or the sign of A.  If lhs->digits is less than        */ | 
 | /* set->digits the coefficient is padded with zeros on the left       */ | 
 | /* before the rotate.  Any leading zeros in the result are removed    */ | 
 | /* as usual.                                                          */ | 
 | /*                                                                    */ | 
 | /* B must be an integer (q=0) and in the range -set->digits through   */ | 
 | /* +set->digits.                                                      */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* NaNs are propagated as usual.  Infinities are unaffected (but      */ | 
 | /* B must be valid).  No status is set unless B is invalid or an      */ | 
 | /* operand is an sNaN.                                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRotate(decNumber *res, const decNumber *lhs, | 
 |                            const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;              /* accumulator  */ | 
 |   Int  rotate;                /* rhs as an Int  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* NaNs propagate as normal  */ | 
 |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
 |     decNaNs(res, lhs, rhs, set, &status); | 
 |    /* rhs must be an integer  */ | 
 |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
 |     status=DEC_Invalid_operation; | 
 |    else { /* both numeric, rhs is an integer  */ | 
 |     rotate=decGetInt(rhs);                   /* [cannot fail]  */ | 
 |     if (rotate==BADINT                       /* something bad ..  */ | 
 |      || rotate==BIGODD || rotate==BIGEVEN    /* .. very big ..  */ | 
 |      || abs(rotate)>set->digits)             /* .. or out of range  */ | 
 |       status=DEC_Invalid_operation; | 
 |      else {                                  /* rhs is OK  */ | 
 |       uprv_decNumberCopy(res, lhs); | 
 |       /* convert -ve rotate to equivalent positive rotation  */ | 
 |       if (rotate<0) rotate=set->digits+rotate; | 
 |       if (rotate!=0 && rotate!=set->digits   /* zero or full rotation  */ | 
 |        && !decNumberIsInfinite(res)) {       /* lhs was infinite  */ | 
 |         /* left-rotate to do; 0 < rotate < set->digits  */ | 
 |         uInt units, shift;                   /* work  */ | 
 |         uInt msudigits;                      /* digits in result msu  */ | 
 |         Unit *msu=res->lsu+D2U(res->digits)-1;    /* current msu  */ | 
 |         Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu  */ | 
 |         for (msu++; msu<=msumax; msu++) *msu=0;   /* ensure high units=0  */ | 
 |         res->digits=set->digits;                  /* now full-length  */ | 
 |         msudigits=MSUDIGITS(res->digits);         /* actual digits in msu  */ | 
 |  | 
 |         /* rotation here is done in-place, in three steps  */ | 
 |         /* 1. shift all to least up to one unit to unit-align final  */ | 
 |         /*    lsd [any digits shifted out are rotated to the left,  */ | 
 |         /*    abutted to the original msd (which may require split)]  */ | 
 |         /*  */ | 
 |         /*    [if there are no whole units left to rotate, the  */ | 
 |         /*    rotation is now complete]  */ | 
 |         /*  */ | 
 |         /* 2. shift to least, from below the split point only, so that  */ | 
 |         /*    the final msd is in the right place in its Unit [any  */ | 
 |         /*    digits shifted out will fit exactly in the current msu,  */ | 
 |         /*    left aligned, no split required]  */ | 
 |         /*  */ | 
 |         /* 3. rotate all the units by reversing left part, right  */ | 
 |         /*    part, and then whole  */ | 
 |         /*  */ | 
 |         /* example: rotate right 8 digits (2 units + 2), DECDPUN=3.  */ | 
 |         /*  */ | 
 |         /*   start: 00a bcd efg hij klm npq  */ | 
 |         /*  */ | 
 |         /*      1a  000 0ab cde fgh|ijk lmn [pq saved]  */ | 
 |         /*      1b  00p qab cde fgh|ijk lmn  */ | 
 |         /*  */ | 
 |         /*      2a  00p qab cde fgh|00i jkl [mn saved]  */ | 
 |         /*      2b  mnp qab cde fgh|00i jkl  */ | 
 |         /*  */ | 
 |         /*      3a  fgh cde qab mnp|00i jkl  */ | 
 |         /*      3b  fgh cde qab mnp|jkl 00i  */ | 
 |         /*      3c  00i jkl mnp qab cde fgh  */ | 
 |  | 
 |         /* Step 1: amount to shift is the partial right-rotate count  */ | 
 |         rotate=set->digits-rotate;      /* make it right-rotate  */ | 
 |         units=rotate/DECDPUN;           /* whole units to rotate  */ | 
 |         shift=rotate%DECDPUN;           /* left-over digits count  */ | 
 |         if (shift>0) {                  /* not an exact number of units  */ | 
 |           uInt save=res->lsu[0]%powers[shift];    /* save low digit(s)  */ | 
 |           decShiftToLeast(res->lsu, D2U(res->digits), shift); | 
 |           if (shift>msudigits) {        /* msumax-1 needs >0 digits  */ | 
 |             uInt rem=save%powers[shift-msudigits];/* split save  */ | 
 |             *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert  */ | 
 |             *(msumax-1)=*(msumax-1) | 
 |                        +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* ..  */ | 
 |             } | 
 |            else { /* all fits in msumax  */ | 
 |             *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1]  */ | 
 |             } | 
 |           } /* digits shift needed  */ | 
 |  | 
 |         /* If whole units to rotate...  */ | 
 |         if (units>0) {                  /* some to do  */ | 
 |           /* Step 2: the units to touch are the whole ones in rotate,  */ | 
 |           /*   if any, and the shift is DECDPUN-msudigits (which may be  */ | 
 |           /*   0, again)  */ | 
 |           shift=DECDPUN-msudigits; | 
 |           if (shift>0) {                /* not an exact number of units  */ | 
 |             uInt save=res->lsu[0]%powers[shift];  /* save low digit(s)  */ | 
 |             decShiftToLeast(res->lsu, units, shift); | 
 |             *msumax=*msumax+(Unit)(save*powers[msudigits]); | 
 |             } /* partial shift needed  */ | 
 |  | 
 |           /* Step 3: rotate the units array using triple reverse  */ | 
 |           /* (reversing is easy and fast)  */ | 
 |           decReverse(res->lsu+units, msumax);     /* left part  */ | 
 |           decReverse(res->lsu, res->lsu+units-1); /* right part  */ | 
 |           decReverse(res->lsu, msumax);           /* whole  */ | 
 |           } /* whole units to rotate  */ | 
 |         /* the rotation may have left an undetermined number of zeros  */ | 
 |         /* on the left, so true length needs to be calculated  */ | 
 |         res->digits=decGetDigits(res->lsu, static_cast<int32_t>(msumax-res->lsu+1)); | 
 |         } /* rotate needed  */ | 
 |       } /* rhs OK  */ | 
 |     } /* numerics  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberRotate  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberSameQuantum -- test for equal exponents                   */ | 
 | /*                                                                    */ | 
 | /*   res is the result number, which will contain either 0 or 1       */ | 
 | /*   lhs is a number to test                                          */ | 
 | /*   rhs is the second (usually a pattern)                            */ | 
 | /*                                                                    */ | 
 | /* No errors are possible and no context is needed.                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSameQuantum(decNumber *res, const decNumber *lhs, | 
 |                                  const decNumber *rhs) { | 
 |   Unit ret=0;                      /* return value  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; | 
 |   #endif | 
 |  | 
 |   if (SPECIALARGS) { | 
 |     if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; | 
 |      else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; | 
 |      /* [anything else with a special gives 0]  */ | 
 |     } | 
 |    else if (lhs->exponent==rhs->exponent) ret=1; | 
 |  | 
 |   uprv_decNumberZero(res);              /* OK to overwrite an operand now  */ | 
 |   *res->lsu=ret; | 
 |   return res; | 
 |   } /* decNumberSameQuantum  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberScaleB -- multiply by a power of 10                       */ | 
 | /*                                                                    */ | 
 | /* This computes C = A x 10**B where B is an integer (q=0) with       */ | 
 | /* maximum magnitude 2*(emax+digits)                                  */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A or B                           */ | 
 | /*   lhs is A, the number to adjust                                   */ | 
 | /*   rhs is B, the requested power of ten to use                      */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* The result may underflow or overflow.                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberScaleB(decNumber *res, const decNumber *lhs, | 
 |                             const decNumber *rhs, decContext *set) { | 
 |   Int  reqexp;                /* requested exponent change [B]  */ | 
 |   uInt status=0;              /* accumulator  */ | 
 |   Int  residue;               /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* Handle special values except lhs infinite  */ | 
 |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
 |     decNaNs(res, lhs, rhs, set, &status); | 
 |     /* rhs must be an integer  */ | 
 |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
 |     status=DEC_Invalid_operation; | 
 |    else { | 
 |     /* lhs is a number; rhs is a finite with q==0  */ | 
 |     reqexp=decGetInt(rhs);                   /* [cannot fail]  */ | 
 |     if (reqexp==BADINT                       /* something bad ..  */ | 
 |      || reqexp==BIGODD || reqexp==BIGEVEN    /* .. very big ..  */ | 
 |      || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range  */ | 
 |       status=DEC_Invalid_operation; | 
 |      else {                                  /* rhs is OK  */ | 
 |       uprv_decNumberCopy(res, lhs);               /* all done if infinite lhs  */ | 
 |       if (!decNumberIsInfinite(res)) {       /* prepare to scale  */ | 
 |         res->exponent+=reqexp;               /* adjust the exponent  */ | 
 |         residue=0; | 
 |         decFinalize(res, set, &residue, &status); /* .. and check  */ | 
 |         } /* finite LHS  */ | 
 |       } /* rhs OK  */ | 
 |     } /* rhs finite  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberScaleB  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberShift -- shift the coefficient of a Number left or right  */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A << B or C = A >> -B  (in base ten).          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X<<X)        */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B, the number of digits to shift (-ve to right)           */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* The digits of the coefficient of A are shifted to the left (if B   */ | 
 | /* is positive) or to the right (if B is negative) without adjusting  */ | 
 | /* the exponent or the sign of A.                                     */ | 
 | /*                                                                    */ | 
 | /* B must be an integer (q=0) and in the range -set->digits through   */ | 
 | /* +set->digits.                                                      */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* NaNs are propagated as usual.  Infinities are unaffected (but      */ | 
 | /* B must be valid).  No status is set unless B is invalid or an      */ | 
 | /* operand is an sNaN.                                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberShift(decNumber *res, const decNumber *lhs, | 
 |                            const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;              /* accumulator  */ | 
 |   Int  shift;                 /* rhs as an Int  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* NaNs propagate as normal  */ | 
 |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
 |     decNaNs(res, lhs, rhs, set, &status); | 
 |    /* rhs must be an integer  */ | 
 |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
 |     status=DEC_Invalid_operation; | 
 |    else { /* both numeric, rhs is an integer  */ | 
 |     shift=decGetInt(rhs);                    /* [cannot fail]  */ | 
 |     if (shift==BADINT                        /* something bad ..  */ | 
 |      || shift==BIGODD || shift==BIGEVEN      /* .. very big ..  */ | 
 |      || abs(shift)>set->digits)              /* .. or out of range  */ | 
 |       status=DEC_Invalid_operation; | 
 |      else {                                  /* rhs is OK  */ | 
 |       uprv_decNumberCopy(res, lhs); | 
 |       if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do  */ | 
 |         if (shift>0) {                       /* to left  */ | 
 |           if (shift==set->digits) {          /* removing all  */ | 
 |             *res->lsu=0;                     /* so place 0  */ | 
 |             res->digits=1;                   /* ..  */ | 
 |             } | 
 |            else {                            /*  */ | 
 |             /* first remove leading digits if necessary  */ | 
 |             if (res->digits+shift>set->digits) { | 
 |               decDecap(res, res->digits+shift-set->digits); | 
 |               /* that updated res->digits; may have gone to 1 (for a  */ | 
 |               /* single digit or for zero  */ | 
 |               } | 
 |             if (res->digits>1 || *res->lsu)  /* if non-zero..  */ | 
 |               res->digits=decShiftToMost(res->lsu, res->digits, shift); | 
 |             } /* partial left  */ | 
 |           } /* left  */ | 
 |          else { /* to right  */ | 
 |           if (-shift>=res->digits) {         /* discarding all  */ | 
 |             *res->lsu=0;                     /* so place 0  */ | 
 |             res->digits=1;                   /* ..  */ | 
 |             } | 
 |            else { | 
 |             decShiftToLeast(res->lsu, D2U(res->digits), -shift); | 
 |             res->digits-=(-shift); | 
 |             } | 
 |           } /* to right  */ | 
 |         } /* non-0 non-Inf shift  */ | 
 |       } /* rhs OK  */ | 
 |     } /* numerics  */ | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberShift  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberSquareRoot -- square root operator                        */ | 
 | /*                                                                    */ | 
 | /*   This computes C = squareroot(A)                                  */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This uses the following varying-precision algorithm in:            */ | 
 | /*                                                                    */ | 
 | /*   Properly Rounded Variable Precision Square Root, T. E. Hull and  */ | 
 | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ | 
 | /*   pp229-237, ACM, September 1985.                                  */ | 
 | /*                                                                    */ | 
 | /* The square-root is calculated using Newton's method, after which   */ | 
 | /* a check is made to ensure the result is correctly rounded.         */ | 
 | /*                                                                    */ | 
 | /* % [Reformatted original Numerical Turing source code follows.]     */ | 
 | /* function sqrt(x : real) : real                                     */ | 
 | /* % sqrt(x) returns the properly rounded approximation to the square */ | 
 | /* % root of x, in the precision of the calling environment, or it    */ | 
 | /* % fails if x < 0.                                                  */ | 
 | /* % t e hull and a abrham, august, 1984                              */ | 
 | /* if x <= 0 then                                                     */ | 
 | /*   if x < 0 then                                                    */ | 
 | /*     assert false                                                   */ | 
 | /*   else                                                             */ | 
 | /*     result 0                                                       */ | 
 | /*   end if                                                           */ | 
 | /* end if                                                             */ | 
 | /* var f := setexp(x, 0)  % fraction part of x   [0.1 <= x < 1]       */ | 
 | /* var e := getexp(x)     % exponent part of x                        */ | 
 | /* var approx : real                                                  */ | 
 | /* if e mod 2 = 0  then                                               */ | 
 | /*   approx := .259 + .819 * f   % approx to root of f                */ | 
 | /* else                                                               */ | 
 | /*   f := f/l0                   % adjustments                        */ | 
 | /*   e := e + 1                  %   for odd                          */ | 
 | /*   approx := .0819 + 2.59 * f  %   exponent                         */ | 
 | /* end if                                                             */ | 
 | /*                                                                    */ | 
 | /* var p:= 3                                                          */ | 
 | /* const maxp := currentprecision + 2                                 */ | 
 | /* loop                                                               */ | 
 | /*   p := min(2*p - 2, maxp)     % p = 4,6,10, . . . , maxp           */ | 
 | /*   precision p                                                      */ | 
 | /*   approx := .5 * (approx + f/approx)                               */ | 
 | /*   exit when p = maxp                                               */ | 
 | /* end loop                                                           */ | 
 | /*                                                                    */ | 
 | /* % approx is now within 1 ulp of the properly rounded square root   */ | 
 | /* % of f; to ensure proper rounding, compare squares of (approx -    */ | 
 | /* % l/2 ulp) and (approx + l/2 ulp) with f.                          */ | 
 | /* p := currentprecision                                              */ | 
 | /* begin                                                              */ | 
 | /*   precision p + 2                                                  */ | 
 | /*   const approxsubhalf := approx - setexp(.5, -p)                   */ | 
 | /*   if mulru(approxsubhalf, approxsubhalf) > f then                  */ | 
 | /*     approx := approx - setexp(.l, -p + 1)                          */ | 
 | /*   else                                                             */ | 
 | /*     const approxaddhalf := approx + setexp(.5, -p)                 */ | 
 | /*     if mulrd(approxaddhalf, approxaddhalf) < f then                */ | 
 | /*       approx := approx + setexp(.l, -p + 1)                        */ | 
 | /*     end if                                                         */ | 
 | /*   end if                                                           */ | 
 | /* end                                                                */ | 
 | /* result setexp(approx, e div 2)  % fix exponent                     */ | 
 | /* end sqrt                                                           */ | 
 | /* ------------------------------------------------------------------ */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic push | 
 | #pragma GCC diagnostic ignored "-Warray-bounds" | 
 | #endif | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSquareRoot(decNumber *res, const decNumber *rhs, | 
 |                                 decContext *set) { | 
 |   decContext workset, approxset;   /* work contexts  */ | 
 |   decNumber dzero;                 /* used for constant zero  */ | 
 |   Int  maxp;                       /* largest working precision  */ | 
 |   Int  workp;                      /* working precision  */ | 
 |   Int  residue=0;                  /* rounding residue  */ | 
 |   uInt status=0, ignore=0;         /* status accumulators  */ | 
 |   uInt rstatus;                    /* ..  */ | 
 |   Int  exp;                        /* working exponent  */ | 
 |   Int  ideal;                      /* ideal (preferred) exponent  */ | 
 |   Int  needbytes;                  /* work  */ | 
 |   Int  dropped;                    /* ..  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */ | 
 |   #endif | 
 |   /* buffer for f [needs +1 in case DECBUFFER 0]  */ | 
 |   decNumber buff[D2N(DECBUFFER+1)]; | 
 |   /* buffer for a [needs +2 to match likely maxp]  */ | 
 |   decNumber bufa[D2N(DECBUFFER+2)]; | 
 |   /* buffer for temporary, b [must be same size as a]  */ | 
 |   decNumber bufb[D2N(DECBUFFER+2)]; | 
 |   decNumber *allocbuff=NULL;       /* -> allocated buff, iff allocated  */ | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */ | 
 |   decNumber *f=buff;               /* reduced fraction  */ | 
 |   decNumber *a=bufa;               /* approximation to result  */ | 
 |   decNumber *b=bufb;               /* intermediate result  */ | 
 |   /* buffer for temporary variable, up to 3 digits  */ | 
 |   decNumber buft[D2N(3)]; | 
 |   decNumber *t=buft;               /* up-to-3-digit constant or work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operand and set lostDigits status, as needed  */ | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, &status); | 
 |         if (allocrhs==NULL) break; | 
 |         /* [Note: 'f' allocation below could reuse this buffer if  */ | 
 |         /* used, but as this is rare they are kept separate for clarity.]  */ | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* handle infinities and NaNs  */ | 
 |     if (SPECIALARG) { | 
 |       if (decNumberIsInfinite(rhs)) {         /* an infinity  */ | 
 |         if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; | 
 |          else uprv_decNumberCopy(res, rhs);        /* +Infinity  */ | 
 |         } | 
 |        else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */ | 
 |       break; | 
 |       } | 
 |  | 
 |     /* calculate the ideal (preferred) exponent [floor(exp/2)]  */ | 
 |     /* [It would be nicer to write: ideal=rhs->exponent>>1, but this  */ | 
 |     /* generates a compiler warning.  Generated code is the same.]  */ | 
 |     ideal=(rhs->exponent&~1)/2;         /* target  */ | 
 |  | 
 |     /* handle zeros  */ | 
 |     if (ISZERO(rhs)) { | 
 |       uprv_decNumberCopy(res, rhs);          /* could be 0 or -0  */ | 
 |       res->exponent=ideal;              /* use the ideal [safe]  */ | 
 |       /* use decFinish to clamp any out-of-range exponent, etc.  */ | 
 |       decFinish(res, set, &residue, &status); | 
 |       break; | 
 |       } | 
 |  | 
 |     /* any other -x is an oops  */ | 
 |     if (decNumberIsNegative(rhs)) { | 
 |       status|=DEC_Invalid_operation; | 
 |       break; | 
 |       } | 
 |  | 
 |     /* space is needed for three working variables  */ | 
 |     /*   f -- the same precision as the RHS, reduced to 0.01->0.99...  */ | 
 |     /*   a -- Hull's approximation -- precision, when assigned, is  */ | 
 |     /*        currentprecision+1 or the input argument precision,  */ | 
 |     /*        whichever is larger (+2 for use as temporary)  */ | 
 |     /*   b -- intermediate temporary result (same size as a)  */ | 
 |     /* if any is too long for local storage, then allocate  */ | 
 |     workp=MAXI(set->digits+1, rhs->digits);  /* actual rounding precision  */ | 
 |     workp=MAXI(workp, 7);                    /* at least 7 for low cases  */ | 
 |     maxp=workp+2;                            /* largest working precision  */ | 
 |  | 
 |     needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
 |     if (needbytes>(Int)sizeof(buff)) { | 
 |       allocbuff=(decNumber *)malloc(needbytes); | 
 |       if (allocbuff==NULL) {  /* hopeless -- abandon  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       f=allocbuff;            /* use the allocated space  */ | 
 |       } | 
 |     /* a and b both need to be able to hold a maxp-length number  */ | 
 |     needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); | 
 |     if (needbytes>(Int)sizeof(bufa)) {            /* [same applies to b]  */ | 
 |       allocbufa=(decNumber *)malloc(needbytes); | 
 |       allocbufb=(decNumber *)malloc(needbytes); | 
 |       if (allocbufa==NULL || allocbufb==NULL) {   /* hopeless  */ | 
 |         status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       a=allocbufa;            /* use the allocated spaces  */ | 
 |       b=allocbufb;            /* ..  */ | 
 |       } | 
 |  | 
 |     /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1  */ | 
 |     uprv_decNumberCopy(f, rhs); | 
 |     exp=f->exponent+f->digits;               /* adjusted to Hull rules  */ | 
 |     f->exponent=-(f->digits);                /* to range  */ | 
 |  | 
 |     /* set up working context  */ | 
 |     uprv_decContextDefault(&workset, DEC_INIT_DECIMAL64); | 
 |     workset.emax=DEC_MAX_EMAX; | 
 |     workset.emin=DEC_MIN_EMIN; | 
 |  | 
 |     /* [Until further notice, no error is possible and status bits  */ | 
 |     /* (Rounded, etc.) should be ignored, not accumulated.]  */ | 
 |  | 
 |     /* Calculate initial approximation, and allow for odd exponent  */ | 
 |     workset.digits=workp;                    /* p for initial calculation  */ | 
 |     t->bits=0; t->digits=3; | 
 |     a->bits=0; a->digits=3; | 
 |     if ((exp & 1)==0) {                      /* even exponent  */ | 
 |       /* Set t=0.259, a=0.819  */ | 
 |       t->exponent=-3; | 
 |       a->exponent=-3; | 
 |       #if DECDPUN>=3 | 
 |         t->lsu[0]=259; | 
 |         a->lsu[0]=819; | 
 |       #elif DECDPUN==2 | 
 |         t->lsu[0]=59; t->lsu[1]=2; | 
 |         a->lsu[0]=19; a->lsu[1]=8; | 
 |       #else | 
 |         t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; | 
 |         a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; | 
 |       #endif | 
 |       } | 
 |      else {                                  /* odd exponent  */ | 
 |       /* Set t=0.0819, a=2.59  */ | 
 |       f->exponent--;                         /* f=f/10  */ | 
 |       exp++;                                 /* e=e+1  */ | 
 |       t->exponent=-4; | 
 |       a->exponent=-2; | 
 |       #if DECDPUN>=3 | 
 |         t->lsu[0]=819; | 
 |         a->lsu[0]=259; | 
 |       #elif DECDPUN==2 | 
 |         t->lsu[0]=19; t->lsu[1]=8; | 
 |         a->lsu[0]=59; a->lsu[1]=2; | 
 |       #else | 
 |         t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; | 
 |         a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; | 
 |       #endif | 
 |       } | 
 |  | 
 |     decMultiplyOp(a, a, f, &workset, &ignore);    /* a=a*f  */ | 
 |     decAddOp(a, a, t, &workset, 0, &ignore);      /* ..+t  */ | 
 |     /* [a is now the initial approximation for sqrt(f), calculated with  */ | 
 |     /* currentprecision, which is also a's precision.]  */ | 
 |  | 
 |     /* the main calculation loop  */ | 
 |     uprv_decNumberZero(&dzero);                   /* make 0  */ | 
 |     uprv_decNumberZero(t);                        /* set t = 0.5  */ | 
 |     t->lsu[0]=5;                             /* ..  */ | 
 |     t->exponent=-1;                          /* ..  */ | 
 |     workset.digits=3;                        /* initial p  */ | 
 |     for (; workset.digits<maxp;) { | 
 |       /* set p to min(2*p - 2, maxp)  [hence 3; or: 4, 6, 10, ... , maxp]  */ | 
 |       workset.digits=MINI(workset.digits*2-2, maxp); | 
 |       /* a = 0.5 * (a + f/a)  */ | 
 |       /* [calculated at p then rounded to currentprecision]  */ | 
 |       decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a  */ | 
 |       decAddOp(b, b, a, &workset, 0, &ignore);         /* b=b+a  */ | 
 |       decMultiplyOp(a, b, t, &workset, &ignore);       /* a=b*0.5  */ | 
 |       } /* loop  */ | 
 |  | 
 |     /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits  */ | 
 |     /* now reduce to length, etc.; this needs to be done with a  */ | 
 |     /* having the correct exponent so as to handle subnormals  */ | 
 |     /* correctly  */ | 
 |     approxset=*set;                          /* get emin, emax, etc.  */ | 
 |     approxset.round=DEC_ROUND_HALF_EVEN; | 
 |     a->exponent+=exp/2;                      /* set correct exponent  */ | 
 |     rstatus=0;                               /* clear status  */ | 
 |     residue=0;                               /* .. and accumulator  */ | 
 |     decCopyFit(a, a, &approxset, &residue, &rstatus);  /* reduce (if needed)  */ | 
 |     decFinish(a, &approxset, &residue, &rstatus);      /* clean and finalize  */ | 
 |  | 
 |     /* Overflow was possible if the input exponent was out-of-range,  */ | 
 |     /* in which case quit  */ | 
 |     if (rstatus&DEC_Overflow) { | 
 |       status=rstatus;                        /* use the status as-is  */ | 
 |       uprv_decNumberCopy(res, a);                 /* copy to result  */ | 
 |       break; | 
 |       } | 
 |  | 
 |     /* Preserve status except Inexact/Rounded  */ | 
 |     status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); | 
 |  | 
 |     /* Carry out the Hull correction  */ | 
 |     a->exponent-=exp/2;                      /* back to 0.1->1  */ | 
 |  | 
 |     /* a is now at final precision and within 1 ulp of the properly  */ | 
 |     /* rounded square root of f; to ensure proper rounding, compare  */ | 
 |     /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f.  */ | 
 |     /* Here workset.digits=maxp and t=0.5, and a->digits determines  */ | 
 |     /* the ulp  */ | 
 |     workset.digits--;                             /* maxp-1 is OK now  */ | 
 |     t->exponent=-a->digits-1;                     /* make 0.5 ulp  */ | 
 |     decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp  */ | 
 |     workset.round=DEC_ROUND_UP; | 
 |     decMultiplyOp(b, b, b, &workset, &ignore);    /* b = mulru(b, b)  */ | 
 |     decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed  */ | 
 |     if (decNumberIsNegative(b)) {                 /* f < b [i.e., b > f]  */ | 
 |       /* this is the more common adjustment, though both are rare  */ | 
 |       t->exponent++;                              /* make 1.0 ulp  */ | 
 |       t->lsu[0]=1;                                /* ..  */ | 
 |       decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp  */ | 
 |       /* assign to approx [round to length]  */ | 
 |       approxset.emin-=exp/2;                      /* adjust to match a  */ | 
 |       approxset.emax-=exp/2; | 
 |       decAddOp(a, &dzero, a, &approxset, 0, &ignore); | 
 |       } | 
 |      else { | 
 |       decAddOp(b, a, t, &workset, 0, &ignore);    /* b = a + 0.5 ulp  */ | 
 |       workset.round=DEC_ROUND_DOWN; | 
 |       decMultiplyOp(b, b, b, &workset, &ignore);  /* b = mulrd(b, b)  */ | 
 |       decCompareOp(b, b, f, &workset, COMPARE, &ignore);   /* b ? f  */ | 
 |       if (decNumberIsNegative(b)) {               /* b < f  */ | 
 |         t->exponent++;                            /* make 1.0 ulp  */ | 
 |         t->lsu[0]=1;                              /* ..  */ | 
 |         decAddOp(a, a, t, &workset, 0, &ignore);  /* a = a + 1 ulp  */ | 
 |         /* assign to approx [round to length]  */ | 
 |         approxset.emin-=exp/2;                    /* adjust to match a  */ | 
 |         approxset.emax-=exp/2; | 
 |         decAddOp(a, &dzero, a, &approxset, 0, &ignore); | 
 |         } | 
 |       } | 
 |     /* [no errors are possible in the above, and rounding/inexact during  */ | 
 |     /* estimation are irrelevant, so status was not accumulated]  */ | 
 |  | 
 |     /* Here, 0.1 <= a < 1  (still), so adjust back  */ | 
 |     a->exponent+=exp/2;                      /* set correct exponent  */ | 
 |  | 
 |     /* count droppable zeros [after any subnormal rounding] by  */ | 
 |     /* trimming a copy  */ | 
 |     uprv_decNumberCopy(b, a); | 
 |     decTrim(b, set, 1, 1, &dropped);         /* [drops trailing zeros]  */ | 
 |  | 
 |     /* Set Inexact and Rounded.  The answer can only be exact if  */ | 
 |     /* it is short enough so that squaring it could fit in workp  */ | 
 |     /* digits, so this is the only (relatively rare) condition that  */ | 
 |     /* a careful check is needed  */ | 
 |     if (b->digits*2-1 > workp) {             /* cannot fit  */ | 
 |       status|=DEC_Inexact|DEC_Rounded; | 
 |       } | 
 |      else {                                  /* could be exact/unrounded  */ | 
 |       uInt mstatus=0;                        /* local status  */ | 
 |       decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply  */ | 
 |       if (mstatus&DEC_Overflow) {            /* result just won't fit  */ | 
 |         status|=DEC_Inexact|DEC_Rounded; | 
 |         } | 
 |        else {                                /* plausible  */ | 
 |         decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs  */ | 
 |         if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal  */ | 
 |          else {                              /* is Exact  */ | 
 |           /* here, dropped is the count of trailing zeros in 'a'  */ | 
 |           /* use closest exponent to ideal...  */ | 
 |           Int todrop=ideal-a->exponent;      /* most that can be dropped  */ | 
 |           if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s  */ | 
 |            else {                            /* unrounded  */ | 
 |             /* there are some to drop, but emax may not allow all  */ | 
 |             Int maxexp=set->emax-set->digits+1; | 
 |             Int maxdrop=maxexp-a->exponent; | 
 |             if (todrop>maxdrop && set->clamp) { /* apply clamping  */ | 
 |               todrop=maxdrop; | 
 |               status|=DEC_Clamped; | 
 |               } | 
 |             if (dropped<todrop) {            /* clamp to those available  */ | 
 |               todrop=dropped; | 
 |               status|=DEC_Clamped; | 
 |               } | 
 |             if (todrop>0) {                  /* have some to drop  */ | 
 |               decShiftToLeast(a->lsu, D2U(a->digits), todrop); | 
 |               a->exponent+=todrop;           /* maintain numerical value  */ | 
 |               a->digits-=todrop;             /* new length  */ | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |     /* double-check Underflow, as perhaps the result could not have  */ | 
 |     /* been subnormal (initial argument too big), or it is now Exact  */ | 
 |     if (status&DEC_Underflow) { | 
 |       Int ae=rhs->exponent+rhs->digits-1;    /* adjusted exponent  */ | 
 |       /* check if truly subnormal  */ | 
 |       #if DECEXTFLAG                         /* DEC_Subnormal too  */ | 
 |         if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); | 
 |       #else | 
 |         if (ae>=set->emin*2) status&=~DEC_Underflow; | 
 |       #endif | 
 |       /* check if truly inexact  */ | 
 |       if (!(status&DEC_Inexact)) status&=~DEC_Underflow; | 
 |       } | 
 |  | 
 |     uprv_decNumberCopy(res, a);                   /* a is now the result  */ | 
 |     } while(0);                              /* end protected  */ | 
 |  | 
 |   if (allocbuff!=NULL) free(allocbuff);      /* drop any storage used  */ | 
 |   if (allocbufa!=NULL) free(allocbufa);      /* ..  */ | 
 |   if (allocbufb!=NULL) free(allocbufb);      /* ..  */ | 
 |   #if DECSUBSET | 
 |   if (allocrhs !=NULL) free(allocrhs);       /* ..  */ | 
 |   #endif | 
 |   if (status!=0) decStatus(res, status, set);/* then report status  */ | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberSquareRoot  */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic pop | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberSubtract -- subtract two Numbers                          */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A - B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X-X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSubtract(decNumber *res, const decNumber *lhs, | 
 |                               const decNumber *rhs, decContext *set) { | 
 |   uInt status=0;                        /* accumulator  */ | 
 |  | 
 |   decAddOp(res, lhs, rhs, set, DECNEG, &status); | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   #if DECCHECK | 
 |   decCheckInexact(res, set); | 
 |   #endif | 
 |   return res; | 
 |   } /* decNumberSubtract  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberToIntegralExact -- round-to-integral-value with InExact   */ | 
 | /* decNumberToIntegralValue -- round-to-integral-value                */ | 
 | /*                                                                    */ | 
 | /*   res is the result                                                */ | 
 | /*   rhs is input number                                              */ | 
 | /*   set is the context                                               */ | 
 | /*                                                                    */ | 
 | /* res must have space for any value of rhs.                          */ | 
 | /*                                                                    */ | 
 | /* This implements the IEEE special operators and therefore treats    */ | 
 | /* special values as valid.  For finite numbers it returns            */ | 
 | /* rescale(rhs, 0) if rhs->exponent is <0.                            */ | 
 | /* Otherwise the result is rhs (so no error is possible, except for   */ | 
 | /* sNaN).                                                             */ | 
 | /*                                                                    */ | 
 | /* The context is used for rounding mode and status after sNaN, but   */ | 
 | /* the digits setting is ignored.  The Exact version will signal      */ | 
 | /* Inexact if the result differs numerically from rhs; the other      */ | 
 | /* never signals Inexact.                                             */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralExact(decNumber *res, const decNumber *rhs, | 
 |                                      decContext *set) { | 
 |   decNumber dn; | 
 |   decContext workset;              /* working context  */ | 
 |   uInt status=0;                   /* accumulator  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* handle infinities and NaNs  */ | 
 |   if (SPECIALARG) { | 
 |     if (decNumberIsInfinite(rhs)) uprv_decNumberCopy(res, rhs); /* an Infinity  */ | 
 |      else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */ | 
 |     } | 
 |    else { /* finite  */ | 
 |     /* have a finite number; no error possible (res must be big enough)  */ | 
 |     if (rhs->exponent>=0) return uprv_decNumberCopy(res, rhs); | 
 |     /* that was easy, but if negative exponent there is work to do...  */ | 
 |     workset=*set;                  /* clone rounding, etc.  */ | 
 |     workset.digits=rhs->digits;    /* no length rounding  */ | 
 |     workset.traps=0;               /* no traps  */ | 
 |     uprv_decNumberZero(&dn);            /* make a number with exponent 0  */ | 
 |     uprv_decNumberQuantize(res, rhs, &dn, &workset); | 
 |     status|=workset.status; | 
 |     } | 
 |   if (status!=0) decStatus(res, status, set); | 
 |   return res; | 
 |   } /* decNumberToIntegralExact  */ | 
 |  | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralValue(decNumber *res, const decNumber *rhs, | 
 |                                      decContext *set) { | 
 |   decContext workset=*set;         /* working context  */ | 
 |   workset.traps=0;                 /* no traps  */ | 
 |   uprv_decNumberToIntegralExact(res, rhs, &workset); | 
 |   /* this never affects set, except for sNaNs; NaN will have been set  */ | 
 |   /* or propagated already, so no need to call decStatus  */ | 
 |   set->status|=workset.status&DEC_Invalid_operation; | 
 |   return res; | 
 |   } /* decNumberToIntegralValue  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberXor -- XOR two Numbers, digitwise                         */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ^ B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X^X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context (used for result length and error report)     */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Logical function restrictions apply (see above); a NaN is          */ | 
 | /* returned with Invalid_operation if a restriction is violated.      */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberXor(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set) { | 
 |   const Unit *ua, *ub;                  /* -> operands  */ | 
 |   const Unit *msua, *msub;              /* -> operand msus  */ | 
 |   Unit  *uc, *msuc;                     /* -> result and its msu  */ | 
 |   Int   msudigs;                        /* digits in res msu  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
 |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
 |     decStatus(res, DEC_Invalid_operation, set); | 
 |     return res; | 
 |     } | 
 |   /* operands are valid  */ | 
 |   ua=lhs->lsu;                          /* bottom-up  */ | 
 |   ub=rhs->lsu;                          /* ..  */ | 
 |   uc=res->lsu;                          /* ..  */ | 
 |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */ | 
 |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */ | 
 |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */ | 
 |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */ | 
 |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
 |     Unit a, b;                          /* extract units  */ | 
 |     if (ua>msua) a=0; | 
 |      else a=*ua; | 
 |     if (ub>msub) b=0; | 
 |      else b=*ub; | 
 |     *uc=0;                              /* can now write back  */ | 
 |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
 |       Int i, j; | 
 |       /* This loop could be unrolled and/or use BIN2BCD tables  */ | 
 |       for (i=0; i<DECDPUN; i++) { | 
 |         if ((a^b)&1) *uc=*uc+(Unit)powers[i];     /* effect XOR  */ | 
 |         j=a%10; | 
 |         a=a/10; | 
 |         j|=b%10; | 
 |         b=b/10; | 
 |         if (j>1) { | 
 |           decStatus(res, DEC_Invalid_operation, set); | 
 |           return res; | 
 |           } | 
 |         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */ | 
 |         } /* each digit  */ | 
 |       } /* non-zero  */ | 
 |     } /* each unit  */ | 
 |   /* [here uc-1 is the msu of the result]  */ | 
 |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu)); | 
 |   res->exponent=0;                      /* integer  */ | 
 |   res->bits=0;                          /* sign=0  */ | 
 |   return res;  /* [no status to set]  */ | 
 |   } /* decNumberXor  */ | 
 |  | 
 |  | 
 | /* ================================================================== */ | 
 | /* Utility routines                                                   */ | 
 | /* ================================================================== */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberClass -- return the decClass of a decNumber               */ | 
 | /*   dn -- the decNumber to test                                      */ | 
 | /*   set -- the context to use for Emin                               */ | 
 | /*   returns the decClass enum                                        */ | 
 | /* ------------------------------------------------------------------ */ | 
 | enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) { | 
 |   if (decNumberIsSpecial(dn)) { | 
 |     if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; | 
 |     if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; | 
 |     /* must be an infinity  */ | 
 |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; | 
 |     return DEC_CLASS_POS_INF; | 
 |     } | 
 |   /* is finite  */ | 
 |   if (uprv_decNumberIsNormal(dn, set)) { /* most common  */ | 
 |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; | 
 |     return DEC_CLASS_POS_NORMAL; | 
 |     } | 
 |   /* is subnormal or zero  */ | 
 |   if (decNumberIsZero(dn)) {    /* most common  */ | 
 |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; | 
 |     return DEC_CLASS_POS_ZERO; | 
 |     } | 
 |   if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; | 
 |   return DEC_CLASS_POS_SUBNORMAL; | 
 |   } /* decNumberClass  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberClassToString -- convert decClass to a string             */ | 
 | /*                                                                    */ | 
 | /*  eclass is a valid decClass                                        */ | 
 | /*  returns a constant string describing the class (max 13+1 chars)   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | const char *uprv_decNumberClassToString(enum decClass eclass) { | 
 |   if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN; | 
 |   if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN; | 
 |   if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ; | 
 |   if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ; | 
 |   if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; | 
 |   if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; | 
 |   if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI; | 
 |   if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI; | 
 |   if (eclass==DEC_CLASS_QNAN)          return DEC_ClassString_QN; | 
 |   if (eclass==DEC_CLASS_SNAN)          return DEC_ClassString_SN; | 
 |   return DEC_ClassString_UN;           /* Unknown  */ | 
 |   } /* decNumberClassToString  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCopy -- copy a number                                     */ | 
 | /*                                                                    */ | 
 | /*   dest is the target decNumber                                     */ | 
 | /*   src  is the source decNumber                                     */ | 
 | /*   returns dest                                                     */ | 
 | /*                                                                    */ | 
 | /* (dest==src is allowed and is a no-op)                              */ | 
 | /* All fields are updated as required.  This is a utility operation,  */ | 
 | /* so special values are unchanged and no error is possible.          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopy(decNumber *dest, const decNumber *src) { | 
 |  | 
 |   #if DECCHECK | 
 |   if (src==NULL) return uprv_decNumberZero(dest); | 
 |   #endif | 
 |  | 
 |   if (dest==src) return dest;                /* no copy required  */ | 
 |  | 
 |   /* Use explicit assignments here as structure assignment could copy  */ | 
 |   /* more than just the lsu (for small DECDPUN).  This would not affect  */ | 
 |   /* the value of the results, but could disturb test harness spill  */ | 
 |   /* checking.  */ | 
 |   dest->bits=src->bits; | 
 |   dest->exponent=src->exponent; | 
 |   dest->digits=src->digits; | 
 |   dest->lsu[0]=src->lsu[0]; | 
 |   if (src->digits>DECDPUN) {                 /* more Units to come  */ | 
 |     const Unit *smsup, *s;                   /* work  */ | 
 |     Unit  *d;                                /* ..  */ | 
 |     /* memcpy for the remaining Units would be safe as they cannot  */ | 
 |     /* overlap.  However, this explicit loop is faster in short cases.  */ | 
 |     d=dest->lsu+1;                           /* -> first destination  */ | 
 |     smsup=src->lsu+D2U(src->digits);         /* -> source msu+1  */ | 
 |     for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; | 
 |     } | 
 |   return dest; | 
 |   } /* decNumberCopy  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCopyAbs -- quiet absolute value operator                  */ | 
 | /*                                                                    */ | 
 | /*   This sets C = abs(A)                                             */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
 | /* See also decNumberAbs for a checking version of this.              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyAbs(decNumber *res, const decNumber *rhs) { | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
 |   #endif | 
 |   uprv_decNumberCopy(res, rhs); | 
 |   res->bits&=~DECNEG;                   /* turn off sign  */ | 
 |   return res; | 
 |   } /* decNumberCopyAbs  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCopyNegate -- quiet negate value operator                 */ | 
 | /*                                                                    */ | 
 | /*   This sets C = negate(A)                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
 | /* See also decNumberMinus for a checking version of this.            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyNegate(decNumber *res, const decNumber *rhs) { | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
 |   #endif | 
 |   uprv_decNumberCopy(res, rhs); | 
 |   res->bits^=DECNEG;                    /* invert the sign  */ | 
 |   return res; | 
 |   } /* decNumberCopyNegate  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberCopySign -- quiet copy and set sign operator              */ | 
 | /*                                                                    */ | 
 | /*   This sets C = A with the sign of B                               */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopySign(decNumber *res, const decNumber *lhs, | 
 |                               const decNumber *rhs) { | 
 |   uByte sign;                           /* rhs sign  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
 |   #endif | 
 |   sign=rhs->bits & DECNEG;              /* save sign bit  */ | 
 |   uprv_decNumberCopy(res, lhs); | 
 |   res->bits&=~DECNEG;                   /* clear the sign  */ | 
 |   res->bits|=sign;                      /* set from rhs  */ | 
 |   return res; | 
 |   } /* decNumberCopySign  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberGetBCD -- get the coefficient in BCD8                     */ | 
 | /*   dn is the source decNumber                                       */ | 
 | /*   bcd is the uInt array that will receive dn->digits BCD bytes,    */ | 
 | /*     most-significant at offset 0                                   */ | 
 | /*   returns bcd                                                      */ | 
 | /*                                                                    */ | 
 | /* bcd must have at least dn->digits bytes.  No error is possible; if */ | 
 | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0.   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI uByte * U_EXPORT2 uprv_decNumberGetBCD(const decNumber *dn, uByte *bcd) { | 
 |   uByte *ub=bcd+dn->digits-1;      /* -> lsd  */ | 
 |   const Unit *up=dn->lsu;          /* Unit pointer, -> lsu  */ | 
 |  | 
 |   #if DECDPUN==1                   /* trivial simple copy  */ | 
 |     for (; ub>=bcd; ub--, up++) *ub=*up; | 
 |   #else                            /* chopping needed  */ | 
 |     uInt u=*up;                    /* work  */ | 
 |     uInt cut=DECDPUN;              /* downcounter through unit  */ | 
 |     for (; ub>=bcd; ub--) { | 
 |       *ub=(uByte)(u%10);           /* [*6554 trick inhibits, here]  */ | 
 |       u=u/10; | 
 |       cut--; | 
 |       if (cut>0) continue;         /* more in this unit  */ | 
 |       up++; | 
 |       u=*up; | 
 |       cut=DECDPUN; | 
 |       } | 
 |   #endif | 
 |   return bcd; | 
 |   } /* decNumberGetBCD  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberSetBCD -- set (replace) the coefficient from BCD8         */ | 
 | /*   dn is the target decNumber                                       */ | 
 | /*   bcd is the uInt array that will source n BCD bytes, most-        */ | 
 | /*     significant at offset 0                                        */ | 
 | /*   n is the number of digits in the source BCD array (bcd)          */ | 
 | /*   returns dn                                                       */ | 
 | /*                                                                    */ | 
 | /* dn must have space for at least n digits.  No error is possible;   */ | 
 | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1   */ | 
 | /* and bcd[0] zero.                                                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { | 
 |   Unit *up=dn->lsu+D2U(dn->digits)-1;   /* -> msu [target pointer]  */ | 
 |   const uByte *ub=bcd;                  /* -> source msd  */ | 
 |  | 
 |   #if DECDPUN==1                        /* trivial simple copy  */ | 
 |     for (; ub<bcd+n; ub++, up--) *up=*ub; | 
 |   #else                                 /* some assembly needed  */ | 
 |     /* calculate how many digits in msu, and hence first cut  */ | 
 |     Int cut=MSUDIGITS(n);               /* [faster than remainder]  */ | 
 |     for (;up>=dn->lsu; up--) {          /* each Unit from msu  */ | 
 |       *up=0;                            /* will take <=DECDPUN digits  */ | 
 |       for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; | 
 |       cut=DECDPUN;                      /* next Unit has all digits  */ | 
 |       } | 
 |   #endif | 
 |   dn->digits=n;                         /* set digit count  */ | 
 |   return dn; | 
 |   } /* decNumberSetBCD  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberIsNormal -- test normality of a decNumber                 */ | 
 | /*   dn is the decNumber to test                                      */ | 
 | /*   set is the context to use for Emin                               */ | 
 | /*   returns 1 if |dn| is finite and >=Nmin, 0 otherwise              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | Int uprv_decNumberIsNormal(const decNumber *dn, decContext *set) { | 
 |   Int ae;                               /* adjusted exponent  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
 |   #endif | 
 |  | 
 |   if (decNumberIsSpecial(dn)) return 0; /* not finite  */ | 
 |   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */ | 
 |  | 
 |   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */ | 
 |   if (ae<set->emin) return 0;           /* is subnormal  */ | 
 |   return 1; | 
 |   } /* decNumberIsNormal  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberIsSubnormal -- test subnormality of a decNumber           */ | 
 | /*   dn is the decNumber to test                                      */ | 
 | /*   set is the context to use for Emin                               */ | 
 | /*   returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | Int uprv_decNumberIsSubnormal(const decNumber *dn, decContext *set) { | 
 |   Int ae;                               /* adjusted exponent  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
 |   #endif | 
 |  | 
 |   if (decNumberIsSpecial(dn)) return 0; /* not finite  */ | 
 |   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */ | 
 |  | 
 |   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */ | 
 |   if (ae<set->emin) return 1;           /* is subnormal  */ | 
 |   return 0; | 
 |   } /* decNumberIsSubnormal  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberTrim -- remove insignificant zeros                        */ | 
 | /*                                                                    */ | 
 | /*   dn is the number to trim                                         */ | 
 | /*   returns dn                                                       */ | 
 | /*                                                                    */ | 
 | /* All fields are updated as required.  This is a utility operation,  */ | 
 | /* so special values are unchanged and no error is possible.  The     */ | 
 | /* zeros are removed unconditionally.                                 */ | 
 | /* ------------------------------------------------------------------ */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberTrim(decNumber *dn) { | 
 |   Int  dropped;                    /* work  */ | 
 |   decContext set;                  /* ..  */ | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; | 
 |   #endif | 
 |   uprv_decContextDefault(&set, DEC_INIT_BASE);    /* clamp=0  */ | 
 |   return decTrim(dn, &set, 0, 1, &dropped); | 
 |   } /* decNumberTrim  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberVersion -- return the name and version of this module     */ | 
 | /*                                                                    */ | 
 | /* No error is possible.                                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | const char * uprv_decNumberVersion(void) { | 
 |   return DECVERSION; | 
 |   } /* decNumberVersion  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberZero -- set a number to 0                                 */ | 
 | /*                                                                    */ | 
 | /*   dn is the number to set, with space for one digit                */ | 
 | /*   returns dn                                                       */ | 
 | /*                                                                    */ | 
 | /* No error is possible.                                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Memset is not used as it is much slower in some environments.  */ | 
 | U_CAPI decNumber * U_EXPORT2 uprv_decNumberZero(decNumber *dn) { | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | 
 |   #endif | 
 |  | 
 |   dn->bits=0; | 
 |   dn->exponent=0; | 
 |   dn->digits=1; | 
 |   dn->lsu[0]=0; | 
 |   return dn; | 
 |   } /* decNumberZero  */ | 
 |  | 
 | /* ================================================================== */ | 
 | /* Local routines                                                     */ | 
 | /* ================================================================== */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decToString -- lay out a number into a string                      */ | 
 | /*                                                                    */ | 
 | /*   dn     is the number to lay out                                  */ | 
 | /*   string is where to lay out the number                            */ | 
 | /*   eng    is 1 if Engineering, 0 if Scientific                      */ | 
 | /*                                                                    */ | 
 | /* string must be at least dn->digits+14 characters long              */ | 
 | /* No error is possible.                                              */ | 
 | /*                                                                    */ | 
 | /* Note that this routine can generate a -0 or 0.000.  These are      */ | 
 | /* never generated in subset to-number or arithmetic, but can occur   */ | 
 | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234).              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* If DECCHECK is enabled the string "?" is returned if a number is  */ | 
 | /* invalid.  */ | 
 | static void decToString(const decNumber *dn, char *string, Flag eng) { | 
 |   Int exp=dn->exponent;       /* local copy  */ | 
 |   Int e;                      /* E-part value  */ | 
 |   Int pre;                    /* digits before the '.'  */ | 
 |   Int cut;                    /* for counting digits in a Unit  */ | 
 |   char *c=string;             /* work [output pointer]  */ | 
 |   const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer]  */ | 
 |   uInt u, pow;                /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { | 
 |     strcpy(string, "?"); | 
 |     return;} | 
 |   #endif | 
 |  | 
 |   if (decNumberIsNegative(dn)) {   /* Negatives get a minus  */ | 
 |     *c='-'; | 
 |     c++; | 
 |     } | 
 |   if (dn->bits&DECSPECIAL) {       /* Is a special value  */ | 
 |     if (decNumberIsInfinite(dn)) { | 
 |       strcpy(c,   "Inf"); | 
 |       strcpy(c+3, "inity"); | 
 |       return;} | 
 |     /* a NaN  */ | 
 |     if (dn->bits&DECSNAN) {        /* signalling NaN  */ | 
 |       *c='s'; | 
 |       c++; | 
 |       } | 
 |     strcpy(c, "NaN"); | 
 |     c+=3;                          /* step past  */ | 
 |     /* if not a clean non-zero coefficient, that's all there is in a  */ | 
 |     /* NaN string  */ | 
 |     if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; | 
 |     /* [drop through to add integer]  */ | 
 |     } | 
 |  | 
 |   /* calculate how many digits in msu, and hence first cut  */ | 
 |   cut=MSUDIGITS(dn->digits);       /* [faster than remainder]  */ | 
 |   cut--;                           /* power of ten for digit  */ | 
 |  | 
 |   if (exp==0) {                    /* simple integer [common fastpath]  */ | 
 |     for (;up>=dn->lsu; up--) {     /* each Unit from msu  */ | 
 |       u=*up;                       /* contains DECDPUN digits to lay out  */ | 
 |       for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); | 
 |       cut=DECDPUN-1;               /* next Unit has all digits  */ | 
 |       } | 
 |     *c='\0';                       /* terminate the string  */ | 
 |     return;} | 
 |  | 
 |   /* non-0 exponent -- assume plain form */ | 
 |   pre=dn->digits+exp;              /* digits before '.'  */ | 
 |   e=0;                             /* no E  */ | 
 |   if ((exp>0) || (pre<-5)) {       /* need exponential form  */ | 
 |     e=exp+dn->digits-1;            /* calculate E value  */ | 
 |     pre=1;                         /* assume one digit before '.'  */ | 
 |     if (eng && (e!=0)) {           /* engineering: may need to adjust  */ | 
 |       Int adj;                     /* adjustment  */ | 
 |       /* The C remainder operator is undefined for negative numbers, so  */ | 
 |       /* a positive remainder calculation must be used here  */ | 
 |       if (e<0) { | 
 |         adj=(-e)%3; | 
 |         if (adj!=0) adj=3-adj; | 
 |         } | 
 |        else { /* e>0  */ | 
 |         adj=e%3; | 
 |         } | 
 |       e=e-adj; | 
 |       /* if dealing with zero still produce an exponent which is a  */ | 
 |       /* multiple of three, as expected, but there will only be the  */ | 
 |       /* one zero before the E, still.  Otherwise note the padding.  */ | 
 |       if (!ISZERO(dn)) pre+=adj; | 
 |        else {  /* is zero  */ | 
 |         if (adj!=0) {              /* 0.00Esnn needed  */ | 
 |           e=e+3; | 
 |           pre=-(2-adj); | 
 |           } | 
 |         } /* zero  */ | 
 |       } /* eng  */ | 
 |     } /* need exponent  */ | 
 |  | 
 |   /* lay out the digits of the coefficient, adding 0s and . as needed */ | 
 |   u=*up; | 
 |   if (pre>0) {                     /* xxx.xxx or xx00 (engineering) form  */ | 
 |     Int n=pre; | 
 |     for (; pre>0; pre--, c++, cut--) { | 
 |       if (cut<0) {                 /* need new Unit  */ | 
 |         if (up==dn->lsu) break;    /* out of input digits (pre>digits)  */ | 
 |         up--; | 
 |         cut=DECDPUN-1; | 
 |         u=*up; | 
 |         } | 
 |       TODIGIT(u, cut, c, pow); | 
 |       } | 
 |     if (n<dn->digits) {            /* more to come, after '.'  */ | 
 |       *c='.'; c++; | 
 |       for (;; c++, cut--) { | 
 |         if (cut<0) {               /* need new Unit  */ | 
 |           if (up==dn->lsu) break;  /* out of input digits  */ | 
 |           up--; | 
 |           cut=DECDPUN-1; | 
 |           u=*up; | 
 |           } | 
 |         TODIGIT(u, cut, c, pow); | 
 |         } | 
 |       } | 
 |      else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed  */ | 
 |     } | 
 |    else {                          /* 0.xxx or 0.000xxx form  */ | 
 |     *c='0'; c++; | 
 |     *c='.'; c++; | 
 |     for (; pre<0; pre++, c++) *c='0';   /* add any 0's after '.'  */ | 
 |     for (; ; c++, cut--) { | 
 |       if (cut<0) {                 /* need new Unit  */ | 
 |         if (up==dn->lsu) break;    /* out of input digits  */ | 
 |         up--; | 
 |         cut=DECDPUN-1; | 
 |         u=*up; | 
 |         } | 
 |       TODIGIT(u, cut, c, pow); | 
 |       } | 
 |     } | 
 |  | 
 |   /* Finally add the E-part, if needed.  It will never be 0, has a | 
 |      base maximum and minimum of +999999999 through -999999999, but | 
 |      could range down to -1999999998 for anormal numbers */ | 
 |   if (e!=0) { | 
 |     Flag had=0;               /* 1=had non-zero  */ | 
 |     *c='E'; c++; | 
 |     *c='+'; c++;              /* assume positive  */ | 
 |     u=e;                      /* ..  */ | 
 |     if (e<0) { | 
 |       *(c-1)='-';             /* oops, need -  */ | 
 |       u=-e;                   /* uInt, please  */ | 
 |       } | 
 |     /* lay out the exponent [_itoa or equivalent is not ANSI C]  */ | 
 |     for (cut=9; cut>=0; cut--) { | 
 |       TODIGIT(u, cut, c, pow); | 
 |       if (*c=='0' && !had) continue;    /* skip leading zeros  */ | 
 |       had=1;                            /* had non-0  */ | 
 |       c++;                              /* step for next  */ | 
 |       } /* cut  */ | 
 |     } | 
 |   *c='\0';          /* terminate the string (all paths)  */ | 
 |   return; | 
 |   } /* decToString  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decAddOp -- add/subtract operation                                 */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A + B                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*   negate is DECNEG if rhs should be negated, or 0 otherwise        */ | 
 | /*   status accumulates status for the caller                         */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /* Inexact in status must be 0 for correct Exact zero sign in result  */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* If possible, the coefficient is calculated directly into C.        */ | 
 | /* However, if:                                                       */ | 
 | /*   -- a digits+1 calculation is needed because the numbers are      */ | 
 | /*      unaligned and span more than set->digits digits               */ | 
 | /*   -- a carry to digits+1 digits looks possible                     */ | 
 | /*   -- C is the same as A or B, and the result would destructively   */ | 
 | /*      overlap the A or B coefficient                                */ | 
 | /* then the result must be calculated into a temporary buffer.  In    */ | 
 | /* this case a local (stack) buffer is used if possible, and only if  */ | 
 | /* too long for that does malloc become the final resort.             */ | 
 | /*                                                                    */ | 
 | /* Misalignment is handled as follows:                                */ | 
 | /*   Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp.    */ | 
 | /*   BPad: Apply the padding by a combination of shifting (whole      */ | 
 | /*         units) and multiplication (part units).                    */ | 
 | /*                                                                    */ | 
 | /* Addition, especially x=x+1, is speed-critical.                     */ | 
 | /* The static buffer is larger than might be expected to allow for    */ | 
 | /* calls from higher-level funtions (notable exp).                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, | 
 |                             const decNumber *rhs, decContext *set, | 
 |                             uByte negate, uInt *status) { | 
 |   #if DECSUBSET | 
 |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */ | 
 |   decNumber *allocrhs=NULL;        /* .., rhs  */ | 
 |   #endif | 
 |   Int   rhsshift;                  /* working shift (in Units)  */ | 
 |   Int   maxdigits;                 /* longest logical length  */ | 
 |   Int   mult;                      /* multiplier  */ | 
 |   Int   residue;                   /* rounding accumulator  */ | 
 |   uByte bits;                      /* result bits  */ | 
 |   Flag  diffsign;                  /* non-0 if arguments have different sign  */ | 
 |   Unit  *acc;                      /* accumulator for result  */ | 
 |   Unit  accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many  */ | 
 |                                    /* allocations when called from  */ | 
 |                                    /* other operations, notable exp]  */ | 
 |   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */ | 
 |   Int   reqdigits=set->digits;     /* local copy; requested DIGITS  */ | 
 |   Int   padding;                   /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operands and set lostDigits status, as needed  */ | 
 |       if (lhs->digits>reqdigits) { | 
 |         alloclhs=decRoundOperand(lhs, set, status); | 
 |         if (alloclhs==NULL) break; | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>reqdigits) { | 
 |         allocrhs=decRoundOperand(rhs, set, status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* note whether signs differ [used all paths]  */ | 
 |     diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); | 
 |  | 
 |     /* handle infinities and NaNs  */ | 
 |     if (SPECIALARGS) {                  /* a special bit set  */ | 
 |       if (SPECIALARGS & (DECSNAN | DECNAN))  /* a NaN  */ | 
 |         decNaNs(res, lhs, rhs, set, status); | 
 |        else { /* one or two infinities  */ | 
 |         if (decNumberIsInfinite(lhs)) { /* LHS is infinity  */ | 
 |           /* two infinities with different signs is invalid  */ | 
 |           if (decNumberIsInfinite(rhs) && diffsign) { | 
 |             *status|=DEC_Invalid_operation; | 
 |             break; | 
 |             } | 
 |           bits=lhs->bits & DECNEG;      /* get sign from LHS  */ | 
 |           } | 
 |          else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity  */ | 
 |         bits|=DECINF; | 
 |         uprv_decNumberZero(res); | 
 |         res->bits=bits;                 /* set +/- infinity  */ | 
 |         } /* an infinity  */ | 
 |       break; | 
 |       } | 
 |  | 
 |     /* Quick exit for add 0s; return the non-0, modified as need be  */ | 
 |     if (ISZERO(lhs)) { | 
 |       Int adjust;                       /* work  */ | 
 |       Int lexp=lhs->exponent;           /* save in case LHS==RES  */ | 
 |       bits=lhs->bits;                   /* ..  */ | 
 |       residue=0;                        /* clear accumulator  */ | 
 |       decCopyFit(res, rhs, set, &residue, status); /* copy (as needed)  */ | 
 |       res->bits^=negate;                /* flip if rhs was negated  */ | 
 |       #if DECSUBSET | 
 |       if (set->extended) {              /* exponents on zeros count  */ | 
 |       #endif | 
 |         /* exponent will be the lower of the two  */ | 
 |         adjust=lexp-res->exponent;      /* adjustment needed [if -ve]  */ | 
 |         if (ISZERO(res)) {              /* both 0: special IEEE 754 rules  */ | 
 |           if (adjust<0) res->exponent=lexp;  /* set exponent  */ | 
 |           /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0  */ | 
 |           if (diffsign) { | 
 |             if (set->round!=DEC_ROUND_FLOOR) res->bits=0; | 
 |              else res->bits=DECNEG;     /* preserve 0 sign  */ | 
 |             } | 
 |           } | 
 |          else { /* non-0 res  */ | 
 |           if (adjust<0) {     /* 0-padding needed  */ | 
 |             if ((res->digits-adjust)>set->digits) { | 
 |               adjust=res->digits-set->digits;     /* to fit exactly  */ | 
 |               *status|=DEC_Rounded;               /* [but exact]  */ | 
 |               } | 
 |             res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
 |             res->exponent+=adjust;                /* set the exponent.  */ | 
 |             } | 
 |           } /* non-0 res  */ | 
 |       #if DECSUBSET | 
 |         } /* extended  */ | 
 |       #endif | 
 |       decFinish(res, set, &residue, status);      /* clean and finalize  */ | 
 |       break;} | 
 |  | 
 |     if (ISZERO(rhs)) {                  /* [lhs is non-zero]  */ | 
 |       Int adjust;                       /* work  */ | 
 |       Int rexp=rhs->exponent;           /* save in case RHS==RES  */ | 
 |       bits=rhs->bits;                   /* be clean  */ | 
 |       residue=0;                        /* clear accumulator  */ | 
 |       decCopyFit(res, lhs, set, &residue, status); /* copy (as needed)  */ | 
 |       #if DECSUBSET | 
 |       if (set->extended) {              /* exponents on zeros count  */ | 
 |       #endif | 
 |         /* exponent will be the lower of the two  */ | 
 |         /* [0-0 case handled above]  */ | 
 |         adjust=rexp-res->exponent;      /* adjustment needed [if -ve]  */ | 
 |         if (adjust<0) {     /* 0-padding needed  */ | 
 |           if ((res->digits-adjust)>set->digits) { | 
 |             adjust=res->digits-set->digits;     /* to fit exactly  */ | 
 |             *status|=DEC_Rounded;               /* [but exact]  */ | 
 |             } | 
 |           res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
 |           res->exponent+=adjust;                /* set the exponent.  */ | 
 |           } | 
 |       #if DECSUBSET | 
 |         } /* extended  */ | 
 |       #endif | 
 |       decFinish(res, set, &residue, status);      /* clean and finalize  */ | 
 |       break;} | 
 |  | 
 |     /* [NB: both fastpath and mainpath code below assume these cases  */ | 
 |     /* (notably 0-0) have already been handled]  */ | 
 |  | 
 |     /* calculate the padding needed to align the operands  */ | 
 |     padding=rhs->exponent-lhs->exponent; | 
 |  | 
 |     /* Fastpath cases where the numbers are aligned and normal, the RHS  */ | 
 |     /* is all in one unit, no operand rounding is needed, and no carry,  */ | 
 |     /* lengthening, or borrow is needed  */ | 
 |     if (padding==0 | 
 |         && rhs->digits<=DECDPUN | 
 |         && rhs->exponent>=set->emin     /* [some normals drop through]  */ | 
 |         && rhs->exponent<=set->emax-set->digits+1 /* [could clamp]  */ | 
 |         && rhs->digits<=reqdigits | 
 |         && lhs->digits<=reqdigits) { | 
 |       Int partial=*lhs->lsu; | 
 |       if (!diffsign) {                  /* adding  */ | 
 |         partial+=*rhs->lsu; | 
 |         if ((partial<=DECDPUNMAX)       /* result fits in unit  */ | 
 |          && (lhs->digits>=DECDPUN ||    /* .. and no digits-count change  */ | 
 |              partial<(Int)powers[lhs->digits])) { /* ..  */ | 
 |           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */ | 
 |           *res->lsu=(Unit)partial;      /* [copy could have overwritten RHS]  */ | 
 |           break; | 
 |           } | 
 |         /* else drop out for careful add  */ | 
 |         } | 
 |        else {                           /* signs differ  */ | 
 |         partial-=*rhs->lsu; | 
 |         if (partial>0) { /* no borrow needed, and non-0 result  */ | 
 |           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */ | 
 |           *res->lsu=(Unit)partial; | 
 |           /* this could have reduced digits [but result>0]  */ | 
 |           res->digits=decGetDigits(res->lsu, D2U(res->digits)); | 
 |           break; | 
 |           } | 
 |         /* else drop out for careful subtract  */ | 
 |         } | 
 |       } | 
 |  | 
 |     /* Now align (pad) the lhs or rhs so they can be added or  */ | 
 |     /* subtracted, as necessary.  If one number is much larger than  */ | 
 |     /* the other (that is, if in plain form there is a least one  */ | 
 |     /* digit between the lowest digit of one and the highest of the  */ | 
 |     /* other) padding with up to DIGITS-1 trailing zeros may be  */ | 
 |     /* needed; then apply rounding (as exotic rounding modes may be  */ | 
 |     /* affected by the residue).  */ | 
 |     rhsshift=0;               /* rhs shift to left (padding) in Units  */ | 
 |     bits=lhs->bits;           /* assume sign is that of LHS  */ | 
 |     mult=1;                   /* likely multiplier  */ | 
 |  | 
 |     /* [if padding==0 the operands are aligned; no padding is needed]  */ | 
 |     if (padding!=0) { | 
 |       /* some padding needed; always pad the RHS, as any required  */ | 
 |       /* padding can then be effected by a simple combination of  */ | 
 |       /* shifts and a multiply  */ | 
 |       Flag swapped=0; | 
 |       if (padding<0) {                  /* LHS needs the padding  */ | 
 |         const decNumber *t; | 
 |         padding=-padding;               /* will be +ve  */ | 
 |         bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS  */ | 
 |         t=lhs; lhs=rhs; rhs=t; | 
 |         swapped=1; | 
 |         } | 
 |  | 
 |       /* If, after pad, rhs would be longer than lhs by digits+1 or  */ | 
 |       /* more then lhs cannot affect the answer, except as a residue,  */ | 
 |       /* so only need to pad up to a length of DIGITS+1.  */ | 
 |       if (rhs->digits+padding > lhs->digits+reqdigits+1) { | 
 |         /* The RHS is sufficient  */ | 
 |         /* for residue use the relative sign indication...  */ | 
 |         Int shift=reqdigits-rhs->digits;     /* left shift needed  */ | 
 |         residue=1;                           /* residue for rounding  */ | 
 |         if (diffsign) residue=-residue;      /* signs differ  */ | 
 |         /* copy, shortening if necessary  */ | 
 |         decCopyFit(res, rhs, set, &residue, status); | 
 |         /* if it was already shorter, then need to pad with zeros  */ | 
 |         if (shift>0) { | 
 |           res->digits=decShiftToMost(res->lsu, res->digits, shift); | 
 |           res->exponent-=shift;              /* adjust the exponent.  */ | 
 |           } | 
 |         /* flip the result sign if unswapped and rhs was negated  */ | 
 |         if (!swapped) res->bits^=negate; | 
 |         decFinish(res, set, &residue, status);    /* done  */ | 
 |         break;} | 
 |  | 
 |       /* LHS digits may affect result  */ | 
 |       rhsshift=D2U(padding+1)-1;        /* this much by Unit shift ..  */ | 
 |       mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication  */ | 
 |       } /* padding needed  */ | 
 |  | 
 |     if (diffsign) mult=-mult;           /* signs differ  */ | 
 |  | 
 |     /* determine the longer operand  */ | 
 |     maxdigits=rhs->digits+padding;      /* virtual length of RHS  */ | 
 |     if (lhs->digits>maxdigits) maxdigits=lhs->digits; | 
 |  | 
 |     /* Decide on the result buffer to use; if possible place directly  */ | 
 |     /* into result.  */ | 
 |     acc=res->lsu;                       /* assume add direct to result  */ | 
 |     /* If destructive overlap, or the number is too long, or a carry or  */ | 
 |     /* borrow to DIGITS+1 might be possible, a buffer must be used.  */ | 
 |     /* [Might be worth more sophisticated tests when maxdigits==reqdigits]  */ | 
 |     if ((maxdigits>=reqdigits)          /* is, or could be, too large  */ | 
 |      || (res==rhs && rhsshift>0)) {     /* destructive overlap  */ | 
 |       /* buffer needed, choose it; units for maxdigits digits will be  */ | 
 |       /* needed, +1 Unit for carry or borrow  */ | 
 |       Int need=D2U(maxdigits)+1; | 
 |       acc=accbuff;                      /* assume use local buffer  */ | 
 |       if (need*sizeof(Unit)>sizeof(accbuff)) { | 
 |         /* printf("malloc add %ld %ld\n", need, sizeof(accbuff));  */ | 
 |         allocacc=(Unit *)malloc(need*sizeof(Unit)); | 
 |         if (allocacc==NULL) {           /* hopeless -- abandon  */ | 
 |           *status|=DEC_Insufficient_storage; | 
 |           break;} | 
 |         acc=allocacc; | 
 |         } | 
 |       } | 
 |  | 
 |     res->bits=(uByte)(bits&DECNEG);     /* it's now safe to overwrite..  */ | 
 |     res->exponent=lhs->exponent;        /* .. operands (even if aliased)  */ | 
 |  | 
 |     #if DECTRACE | 
 |       decDumpAr('A', lhs->lsu, D2U(lhs->digits)); | 
 |       decDumpAr('B', rhs->lsu, D2U(rhs->digits)); | 
 |       printf("  :h: %ld %ld\n", rhsshift, mult); | 
 |     #endif | 
 |  | 
 |     /* add [A+B*m] or subtract [A+B*(-m)]  */ | 
 |     U_ASSERT(rhs->digits > 0); | 
 |     U_ASSERT(lhs->digits > 0); | 
 |     res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), | 
 |                               rhs->lsu, D2U(rhs->digits), | 
 |                               rhsshift, acc, mult) | 
 |                *DECDPUN;           /* [units -> digits]  */ | 
 |     if (res->digits<0) {           /* borrowed...  */ | 
 |       res->digits=-res->digits; | 
 |       res->bits^=DECNEG;           /* flip the sign  */ | 
 |       } | 
 |     #if DECTRACE | 
 |       decDumpAr('+', acc, D2U(res->digits)); | 
 |     #endif | 
 |  | 
 |     /* If a buffer was used the result must be copied back, possibly  */ | 
 |     /* shortening.  (If no buffer was used then the result must have  */ | 
 |     /* fit, so can't need rounding and residue must be 0.)  */ | 
 |     residue=0;                     /* clear accumulator  */ | 
 |     if (acc!=res->lsu) { | 
 |       #if DECSUBSET | 
 |       if (set->extended) {         /* round from first significant digit  */ | 
 |       #endif | 
 |         /* remove leading zeros that were added due to rounding up to  */ | 
 |         /* integral Units -- before the test for rounding.  */ | 
 |         if (res->digits>reqdigits) | 
 |           res->digits=decGetDigits(acc, D2U(res->digits)); | 
 |         decSetCoeff(res, set, acc, res->digits, &residue, status); | 
 |       #if DECSUBSET | 
 |         } | 
 |        else { /* subset arithmetic rounds from original significant digit  */ | 
 |         /* May have an underestimate.  This only occurs when both  */ | 
 |         /* numbers fit in DECDPUN digits and are padding with a  */ | 
 |         /* negative multiple (-10, -100...) and the top digit(s) become  */ | 
 |         /* 0.  (This only matters when using X3.274 rules where the  */ | 
 |         /* leading zero could be included in the rounding.)  */ | 
 |         if (res->digits<maxdigits) { | 
 |           *(acc+D2U(res->digits))=0; /* ensure leading 0 is there  */ | 
 |           res->digits=maxdigits; | 
 |           } | 
 |          else { | 
 |           /* remove leading zeros that added due to rounding up to  */ | 
 |           /* integral Units (but only those in excess of the original  */ | 
 |           /* maxdigits length, unless extended) before test for rounding.  */ | 
 |           if (res->digits>reqdigits) { | 
 |             res->digits=decGetDigits(acc, D2U(res->digits)); | 
 |             if (res->digits<maxdigits) res->digits=maxdigits; | 
 |             } | 
 |           } | 
 |         decSetCoeff(res, set, acc, res->digits, &residue, status); | 
 |         /* Now apply rounding if needed before removing leading zeros.  */ | 
 |         /* This is safe because subnormals are not a possibility  */ | 
 |         if (residue!=0) { | 
 |           decApplyRound(res, set, residue, status); | 
 |           residue=0;                 /* did what needed to be done  */ | 
 |           } | 
 |         } /* subset  */ | 
 |       #endif | 
 |       } /* used buffer  */ | 
 |  | 
 |     /* strip leading zeros [these were left on in case of subset subtract]  */ | 
 |     res->digits=decGetDigits(res->lsu, D2U(res->digits)); | 
 |  | 
 |     /* apply checks and rounding  */ | 
 |     decFinish(res, set, &residue, status); | 
 |  | 
 |     /* "When the sum of two operands with opposite signs is exactly  */ | 
 |     /* zero, the sign of that sum shall be '+' in all rounding modes  */ | 
 |     /* except round toward -Infinity, in which mode that sign shall be  */ | 
 |     /* '-'."  [Subset zeros also never have '-', set by decFinish.]  */ | 
 |     if (ISZERO(res) && diffsign | 
 |      #if DECSUBSET | 
 |      && set->extended | 
 |      #endif | 
 |      && (*status&DEC_Inexact)==0) { | 
 |       if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG;   /* sign -  */ | 
 |                                   else res->bits&=~DECNEG;  /* sign +  */ | 
 |       } | 
 |     } while(0);                              /* end protected  */ | 
 |  | 
 |   if (allocacc!=NULL) free(allocacc);        /* drop any storage used  */ | 
 |   #if DECSUBSET | 
 |   if (allocrhs!=NULL) free(allocrhs);        /* ..  */ | 
 |   if (alloclhs!=NULL) free(alloclhs);        /* ..  */ | 
 |   #endif | 
 |   return res; | 
 |   } /* decAddOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decDivideOp -- division operation                                  */ | 
 | /*                                                                    */ | 
 | /*  This routine performs the calculations for all four division      */ | 
 | /*  operators (divide, divideInteger, remainder, remainderNear).      */ | 
 | /*                                                                    */ | 
 | /*  C=A op B                                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*   op  is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively.    */ | 
 | /*   status is the usual accumulator                                  */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /*   The underlying algorithm of this routine is the same as in the   */ | 
 | /*   1981 S/370 implementation, that is, non-restoring long division  */ | 
 | /*   with bi-unit (rather than bi-digit) estimation for each unit     */ | 
 | /*   multiplier.  In this pseudocode overview, complications for the  */ | 
 | /*   Remainder operators and division residues for exact rounding are */ | 
 | /*   omitted for clarity.                                             */ | 
 | /*                                                                    */ | 
 | /*     Prepare operands and handle special values                     */ | 
 | /*     Test for x/0 and then 0/x                                      */ | 
 | /*     Exp =Exp1 - Exp2                                               */ | 
 | /*     Exp =Exp +len(var1) -len(var2)                                 */ | 
 | /*     Sign=Sign1 * Sign2                                             */ | 
 | /*     Pad accumulator (Var1) to double-length with 0's (pad1)        */ | 
 | /*     Pad Var2 to same length as Var1                                */ | 
 | /*     msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round  */ | 
 | /*     have=0                                                         */ | 
 | /*     Do until (have=digits+1 OR residue=0)                          */ | 
 | /*       if exp<0 then if integer divide/residue then leave           */ | 
 | /*       this_unit=0                                                  */ | 
 | /*       Do forever                                                   */ | 
 | /*          compare numbers                                           */ | 
 | /*          if <0 then leave inner_loop                               */ | 
 | /*          if =0 then (* quick exit without subtract *) do           */ | 
 | /*             this_unit=this_unit+1; output this_unit                */ | 
 | /*             leave outer_loop; end                                  */ | 
 | /*          Compare lengths of numbers (mantissae):                   */ | 
 | /*          If same then tops2=msu2pair -- {units 1&2 of var2}        */ | 
 | /*                  else tops2=msu2plus -- {0, unit 1 of var2}        */ | 
 | /*          tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ | 
 | /*          mult=tops1/tops2  -- Good and safe guess at divisor       */ | 
 | /*          if mult=0 then mult=1                                     */ | 
 | /*          this_unit=this_unit+mult                                  */ | 
 | /*          subtract                                                  */ | 
 | /*          end inner_loop                                            */ | 
 | /*        if have\=0 | this_unit\=0 then do                           */ | 
 | /*          output this_unit                                          */ | 
 | /*          have=have+1; end                                          */ | 
 | /*        var2=var2/10                                                */ | 
 | /*        exp=exp-1                                                   */ | 
 | /*        end outer_loop                                              */ | 
 | /*     exp=exp+1   -- set the proper exponent                         */ | 
 | /*     if have=0 then generate answer=0                               */ | 
 | /*     Return (Result is defined by Var1)                             */ | 
 | /*                                                                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Two working buffers are needed during the division; one (digits+   */ | 
 | /* 1) to accumulate the result, and the other (up to 2*digits+1) for  */ | 
 | /* long subtractions.  These are acc and var1 respectively.           */ | 
 | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ | 
 | /* The static buffers may be larger than might be expected to allow   */ | 
 | /* for calls from higher-level funtions (notable exp).                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decDivideOp(decNumber *res, | 
 |                                const decNumber *lhs, const decNumber *rhs, | 
 |                                decContext *set, Flag op, uInt *status) { | 
 |   #if DECSUBSET | 
 |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */ | 
 |   decNumber *allocrhs=NULL;        /* .., rhs  */ | 
 |   #endif | 
 |   Unit  accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer  */ | 
 |   Unit  *acc=accbuff;              /* -> accumulator array for result  */ | 
 |   Unit  *allocacc=NULL;            /* -> allocated buffer, iff allocated  */ | 
 |   Unit  *accnext;                  /* -> where next digit will go  */ | 
 |   Int   acclength;                 /* length of acc needed [Units]  */ | 
 |   Int   accunits;                  /* count of units accumulated  */ | 
 |   Int   accdigits;                 /* count of digits accumulated  */ | 
 |  | 
 |   Unit  varbuff[SD2U(DECBUFFER*2+DECDPUN)];  /* buffer for var1  */ | 
 |   Unit  *var1=varbuff;             /* -> var1 array for long subtraction  */ | 
 |   Unit  *varalloc=NULL;            /* -> allocated buffer, iff used  */ | 
 |   Unit  *msu1;                     /* -> msu of var1  */ | 
 |  | 
 |   const Unit *var2;                /* -> var2 array  */ | 
 |   const Unit *msu2;                /* -> msu of var2  */ | 
 |   Int   msu2plus;                  /* msu2 plus one [does not vary]  */ | 
 |   eInt  msu2pair;                  /* msu2 pair plus one [does not vary]  */ | 
 |  | 
 |   Int   var1units, var2units;      /* actual lengths  */ | 
 |   Int   var2ulen;                  /* logical length (units)  */ | 
 |   Int   var1initpad=0;             /* var1 initial padding (digits)  */ | 
 |   Int   maxdigits;                 /* longest LHS or required acc length  */ | 
 |   Int   mult;                      /* multiplier for subtraction  */ | 
 |   Unit  thisunit;                  /* current unit being accumulated  */ | 
 |   Int   residue;                   /* for rounding  */ | 
 |   Int   reqdigits=set->digits;     /* requested DIGITS  */ | 
 |   Int   exponent;                  /* working exponent  */ | 
 |   Int   maxexponent=0;             /* DIVIDE maximum exponent if unrounded  */ | 
 |   uByte bits;                      /* working sign  */ | 
 |   Unit  *target;                   /* work  */ | 
 |   const Unit *source;              /* ..  */ | 
 |   uInt  const *pow;                /* ..  */ | 
 |   Int   shift, cut;                /* ..  */ | 
 |   #if DECSUBSET | 
 |   Int   dropped;                   /* work  */ | 
 |   #endif | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operands and set lostDigits status, as needed  */ | 
 |       if (lhs->digits>reqdigits) { | 
 |         alloclhs=decRoundOperand(lhs, set, status); | 
 |         if (alloclhs==NULL) break; | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>reqdigits) { | 
 |         allocrhs=decRoundOperand(rhs, set, status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     bits=(lhs->bits^rhs->bits)&DECNEG;  /* assumed sign for divisions  */ | 
 |  | 
 |     /* handle infinities and NaNs  */ | 
 |     if (SPECIALARGS) {                  /* a special bit set  */ | 
 |       if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */ | 
 |         decNaNs(res, lhs, rhs, set, status); | 
 |         break; | 
 |         } | 
 |       /* one or two infinities  */ | 
 |       if (decNumberIsInfinite(lhs)) {   /* LHS (dividend) is infinite  */ | 
 |         if (decNumberIsInfinite(rhs) || /* two infinities are invalid ..  */ | 
 |             op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity  */ | 
 |           *status|=DEC_Invalid_operation; | 
 |           break; | 
 |           } | 
 |         /* [Note that infinity/0 raises no exceptions]  */ | 
 |         uprv_decNumberZero(res); | 
 |         res->bits=bits|DECINF;          /* set +/- infinity  */ | 
 |         break; | 
 |         } | 
 |        else {                           /* RHS (divisor) is infinite  */ | 
 |         residue=0; | 
 |         if (op&(REMAINDER|REMNEAR)) { | 
 |           /* result is [finished clone of] lhs  */ | 
 |           decCopyFit(res, lhs, set, &residue, status); | 
 |           } | 
 |          else {  /* a division  */ | 
 |           uprv_decNumberZero(res); | 
 |           res->bits=bits;               /* set +/- zero  */ | 
 |           /* for DIVIDEINT the exponent is always 0.  For DIVIDE, result  */ | 
 |           /* is a 0 with infinitely negative exponent, clamped to minimum  */ | 
 |           if (op&DIVIDE) { | 
 |             res->exponent=set->emin-set->digits+1; | 
 |             *status|=DEC_Clamped; | 
 |             } | 
 |           } | 
 |         decFinish(res, set, &residue, status); | 
 |         break; | 
 |         } | 
 |       } | 
 |  | 
 |     /* handle 0 rhs (x/0)  */ | 
 |     if (ISZERO(rhs)) {                  /* x/0 is always exceptional  */ | 
 |       if (ISZERO(lhs)) { | 
 |         uprv_decNumberZero(res);             /* [after lhs test]  */ | 
 |         *status|=DEC_Division_undefined;/* 0/0 will become NaN  */ | 
 |         } | 
 |        else { | 
 |         uprv_decNumberZero(res); | 
 |         if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; | 
 |          else { | 
 |           *status|=DEC_Division_by_zero; /* x/0  */ | 
 |           res->bits=bits|DECINF;         /* .. is +/- Infinity  */ | 
 |           } | 
 |         } | 
 |       break;} | 
 |  | 
 |     /* handle 0 lhs (0/x)  */ | 
 |     if (ISZERO(lhs)) {                  /* 0/x [x!=0]  */ | 
 |       #if DECSUBSET | 
 |       if (!set->extended) uprv_decNumberZero(res); | 
 |        else { | 
 |       #endif | 
 |         if (op&DIVIDE) { | 
 |           residue=0; | 
 |           exponent=lhs->exponent-rhs->exponent; /* ideal exponent  */ | 
 |           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */ | 
 |           res->bits=bits;               /* sign as computed  */ | 
 |           res->exponent=exponent;       /* exponent, too  */ | 
 |           decFinalize(res, set, &residue, status);   /* check exponent  */ | 
 |           } | 
 |          else if (op&DIVIDEINT) { | 
 |           uprv_decNumberZero(res);           /* integer 0  */ | 
 |           res->bits=bits;               /* sign as computed  */ | 
 |           } | 
 |          else {                         /* a remainder  */ | 
 |           exponent=rhs->exponent;       /* [save in case overwrite]  */ | 
 |           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */ | 
 |           if (exponent<res->exponent) res->exponent=exponent; /* use lower  */ | 
 |           } | 
 |       #if DECSUBSET | 
 |         } | 
 |       #endif | 
 |       break;} | 
 |  | 
 |     /* Precalculate exponent.  This starts off adjusted (and hence fits  */ | 
 |     /* in 31 bits) and becomes the usual unadjusted exponent as the  */ | 
 |     /* division proceeds.  The order of evaluation is important, here,  */ | 
 |     /* to avoid wrap.  */ | 
 |     exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); | 
 |  | 
 |     /* If the working exponent is -ve, then some quick exits are  */ | 
 |     /* possible because the quotient is known to be <1  */ | 
 |     /* [for REMNEAR, it needs to be < -1, as -0.5 could need work]  */ | 
 |     if (exponent<0 && !(op==DIVIDE)) { | 
 |       if (op&DIVIDEINT) { | 
 |         uprv_decNumberZero(res);                  /* integer part is 0  */ | 
 |         #if DECSUBSET | 
 |         if (set->extended) | 
 |         #endif | 
 |           res->bits=bits;                    /* set +/- zero  */ | 
 |         break;} | 
 |       /* fastpath remainders so long as the lhs has the smaller  */ | 
 |       /* (or equal) exponent  */ | 
 |       if (lhs->exponent<=rhs->exponent) { | 
 |         if (op&REMAINDER || exponent<-1) { | 
 |           /* It is REMAINDER or safe REMNEAR; result is [finished  */ | 
 |           /* clone of] lhs  (r = x - 0*y)  */ | 
 |           residue=0; | 
 |           decCopyFit(res, lhs, set, &residue, status); | 
 |           decFinish(res, set, &residue, status); | 
 |           break; | 
 |           } | 
 |         /* [unsafe REMNEAR drops through]  */ | 
 |         } | 
 |       } /* fastpaths  */ | 
 |  | 
 |     /* Long (slow) division is needed; roll up the sleeves... */ | 
 |  | 
 |     /* The accumulator will hold the quotient of the division.  */ | 
 |     /* If it needs to be too long for stack storage, then allocate.  */ | 
 |     acclength=D2U(reqdigits+DECDPUN);   /* in Units  */ | 
 |     if (acclength*sizeof(Unit)>sizeof(accbuff)) { | 
 |       /* printf("malloc dvacc %ld units\n", acclength);  */ | 
 |       allocacc=(Unit *)malloc(acclength*sizeof(Unit)); | 
 |       if (allocacc==NULL) {             /* hopeless -- abandon  */ | 
 |         *status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       acc=allocacc;                     /* use the allocated space  */ | 
 |       } | 
 |  | 
 |     /* var1 is the padded LHS ready for subtractions.  */ | 
 |     /* If it needs to be too long for stack storage, then allocate.  */ | 
 |     /* The maximum units needed for var1 (long subtraction) is:  */ | 
 |     /* Enough for  */ | 
 |     /*     (rhs->digits+reqdigits-1) -- to allow full slide to right  */ | 
 |     /* or  (lhs->digits)             -- to allow for long lhs  */ | 
 |     /* whichever is larger  */ | 
 |     /*   +1                -- for rounding of slide to right  */ | 
 |     /*   +1                -- for leading 0s  */ | 
 |     /*   +1                -- for pre-adjust if a remainder or DIVIDEINT  */ | 
 |     /* [Note: unused units do not participate in decUnitAddSub data]  */ | 
 |     maxdigits=rhs->digits+reqdigits-1; | 
 |     if (lhs->digits>maxdigits) maxdigits=lhs->digits; | 
 |     var1units=D2U(maxdigits)+2; | 
 |     /* allocate a guard unit above msu1 for REMAINDERNEAR  */ | 
 |     if (!(op&DIVIDE)) var1units++; | 
 |     if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { | 
 |       /* printf("malloc dvvar %ld units\n", var1units+1);  */ | 
 |       varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); | 
 |       if (varalloc==NULL) {             /* hopeless -- abandon  */ | 
 |         *status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       var1=varalloc;                    /* use the allocated space  */ | 
 |       } | 
 |  | 
 |     /* Extend the lhs and rhs to full long subtraction length.  The lhs  */ | 
 |     /* is truly extended into the var1 buffer, with 0 padding, so a  */ | 
 |     /* subtract in place is always possible.  The rhs (var2) has  */ | 
 |     /* virtual padding (implemented by decUnitAddSub).  */ | 
 |     /* One guard unit was allocated above msu1 for rem=rem+rem in  */ | 
 |     /* REMAINDERNEAR.  */ | 
 |     msu1=var1+var1units-1;              /* msu of var1  */ | 
 |     source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array  */ | 
 |     for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; | 
 |     for (; target>=var1; target--) *target=0; | 
 |  | 
 |     /* rhs (var2) is left-aligned with var1 at the start  */ | 
 |     var2ulen=var1units;                 /* rhs logical length (units)  */ | 
 |     var2units=D2U(rhs->digits);         /* rhs actual length (units)  */ | 
 |     var2=rhs->lsu;                      /* -> rhs array  */ | 
 |     msu2=var2+var2units-1;              /* -> msu of var2 [never changes]  */ | 
 |     /* now set up the variables which will be used for estimating the  */ | 
 |     /* multiplication factor.  If these variables are not exact, add  */ | 
 |     /* 1 to make sure that the multiplier is never overestimated.  */ | 
 |     msu2plus=*msu2;                     /* it's value ..  */ | 
 |     if (var2units>1) msu2plus++;        /* .. +1 if any more  */ | 
 |     msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair ..  */ | 
 |     if (var2units>1) {                  /* .. [else treat 2nd as 0]  */ | 
 |       msu2pair+=*(msu2-1);              /* ..  */ | 
 |       if (var2units>2) msu2pair++;      /* .. +1 if any more  */ | 
 |       } | 
 |  | 
 |     /* The calculation is working in units, which may have leading zeros,  */ | 
 |     /* but the exponent was calculated on the assumption that they are  */ | 
 |     /* both left-aligned.  Adjust the exponent to compensate: add the  */ | 
 |     /* number of leading zeros in var1 msu and subtract those in var2 msu.  */ | 
 |     /* [This is actually done by counting the digits and negating, as  */ | 
 |     /* lead1=DECDPUN-digits1, and similarly for lead2.]  */ | 
 |     for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; | 
 |     for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; | 
 |  | 
 |     /* Now, if doing an integer divide or remainder, ensure that  */ | 
 |     /* the result will be Unit-aligned.  To do this, shift the var1  */ | 
 |     /* accumulator towards least if need be.  (It's much easier to  */ | 
 |     /* do this now than to reassemble the residue afterwards, if  */ | 
 |     /* doing a remainder.)  Also ensure the exponent is not negative.  */ | 
 |     if (!(op&DIVIDE)) { | 
 |       Unit *u;                          /* work  */ | 
 |       /* save the initial 'false' padding of var1, in digits  */ | 
 |       var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; | 
 |       /* Determine the shift to do.  */ | 
 |       if (exponent<0) cut=-exponent; | 
 |        else cut=DECDPUN-exponent%DECDPUN; | 
 |       decShiftToLeast(var1, var1units, cut); | 
 |       exponent+=cut;                    /* maintain numerical value  */ | 
 |       var1initpad-=cut;                 /* .. and reduce padding  */ | 
 |       /* clean any most-significant units which were just emptied  */ | 
 |       for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; | 
 |       } /* align  */ | 
 |      else { /* is DIVIDE  */ | 
 |       maxexponent=lhs->exponent-rhs->exponent;    /* save  */ | 
 |       /* optimization: if the first iteration will just produce 0,  */ | 
 |       /* preadjust to skip it [valid for DIVIDE only]  */ | 
 |       if (*msu1<*msu2) { | 
 |         var2ulen--;                     /* shift down  */ | 
 |         exponent-=DECDPUN;              /* update the exponent  */ | 
 |         } | 
 |       } | 
 |  | 
 |     /* ---- start the long-division loops ------------------------------  */ | 
 |     accunits=0;                         /* no units accumulated yet  */ | 
 |     accdigits=0;                        /* .. or digits  */ | 
 |     accnext=acc+acclength-1;            /* -> msu of acc [NB: allows digits+1]  */ | 
 |     for (;;) {                          /* outer forever loop  */ | 
 |       thisunit=0;                       /* current unit assumed 0  */ | 
 |       /* find the next unit  */ | 
 |       for (;;) {                        /* inner forever loop  */ | 
 |         /* strip leading zero units [from either pre-adjust or from  */ | 
 |         /* subtract last time around].  Leave at least one unit.  */ | 
 |         for (; *msu1==0 && msu1>var1; msu1--) var1units--; | 
 |  | 
 |         if (var1units<var2ulen) break;       /* var1 too low for subtract  */ | 
 |         if (var1units==var2ulen) {           /* unit-by-unit compare needed  */ | 
 |           /* compare the two numbers, from msu  */ | 
 |           const Unit *pv1, *pv2; | 
 |           Unit v2;                           /* units to compare  */ | 
 |           pv2=msu2;                          /* -> msu  */ | 
 |           for (pv1=msu1; ; pv1--, pv2--) { | 
 |             /* v1=*pv1 -- always OK  */ | 
 |             v2=0;                            /* assume in padding  */ | 
 |             if (pv2>=var2) v2=*pv2;          /* in range  */ | 
 |             if (*pv1!=v2) break;             /* no longer the same  */ | 
 |             if (pv1==var1) break;            /* done; leave pv1 as is  */ | 
 |             } | 
 |           /* here when all inspected or a difference seen  */ | 
 |           if (*pv1<v2) break;                /* var1 too low to subtract  */ | 
 |           if (*pv1==v2) {                    /* var1 == var2  */ | 
 |             /* reach here if var1 and var2 are identical; subtraction  */ | 
 |             /* would increase digit by one, and the residue will be 0 so  */ | 
 |             /* the calculation is done; leave the loop with residue=0.  */ | 
 |             thisunit++;                      /* as though subtracted  */ | 
 |             *var1=0;                         /* set var1 to 0  */ | 
 |             var1units=1;                     /* ..  */ | 
 |             break;  /* from inner  */ | 
 |             } /* var1 == var2  */ | 
 |           /* *pv1>v2.  Prepare for real subtraction; the lengths are equal  */ | 
 |           /* Estimate the multiplier (there's always a msu1-1)...  */ | 
 |           /* Bring in two units of var2 to provide a good estimate.  */ | 
 |           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); | 
 |           } /* lengths the same  */ | 
 |          else { /* var1units > var2ulen, so subtraction is safe  */ | 
 |           /* The var2 msu is one unit towards the lsu of the var1 msu,  */ | 
 |           /* so only one unit for var2 can be used.  */ | 
 |           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); | 
 |           } | 
 |         if (mult==0) mult=1;                 /* must always be at least 1  */ | 
 |         /* subtraction needed; var1 is > var2  */ | 
 |         thisunit=(Unit)(thisunit+mult);      /* accumulate  */ | 
 |         /* subtract var1-var2, into var1; only the overlap needs  */ | 
 |         /* processing, as this is an in-place calculation  */ | 
 |         shift=var2ulen-var2units; | 
 |         #if DECTRACE | 
 |           decDumpAr('1', &var1[shift], var1units-shift); | 
 |           decDumpAr('2', var2, var2units); | 
 |           printf("m=%ld\n", -mult); | 
 |         #endif | 
 |         decUnitAddSub(&var1[shift], var1units-shift, | 
 |                       var2, var2units, 0, | 
 |                       &var1[shift], -mult); | 
 |         #if DECTRACE | 
 |           decDumpAr('#', &var1[shift], var1units-shift); | 
 |         #endif | 
 |         /* var1 now probably has leading zeros; these are removed at the  */ | 
 |         /* top of the inner loop.  */ | 
 |         } /* inner loop  */ | 
 |  | 
 |       /* The next unit has been calculated in full; unless it's a  */ | 
 |       /* leading zero, add to acc  */ | 
 |       if (accunits!=0 || thisunit!=0) {      /* is first or non-zero  */ | 
 |         *accnext=thisunit;                   /* store in accumulator  */ | 
 |         /* account exactly for the new digits  */ | 
 |         if (accunits==0) { | 
 |           accdigits++;                       /* at least one  */ | 
 |           for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; | 
 |           } | 
 |          else accdigits+=DECDPUN; | 
 |         accunits++;                          /* update count  */ | 
 |         accnext--;                           /* ready for next  */ | 
 |         if (accdigits>reqdigits) break;      /* have enough digits  */ | 
 |         } | 
 |  | 
 |       /* if the residue is zero, the operation is done (unless divide  */ | 
 |       /* or divideInteger and still not enough digits yet)  */ | 
 |       if (*var1==0 && var1units==1) {        /* residue is 0  */ | 
 |         if (op&(REMAINDER|REMNEAR)) break; | 
 |         if ((op&DIVIDE) && (exponent<=maxexponent)) break; | 
 |         /* [drop through if divideInteger]  */ | 
 |         } | 
 |       /* also done enough if calculating remainder or integer  */ | 
 |       /* divide and just did the last ('units') unit  */ | 
 |       if (exponent==0 && !(op&DIVIDE)) break; | 
 |  | 
 |       /* to get here, var1 is less than var2, so divide var2 by the per-  */ | 
 |       /* Unit power of ten and go for the next digit  */ | 
 |       var2ulen--;                            /* shift down  */ | 
 |       exponent-=DECDPUN;                     /* update the exponent  */ | 
 |       } /* outer loop  */ | 
 |  | 
 |     /* ---- division is complete ---------------------------------------  */ | 
 |     /* here: acc      has at least reqdigits+1 of good results (or fewer  */ | 
 |     /*                if early stop), starting at accnext+1 (its lsu)  */ | 
 |     /*       var1     has any residue at the stopping point  */ | 
 |     /*       accunits is the number of digits collected in acc  */ | 
 |     if (accunits==0) {             /* acc is 0  */ | 
 |       accunits=1;                  /* show have a unit ..  */ | 
 |       accdigits=1;                 /* ..  */ | 
 |       *accnext=0;                  /* .. whose value is 0  */ | 
 |       } | 
 |      else accnext++;               /* back to last placed  */ | 
 |     /* accnext now -> lowest unit of result  */ | 
 |  | 
 |     residue=0;                     /* assume no residue  */ | 
 |     if (op&DIVIDE) { | 
 |       /* record the presence of any residue, for rounding  */ | 
 |       if (*var1!=0 || var1units>1) residue=1; | 
 |        else { /* no residue  */ | 
 |         /* Had an exact division; clean up spurious trailing 0s.  */ | 
 |         /* There will be at most DECDPUN-1, from the final multiply,  */ | 
 |         /* and then only if the result is non-0 (and even) and the  */ | 
 |         /* exponent is 'loose'.  */ | 
 |         #if DECDPUN>1 | 
 |         Unit lsu=*accnext; | 
 |         if (!(lsu&0x01) && (lsu!=0)) { | 
 |           /* count the trailing zeros  */ | 
 |           Int drop=0; | 
 |           for (;; drop++) {    /* [will terminate because lsu!=0]  */ | 
 |             if (exponent>=maxexponent) break;     /* don't chop real 0s  */ | 
 |             #if DECDPUN<=4 | 
 |               if ((lsu-QUOT10(lsu, drop+1) | 
 |                   *powers[drop+1])!=0) break;     /* found non-0 digit  */ | 
 |             #else | 
 |               if (lsu%powers[drop+1]!=0) break;   /* found non-0 digit  */ | 
 |             #endif | 
 |             exponent++; | 
 |             } | 
 |           if (drop>0) { | 
 |             accunits=decShiftToLeast(accnext, accunits, drop); | 
 |             accdigits=decGetDigits(accnext, accunits); | 
 |             accunits=D2U(accdigits); | 
 |             /* [exponent was adjusted in the loop]  */ | 
 |             } | 
 |           } /* neither odd nor 0  */ | 
 |         #endif | 
 |         } /* exact divide  */ | 
 |       } /* divide  */ | 
 |      else /* op!=DIVIDE */ { | 
 |       /* check for coefficient overflow  */ | 
 |       if (accdigits+exponent>reqdigits) { | 
 |         *status|=DEC_Division_impossible; | 
 |         break; | 
 |         } | 
 |       if (op & (REMAINDER|REMNEAR)) { | 
 |         /* [Here, the exponent will be 0, because var1 was adjusted  */ | 
 |         /* appropriately.]  */ | 
 |         Int postshift;                       /* work  */ | 
 |         Flag wasodd=0;                       /* integer was odd  */ | 
 |         Unit *quotlsu;                       /* for save  */ | 
 |         Int  quotdigits;                     /* ..  */ | 
 |  | 
 |         bits=lhs->bits;                      /* remainder sign is always as lhs  */ | 
 |  | 
 |         /* Fastpath when residue is truly 0 is worthwhile [and  */ | 
 |         /* simplifies the code below]  */ | 
 |         if (*var1==0 && var1units==1) {      /* residue is 0  */ | 
 |           Int exp=lhs->exponent;             /* save min(exponents)  */ | 
 |           if (rhs->exponent<exp) exp=rhs->exponent; | 
 |           uprv_decNumberZero(res);                /* 0 coefficient  */ | 
 |           #if DECSUBSET | 
 |           if (set->extended) | 
 |           #endif | 
 |           res->exponent=exp;                 /* .. with proper exponent  */ | 
 |           res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */ | 
 |           decFinish(res, set, &residue, status);   /* might clamp  */ | 
 |           break; | 
 |           } | 
 |         /* note if the quotient was odd  */ | 
 |         if (*accnext & 0x01) wasodd=1;       /* acc is odd  */ | 
 |         quotlsu=accnext;                     /* save in case need to reinspect  */ | 
 |         quotdigits=accdigits;                /* ..  */ | 
 |  | 
 |         /* treat the residue, in var1, as the value to return, via acc  */ | 
 |         /* calculate the unused zero digits.  This is the smaller of:  */ | 
 |         /*   var1 initial padding (saved above)  */ | 
 |         /*   var2 residual padding, which happens to be given by:  */ | 
 |         postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; | 
 |         /* [the 'exponent' term accounts for the shifts during divide]  */ | 
 |         if (var1initpad<postshift) postshift=var1initpad; | 
 |  | 
 |         /* shift var1 the requested amount, and adjust its digits  */ | 
 |         var1units=decShiftToLeast(var1, var1units, postshift); | 
 |         accnext=var1; | 
 |         accdigits=decGetDigits(var1, var1units); | 
 |         accunits=D2U(accdigits); | 
 |  | 
 |         exponent=lhs->exponent;         /* exponent is smaller of lhs & rhs  */ | 
 |         if (rhs->exponent<exponent) exponent=rhs->exponent; | 
 |  | 
 |         /* Now correct the result if doing remainderNear; if it  */ | 
 |         /* (looking just at coefficients) is > rhs/2, or == rhs/2 and  */ | 
 |         /* the integer was odd then the result should be rem-rhs.  */ | 
 |         if (op&REMNEAR) { | 
 |           Int compare, tarunits;        /* work  */ | 
 |           Unit *up;                     /* ..  */ | 
 |           /* calculate remainder*2 into the var1 buffer (which has  */ | 
 |           /* 'headroom' of an extra unit and hence enough space)  */ | 
 |           /* [a dedicated 'double' loop would be faster, here]  */ | 
 |           tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, | 
 |                                  0, accnext, 1); | 
 |           /* decDumpAr('r', accnext, tarunits);  */ | 
 |  | 
 |           /* Here, accnext (var1) holds tarunits Units with twice the  */ | 
 |           /* remainder's coefficient, which must now be compared to the  */ | 
 |           /* RHS.  The remainder's exponent may be smaller than the RHS's.  */ | 
 |           compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), | 
 |                                  rhs->exponent-exponent); | 
 |           if (compare==BADINT) {             /* deep trouble  */ | 
 |             *status|=DEC_Insufficient_storage; | 
 |             break;} | 
 |  | 
 |           /* now restore the remainder by dividing by two; the lsu  */ | 
 |           /* is known to be even.  */ | 
 |           for (up=accnext; up<accnext+tarunits; up++) { | 
 |             Int half;              /* half to add to lower unit  */ | 
 |             half=*up & 0x01; | 
 |             *up/=2;                /* [shift]  */ | 
 |             if (!half) continue; | 
 |             *(up-1)+=(DECDPUNMAX+1)/2; | 
 |             } | 
 |           /* [accunits still describes the original remainder length]  */ | 
 |  | 
 |           if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed  */ | 
 |             Int exp, expunits, exprem;       /* work  */ | 
 |             /* This is effectively causing round-up of the quotient,  */ | 
 |             /* so if it was the rare case where it was full and all  */ | 
 |             /* nines, it would overflow and hence division-impossible  */ | 
 |             /* should be raised  */ | 
 |             Flag allnines=0;                 /* 1 if quotient all nines  */ | 
 |             if (quotdigits==reqdigits) {     /* could be borderline  */ | 
 |               for (up=quotlsu; ; up++) { | 
 |                 if (quotdigits>DECDPUN) { | 
 |                   if (*up!=DECDPUNMAX) break;/* non-nines  */ | 
 |                   } | 
 |                  else {                      /* this is the last Unit  */ | 
 |                   if (*up==powers[quotdigits]-1) allnines=1; | 
 |                   break; | 
 |                   } | 
 |                 quotdigits-=DECDPUN;         /* checked those digits  */ | 
 |                 } /* up  */ | 
 |               } /* borderline check  */ | 
 |             if (allnines) { | 
 |               *status|=DEC_Division_impossible; | 
 |               break;} | 
 |  | 
 |             /* rem-rhs is needed; the sign will invert.  Again, var1  */ | 
 |             /* can safely be used for the working Units array.  */ | 
 |             exp=rhs->exponent-exponent;      /* RHS padding needed  */ | 
 |             /* Calculate units and remainder from exponent.  */ | 
 |             expunits=exp/DECDPUN; | 
 |             exprem=exp%DECDPUN; | 
 |             /* subtract [A+B*(-m)]; the result will always be negative  */ | 
 |             accunits=-decUnitAddSub(accnext, accunits, | 
 |                                     rhs->lsu, D2U(rhs->digits), | 
 |                                     expunits, accnext, -(Int)powers[exprem]); | 
 |             accdigits=decGetDigits(accnext, accunits); /* count digits exactly  */ | 
 |             accunits=D2U(accdigits);    /* and recalculate the units for copy  */ | 
 |             /* [exponent is as for original remainder]  */ | 
 |             bits^=DECNEG;               /* flip the sign  */ | 
 |             } | 
 |           } /* REMNEAR  */ | 
 |         } /* REMAINDER or REMNEAR  */ | 
 |       } /* not DIVIDE  */ | 
 |  | 
 |     /* Set exponent and bits  */ | 
 |     res->exponent=exponent; | 
 |     res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */ | 
 |  | 
 |     /* Now the coefficient.  */ | 
 |     decSetCoeff(res, set, accnext, accdigits, &residue, status); | 
 |  | 
 |     decFinish(res, set, &residue, status);   /* final cleanup  */ | 
 |  | 
 |     #if DECSUBSET | 
 |     /* If a divide then strip trailing zeros if subset [after round]  */ | 
 |     if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped); | 
 |     #endif | 
 |     } while(0);                              /* end protected  */ | 
 |  | 
 |   if (varalloc!=NULL) free(varalloc);   /* drop any storage used  */ | 
 |   if (allocacc!=NULL) free(allocacc);   /* ..  */ | 
 |   #if DECSUBSET | 
 |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */ | 
 |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */ | 
 |   #endif | 
 |   return res; | 
 |   } /* decDivideOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decMultiplyOp -- multiplication operation                          */ | 
 | /*                                                                    */ | 
 | /*  This routine performs the multiplication C=A x B.                 */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X*X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*   status is the usual accumulator                                  */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* 'Classic' multiplication is used rather than Karatsuba, as the     */ | 
 | /* latter would give only a minor improvement for the short numbers   */ | 
 | /* expected to be handled most (and uses much more memory).           */ | 
 | /*                                                                    */ | 
 | /* There are two major paths here: the general-purpose ('old code')   */ | 
 | /* path which handles all DECDPUN values, and a fastpath version      */ | 
 | /* which is used if 64-bit ints are available, DECDPUN<=4, and more   */ | 
 | /* than two calls to decUnitAddSub would be made.                     */ | 
 | /*                                                                    */ | 
 | /* The fastpath version lumps units together into 8-digit or 9-digit  */ | 
 | /* chunks, and also uses a lazy carry strategy to minimise expensive  */ | 
 | /* 64-bit divisions.  The chunks are then broken apart again into     */ | 
 | /* units for continuing processing.  Despite this overhead, the       */ | 
 | /* fastpath can speed up some 16-digit operations by 10x (and much    */ | 
 | /* more for higher-precision calculations).                           */ | 
 | /*                                                                    */ | 
 | /* A buffer always has to be used for the accumulator; in the         */ | 
 | /* fastpath, buffers are also always needed for the chunked copies of */ | 
 | /* of the operand coefficients.                                       */ | 
 | /* Static buffers are larger than needed just for multiply, to allow  */ | 
 | /* for calls from other operations (notably exp).                     */ | 
 | /* ------------------------------------------------------------------ */ | 
 | #define FASTMUL (DECUSE64 && DECDPUN<5) | 
 | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, | 
 |                                  const decNumber *rhs, decContext *set, | 
 |                                  uInt *status) { | 
 |   Int    accunits;                 /* Units of accumulator in use  */ | 
 |   Int    exponent;                 /* work  */ | 
 |   Int    residue=0;                /* rounding residue  */ | 
 |   uByte  bits;                     /* result sign  */ | 
 |   Unit  *acc;                      /* -> accumulator Unit array  */ | 
 |   Int    needbytes;                /* size calculator  */ | 
 |   void  *allocacc=NULL;            /* -> allocated accumulator, iff allocated  */ | 
 |   Unit  accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0,  */ | 
 |                                    /* *4 for calls from other operations)  */ | 
 |   const Unit *mer, *mermsup;       /* work  */ | 
 |   Int   madlength;                 /* Units in multiplicand  */ | 
 |   Int   shift;                     /* Units to shift multiplicand by  */ | 
 |  | 
 |   #if FASTMUL | 
 |     /* if DECDPUN is 1 or 3 work in base 10**9, otherwise  */ | 
 |     /* (DECDPUN is 2 or 4) then work in base 10**8  */ | 
 |     #if DECDPUN & 1                /* odd  */ | 
 |       #define FASTBASE 1000000000  /* base  */ | 
 |       #define FASTDIGS          9  /* digits in base  */ | 
 |       #define FASTLAZY         18  /* carry resolution point [1->18]  */ | 
 |     #else | 
 |       #define FASTBASE  100000000 | 
 |       #define FASTDIGS          8 | 
 |       #define FASTLAZY       1844  /* carry resolution point [1->1844]  */ | 
 |     #endif | 
 |     /* three buffers are used, two for chunked copies of the operands  */ | 
 |     /* (base 10**8 or base 10**9) and one base 2**64 accumulator with  */ | 
 |     /* lazy carry evaluation  */ | 
 |     uInt   zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */ | 
 |     uInt  *zlhi=zlhibuff;                 /* -> lhs array  */ | 
 |     uInt  *alloclhi=NULL;                 /* -> allocated buffer, iff allocated  */ | 
 |     uInt   zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */ | 
 |     uInt  *zrhi=zrhibuff;                 /* -> rhs array  */ | 
 |     uInt  *allocrhi=NULL;                 /* -> allocated buffer, iff allocated  */ | 
 |     uLong  zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0)  */ | 
 |     /* [allocacc is shared for both paths, as only one will run]  */ | 
 |     uLong *zacc=zaccbuff;          /* -> accumulator array for exact result  */ | 
 |     #if DECDPUN==1 | 
 |     Int    zoff;                   /* accumulator offset  */ | 
 |     #endif | 
 |     uInt  *lip, *rip;              /* item pointers  */ | 
 |     uInt  *lmsi, *rmsi;            /* most significant items  */ | 
 |     Int    ilhs, irhs, iacc;       /* item counts in the arrays  */ | 
 |     Int    lazy;                   /* lazy carry counter  */ | 
 |     uLong  lcarry;                 /* uLong carry  */ | 
 |     uInt   carry;                  /* carry (NB not uLong)  */ | 
 |     Int    count;                  /* work  */ | 
 |     const  Unit *cup;              /* ..  */ | 
 |     Unit  *up;                     /* ..  */ | 
 |     uLong *lp;                     /* ..  */ | 
 |     Int    p;                      /* ..  */ | 
 |   #endif | 
 |  | 
 |   #if DECSUBSET | 
 |     decNumber *alloclhs=NULL;      /* -> allocated buffer, iff allocated  */ | 
 |     decNumber *allocrhs=NULL;      /* -> allocated buffer, iff allocated  */ | 
 |   #endif | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   /* precalculate result sign  */ | 
 |   bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); | 
 |  | 
 |   /* handle infinities and NaNs  */ | 
 |   if (SPECIALARGS) {               /* a special bit set  */ | 
 |     if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */ | 
 |       decNaNs(res, lhs, rhs, set, status); | 
 |       return res;} | 
 |     /* one or two infinities; Infinity * 0 is invalid  */ | 
 |     if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) | 
 |       ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { | 
 |       *status|=DEC_Invalid_operation; | 
 |       return res;} | 
 |     uprv_decNumberZero(res); | 
 |     res->bits=bits|DECINF;         /* infinity  */ | 
 |     return res;} | 
 |  | 
 |   /* For best speed, as in DMSRCN [the original Rexx numerics  */ | 
 |   /* module], use the shorter number as the multiplier (rhs) and  */ | 
 |   /* the longer as the multiplicand (lhs) to minimise the number of  */ | 
 |   /* adds (partial products)  */ | 
 |   if (lhs->digits<rhs->digits) {   /* swap...  */ | 
 |     const decNumber *hold=lhs; | 
 |     lhs=rhs; | 
 |     rhs=hold; | 
 |     } | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operands and set lostDigits status, as needed  */ | 
 |       if (lhs->digits>set->digits) { | 
 |         alloclhs=decRoundOperand(lhs, set, status); | 
 |         if (alloclhs==NULL) break; | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     #if FASTMUL                    /* fastpath can be used  */ | 
 |     /* use the fast path if there are enough digits in the shorter  */ | 
 |     /* operand to make the setup and takedown worthwhile  */ | 
 |     #define NEEDTWO (DECDPUN*2)    /* within two decUnitAddSub calls  */ | 
 |     if (rhs->digits>NEEDTWO) {     /* use fastpath...  */ | 
 |       /* calculate the number of elements in each array  */ | 
 |       ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling]  */ | 
 |       irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* ..  */ | 
 |       iacc=ilhs+irhs; | 
 |  | 
 |       /* allocate buffers if required, as usual  */ | 
 |       needbytes=ilhs*sizeof(uInt); | 
 |       if (needbytes>(Int)sizeof(zlhibuff)) { | 
 |         alloclhi=(uInt *)malloc(needbytes); | 
 |         zlhi=alloclhi;} | 
 |       needbytes=irhs*sizeof(uInt); | 
 |       if (needbytes>(Int)sizeof(zrhibuff)) { | 
 |         allocrhi=(uInt *)malloc(needbytes); | 
 |         zrhi=allocrhi;} | 
 |  | 
 |       /* Allocating the accumulator space needs a special case when  */ | 
 |       /* DECDPUN=1 because when converting the accumulator to Units  */ | 
 |       /* after the multiplication each 8-byte item becomes 9 1-byte  */ | 
 |       /* units.  Therefore iacc extra bytes are needed at the front  */ | 
 |       /* (rounded up to a multiple of 8 bytes), and the uLong  */ | 
 |       /* accumulator starts offset the appropriate number of units  */ | 
 |       /* to the right to avoid overwrite during the unchunking.  */ | 
 |  | 
 |       /* Make sure no signed int overflow below. This is always true */ | 
 |       /* if the given numbers have less digits than DEC_MAX_DIGITS. */ | 
 |       U_ASSERT((uint32_t)iacc <= INT32_MAX/sizeof(uLong)); | 
 |       needbytes=iacc*sizeof(uLong); | 
 |       #if DECDPUN==1 | 
 |       zoff=(iacc+7)/8;        /* items to offset by  */ | 
 |       needbytes+=zoff*8; | 
 |       #endif | 
 |       if (needbytes>(Int)sizeof(zaccbuff)) { | 
 |         allocacc=(uLong *)malloc(needbytes); | 
 |         zacc=(uLong *)allocacc;} | 
 |       if (zlhi==NULL||zrhi==NULL||zacc==NULL) { | 
 |         *status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |  | 
 |       acc=(Unit *)zacc;       /* -> target Unit array  */ | 
 |       #if DECDPUN==1 | 
 |       zacc+=zoff;             /* start uLong accumulator to right  */ | 
 |       #endif | 
 |  | 
 |       /* assemble the chunked copies of the left and right sides  */ | 
 |       for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) | 
 |         for (p=0, *lip=0; p<FASTDIGS && count>0; | 
 |              p+=DECDPUN, cup++, count-=DECDPUN) | 
 |           *lip+=*cup*powers[p]; | 
 |       lmsi=lip-1;     /* save -> msi  */ | 
 |       for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) | 
 |         for (p=0, *rip=0; p<FASTDIGS && count>0; | 
 |              p+=DECDPUN, cup++, count-=DECDPUN) | 
 |           *rip+=*cup*powers[p]; | 
 |       rmsi=rip-1;     /* save -> msi  */ | 
 |  | 
 |       /* zero the accumulator  */ | 
 |       for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; | 
 |  | 
 |       /* Start the multiplication */ | 
 |       /* Resolving carries can dominate the cost of accumulating the  */ | 
 |       /* partial products, so this is only done when necessary.  */ | 
 |       /* Each uLong item in the accumulator can hold values up to  */ | 
 |       /* 2**64-1, and each partial product can be as large as  */ | 
 |       /* (10**FASTDIGS-1)**2.  When FASTDIGS=9, this can be added to  */ | 
 |       /* itself 18.4 times in a uLong without overflowing, so during  */ | 
 |       /* the main calculation resolution is carried out every 18th  */ | 
 |       /* add -- every 162 digits.  Similarly, when FASTDIGS=8, the  */ | 
 |       /* partial products can be added to themselves 1844.6 times in  */ | 
 |       /* a uLong without overflowing, so intermediate carry  */ | 
 |       /* resolution occurs only every 14752 digits.  Hence for common  */ | 
 |       /* short numbers usually only the one final carry resolution  */ | 
 |       /* occurs.  */ | 
 |       /* (The count is set via FASTLAZY to simplify experiments to  */ | 
 |       /* measure the value of this approach: a 35% improvement on a  */ | 
 |       /* [34x34] multiply.)  */ | 
 |       lazy=FASTLAZY;                         /* carry delay count  */ | 
 |       for (rip=zrhi; rip<=rmsi; rip++) {     /* over each item in rhs  */ | 
 |         lp=zacc+(rip-zrhi);                  /* where to add the lhs  */ | 
 |         for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs  */ | 
 |           *lp+=(uLong)(*lip)*(*rip);         /* [this should in-line]  */ | 
 |           } /* lip loop  */ | 
 |         lazy--; | 
 |         if (lazy>0 && rip!=rmsi) continue; | 
 |         lazy=FASTLAZY;                       /* reset delay count  */ | 
 |         /* spin up the accumulator resolving overflows  */ | 
 |         for (lp=zacc; lp<zacc+iacc; lp++) { | 
 |           if (*lp<FASTBASE) continue;        /* it fits  */ | 
 |           lcarry=*lp/FASTBASE;               /* top part [slow divide]  */ | 
 |           /* lcarry can exceed 2**32-1, so check again; this check  */ | 
 |           /* and occasional extra divide (slow) is well worth it, as  */ | 
 |           /* it allows FASTLAZY to be increased to 18 rather than 4  */ | 
 |           /* in the FASTDIGS=9 case  */ | 
 |           if (lcarry<FASTBASE) carry=(uInt)lcarry;  /* [usual]  */ | 
 |            else { /* two-place carry [fairly rare]  */ | 
 |             uInt carry2=(uInt)(lcarry/FASTBASE);    /* top top part  */ | 
 |             *(lp+2)+=carry2;                        /* add to item+2  */ | 
 |             *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow]  */ | 
 |             carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline]  */ | 
 |             } | 
 |           *(lp+1)+=carry;                    /* add to item above [inline]  */ | 
 |           *lp-=((uLong)FASTBASE*carry);      /* [inline]  */ | 
 |           } /* carry resolution  */ | 
 |         } /* rip loop  */ | 
 |  | 
 |       /* The multiplication is complete; time to convert back into  */ | 
 |       /* units.  This can be done in-place in the accumulator and in  */ | 
 |       /* 32-bit operations, because carries were resolved after the  */ | 
 |       /* final add.  This needs N-1 divides and multiplies for  */ | 
 |       /* each item in the accumulator (which will become up to N  */ | 
 |       /* units, where 2<=N<=9).  */ | 
 |       for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { | 
 |         uInt item=(uInt)*lp;                 /* decapitate to uInt  */ | 
 |         for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { | 
 |           uInt part=item/(DECDPUNMAX+1); | 
 |           *up=(Unit)(item-(part*(DECDPUNMAX+1))); | 
 |           item=part; | 
 |           } /* p  */ | 
 |         *up=(Unit)item; up++;                /* [final needs no division]  */ | 
 |         } /* lp  */ | 
 |       accunits = static_cast<int32_t>(up-acc);                       /* count of units  */ | 
 |       } | 
 |      else { /* here to use units directly, without chunking ['old code']  */ | 
 |     #endif | 
 |  | 
 |       /* if accumulator will be too long for local storage, then allocate  */ | 
 |       acc=accbuff;                 /* -> assume buffer for accumulator  */ | 
 |       needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); | 
 |       if (needbytes>(Int)sizeof(accbuff)) { | 
 |         allocacc=(Unit *)malloc(needbytes); | 
 |         if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} | 
 |         acc=(Unit *)allocacc;                /* use the allocated space  */ | 
 |         } | 
 |  | 
 |       /* Now the main long multiplication loop */ | 
 |       /* Unlike the equivalent in the IBM Java implementation, there  */ | 
 |       /* is no advantage in calculating from msu to lsu.  So, do it  */ | 
 |       /* by the book, as it were.  */ | 
 |       /* Each iteration calculates ACC=ACC+MULTAND*MULT  */ | 
 |       accunits=1;                  /* accumulator starts at '0'  */ | 
 |       *acc=0;                      /* .. (lsu=0)  */ | 
 |       shift=0;                     /* no multiplicand shift at first  */ | 
 |       madlength=D2U(lhs->digits);  /* this won't change  */ | 
 |       mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier  */ | 
 |  | 
 |       for (mer=rhs->lsu; mer<mermsup; mer++) { | 
 |         /* Here, *mer is the next Unit in the multiplier to use  */ | 
 |         /* If non-zero [optimization] add it...  */ | 
 |         if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, | 
 |                                             lhs->lsu, madlength, 0, | 
 |                                             &acc[shift], *mer) | 
 |                                             + shift; | 
 |          else { /* extend acc with a 0; it will be used shortly  */ | 
 |           *(acc+accunits)=0;       /* [this avoids length of <=0 later]  */ | 
 |           accunits++; | 
 |           } | 
 |         /* multiply multiplicand by 10**DECDPUN for next Unit to left  */ | 
 |         shift++;                   /* add this for 'logical length'  */ | 
 |         } /* n  */ | 
 |     #if FASTMUL | 
 |       } /* unchunked units  */ | 
 |     #endif | 
 |     /* common end-path  */ | 
 |     #if DECTRACE | 
 |       decDumpAr('*', acc, accunits);         /* Show exact result  */ | 
 |     #endif | 
 |  | 
 |     /* acc now contains the exact result of the multiplication,  */ | 
 |     /* possibly with a leading zero unit; build the decNumber from  */ | 
 |     /* it, noting if any residue  */ | 
 |     res->bits=bits;                          /* set sign  */ | 
 |     res->digits=decGetDigits(acc, accunits); /* count digits exactly  */ | 
 |  | 
 |     /* There can be a 31-bit wrap in calculating the exponent.  */ | 
 |     /* This can only happen if both input exponents are negative and  */ | 
 |     /* both their magnitudes are large.  If there was a wrap, set a  */ | 
 |     /* safe very negative exponent, from which decFinalize() will  */ | 
 |     /* raise a hard underflow shortly.  */ | 
 |     exponent=lhs->exponent+rhs->exponent;    /* calculate exponent  */ | 
 |     if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) | 
 |       exponent=-2*DECNUMMAXE;                /* force underflow  */ | 
 |     res->exponent=exponent;                  /* OK to overwrite now  */ | 
 |  | 
 |  | 
 |     /* Set the coefficient.  If any rounding, residue records  */ | 
 |     decSetCoeff(res, set, acc, res->digits, &residue, status); | 
 |     decFinish(res, set, &residue, status);   /* final cleanup  */ | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */ | 
 |   #if DECSUBSET | 
 |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */ | 
 |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */ | 
 |   #endif | 
 |   #if FASTMUL | 
 |   if (allocrhi!=NULL) free(allocrhi);   /* ..  */ | 
 |   if (alloclhi!=NULL) free(alloclhi);   /* ..  */ | 
 |   #endif | 
 |   return res; | 
 |   } /* decMultiplyOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decExpOp -- effect exponentiation                                  */ | 
 | /*                                                                    */ | 
 | /*   This computes C = exp(A)                                         */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits. status is updated but    */ | 
 | /* not set.                                                           */ | 
 | /*                                                                    */ | 
 | /* Restrictions:                                                      */ | 
 | /*                                                                    */ | 
 | /*   digits, emax, and -emin in the context must be less than         */ | 
 | /*   2*DEC_MAX_MATH (1999998), and the rhs must be within these       */ | 
 | /*   bounds or a zero.  This is an internal routine, so these         */ | 
 | /*   restrictions are contractual and not enforced.                   */ | 
 | /*                                                                    */ | 
 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /*                                                                    */ | 
 | /* Finite results will always be full precision and Inexact, except   */ | 
 | /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This approach used here is similar to the algorithm described in   */ | 
 | /*                                                                    */ | 
 | /*   Variable Precision Exponential Function, T. E. Hull and          */ | 
 | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ | 
 | /*   pp79-91, ACM, June 1986.                                         */ | 
 | /*                                                                    */ | 
 | /* with the main difference being that the iterations in the series   */ | 
 | /* evaluation are terminated dynamically (which does not require the  */ | 
 | /* extra variable-precision variables which are expensive in this     */ | 
 | /* context).                                                          */ | 
 | /*                                                                    */ | 
 | /* The error analysis in Hull & Abrham's paper applies except for the */ | 
 | /* round-off error accumulation during the series evaluation.  This   */ | 
 | /* code does not precalculate the number of iterations and so cannot  */ | 
 | /* use Horner's scheme.  Instead, the accumulation is done at double- */ | 
 | /* precision, which ensures that the additions of the terms are exact */ | 
 | /* and do not accumulate round-off (and any round-off errors in the   */ | 
 | /* terms themselves move 'to the right' faster than they can          */ | 
 | /* accumulate).  This code also extends the calculation by allowing,  */ | 
 | /* in the spirit of other decNumber operators, the input to be more   */ | 
 | /* precise than the result (the precision used is based on the more   */ | 
 | /* precise of the input or requested result).                         */ | 
 | /*                                                                    */ | 
 | /* Implementation notes:                                              */ | 
 | /*                                                                    */ | 
 | /* 1. This is separated out as decExpOp so it can be called from      */ | 
 | /*    other Mathematical functions (notably Ln) with a wider range    */ | 
 | /*    than normal.  In particular, it can handle the slightly wider   */ | 
 | /*    (double) range needed by Ln (which has to be able to calculate  */ | 
 | /*    exp(-x) where x can be the tiniest number (Ntiny).              */ | 
 | /*                                                                    */ | 
 | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop         */ | 
 | /*    iterations by appoximately a third with additional (although    */ | 
 | /*    diminishing) returns as the range is reduced to even smaller    */ | 
 | /*    fractions.  However, h (the power of 10 used to correct the     */ | 
 | /*    result at the end, see below) must be kept <=8 as otherwise     */ | 
 | /*    the final result cannot be computed.  Hence the leverage is a   */ | 
 | /*    sliding value (8-h), where potentially the range is reduced     */ | 
 | /*    more for smaller values.                                        */ | 
 | /*                                                                    */ | 
 | /*    The leverage that can be applied in this way is severely        */ | 
 | /*    limited by the cost of the raise-to-the power at the end,       */ | 
 | /*    which dominates when the number of iterations is small (less    */ | 
 | /*    than ten) or when rhs is short.  As an example, the adjustment  */ | 
 | /*    x**10,000,000 needs 31 multiplications, all but one full-width. */ | 
 | /*                                                                    */ | 
 | /* 3. The restrictions (especially precision) could be raised with    */ | 
 | /*    care, but the full decNumber range seems very hard within the   */ | 
 | /*    32-bit limits.                                                  */ | 
 | /*                                                                    */ | 
 | /* 4. The working precisions for the static buffers are twice the     */ | 
 | /*    obvious size to allow for calls from decNumberPower.            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | decNumber * decExpOp(decNumber *res, const decNumber *rhs, | 
 |                          decContext *set, uInt *status) { | 
 |   uInt ignore=0;                   /* working status  */ | 
 |   Int h;                           /* adjusted exponent for 0.xxxx  */ | 
 |   Int p;                           /* working precision  */ | 
 |   Int residue;                     /* rounding residue  */ | 
 |   uInt needbytes;                  /* for space calculations  */ | 
 |   const decNumber *x=rhs;          /* (may point to safe copy later)  */ | 
 |   decContext aset, tset, dset;     /* working contexts  */ | 
 |   Int comp;                        /* work  */ | 
 |  | 
 |   /* the argument is often copied to normalize it, so (unusually) it  */ | 
 |   /* is treated like other buffers, using DECBUFFER, +1 in case  */ | 
 |   /* DECBUFFER is 0  */ | 
 |   decNumber bufr[D2N(DECBUFFER*2+1)]; | 
 |   decNumber *allocrhs=NULL;        /* non-NULL if rhs buffer allocated  */ | 
 |  | 
 |   /* the working precision will be no more than set->digits+8+1  */ | 
 |   /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER  */ | 
 |   /* is 0 (and twice that for the accumulator)  */ | 
 |  | 
 |   /* buffer for t, term (working precision plus)  */ | 
 |   decNumber buft[D2N(DECBUFFER*2+9+1)]; | 
 |   decNumber *allocbuft=NULL;       /* -> allocated buft, iff allocated  */ | 
 |   decNumber *t=buft;               /* term  */ | 
 |   /* buffer for a, accumulator (working precision * 2), at least 9  */ | 
 |   decNumber bufa[D2N(DECBUFFER*4+18+1)]; | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *a=bufa;               /* accumulator  */ | 
 |   /* decNumber for the divisor term; this needs at most 9 digits  */ | 
 |   /* and so can be fixed size [16 so can use standard context]  */ | 
 |   decNumber bufd[D2N(16)]; | 
 |   decNumber *d=bufd;               /* divisor  */ | 
 |   decNumber numone;                /* constant 1  */ | 
 |  | 
 |   #if DECCHECK | 
 |   Int iterations=0;                /* for later sanity check  */ | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                                  /* protect allocated storage  */ | 
 |     if (SPECIALARG) {                   /* handle infinities and NaNs  */ | 
 |       if (decNumberIsInfinite(rhs)) {   /* an infinity  */ | 
 |         if (decNumberIsNegative(rhs))   /* -Infinity -> +0  */ | 
 |           uprv_decNumberZero(res); | 
 |          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */ | 
 |         } | 
 |        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */ | 
 |       break;} | 
 |  | 
 |     if (ISZERO(rhs)) {                  /* zeros -> exact 1  */ | 
 |       uprv_decNumberZero(res);               /* make clean 1  */ | 
 |       *res->lsu=1;                      /* ..  */ | 
 |       break;}                           /* [no status to set]  */ | 
 |  | 
 |     /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path  */ | 
 |     /* positive and negative tiny cases which will result in inexact  */ | 
 |     /* 1.  This also allows the later add-accumulate to always be  */ | 
 |     /* exact (because its length will never be more than twice the  */ | 
 |     /* working precision).  */ | 
 |     /* The comparator (tiny) needs just one digit, so use the  */ | 
 |     /* decNumber d for it (reused as the divisor, etc., below); its  */ | 
 |     /* exponent is such that if x is positive it will have  */ | 
 |     /* set->digits-1 zeros between the decimal point and the digit,  */ | 
 |     /* which is 4, and if x is negative one more zero there as the  */ | 
 |     /* more precise result will be of the form 0.9999999 rather than  */ | 
 |     /* 1.0000001.  Hence, tiny will be 0.0000004  if digits=7 and x>0  */ | 
 |     /* or 0.00000004 if digits=7 and x<0.  If RHS not larger than  */ | 
 |     /* this then the result will be 1.000000  */ | 
 |     uprv_decNumberZero(d);                   /* clean  */ | 
 |     *d->lsu=4;                          /* set 4 ..  */ | 
 |     d->exponent=-set->digits;           /* * 10**(-d)  */ | 
 |     if (decNumberIsNegative(rhs)) d->exponent--;  /* negative case  */ | 
 |     comp=decCompare(d, rhs, 1);         /* signless compare  */ | 
 |     if (comp==BADINT) { | 
 |       *status|=DEC_Insufficient_storage; | 
 |       break;} | 
 |     if (comp>=0) {                      /* rhs < d  */ | 
 |       Int shift=set->digits-1; | 
 |       uprv_decNumberZero(res);               /* set 1  */ | 
 |       *res->lsu=1;                      /* ..  */ | 
 |       res->digits=decShiftToMost(res->lsu, 1, shift); | 
 |       res->exponent=-shift;                  /* make 1.0000...  */ | 
 |       *status|=DEC_Inexact | DEC_Rounded;    /* .. inexactly  */ | 
 |       break;} /* tiny  */ | 
 |  | 
 |     /* set up the context to be used for calculating a, as this is  */ | 
 |     /* used on both paths below  */ | 
 |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); | 
 |     /* accumulator bounds are as requested (could underflow)  */ | 
 |     aset.emax=set->emax;                /* usual bounds  */ | 
 |     aset.emin=set->emin;                /* ..  */ | 
 |     aset.clamp=0;                       /* and no concrete format  */ | 
 |  | 
 |     /* calculate the adjusted (Hull & Abrham) exponent (where the  */ | 
 |     /* decimal point is just to the left of the coefficient msd)  */ | 
 |     h=rhs->exponent+rhs->digits; | 
 |     /* if h>8 then 10**h cannot be calculated safely; however, when  */ | 
 |     /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at  */ | 
 |     /* least 6.59E+4342944, so (due to the restriction on Emax/Emin)  */ | 
 |     /* overflow (or underflow to 0) is guaranteed -- so this case can  */ | 
 |     /* be handled by simply forcing the appropriate excess  */ | 
 |     if (h>8) {                          /* overflow/underflow  */ | 
 |       /* set up here so Power call below will over or underflow to  */ | 
 |       /* zero; set accumulator to either 2 or 0.02  */ | 
 |       /* [stack buffer for a is always big enough for this]  */ | 
 |       uprv_decNumberZero(a); | 
 |       *a->lsu=2;                        /* not 1 but < exp(1)  */ | 
 |       if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02  */ | 
 |       h=8;                              /* clamp so 10**h computable  */ | 
 |       p=9;                              /* set a working precision  */ | 
 |       } | 
 |      else {                             /* h<=8  */ | 
 |       Int maxlever=(rhs->digits>8?1:0); | 
 |       /* [could/should increase this for precisions >40 or so, too]  */ | 
 |  | 
 |       /* if h is 8, cannot normalize to a lower upper limit because  */ | 
 |       /* the final result will not be computable (see notes above),  */ | 
 |       /* but leverage can be applied whenever h is less than 8.  */ | 
 |       /* Apply as much as possible, up to a MAXLEVER digits, which  */ | 
 |       /* sets the tradeoff against the cost of the later a**(10**h).  */ | 
 |       /* As h is increased, the working precision below also  */ | 
 |       /* increases to compensate for the "constant digits at the  */ | 
 |       /* front" effect.  */ | 
 |       Int lever=MINI(8-h, maxlever);    /* leverage attainable  */ | 
 |       Int use=-rhs->digits-lever;       /* exponent to use for RHS  */ | 
 |       h+=lever;                         /* apply leverage selected  */ | 
 |       if (h<0) {                        /* clamp  */ | 
 |         use+=h;                         /* [may end up subnormal]  */ | 
 |         h=0; | 
 |         } | 
 |       /* Take a copy of RHS if it needs normalization (true whenever x>=1)  */ | 
 |       if (rhs->exponent!=use) { | 
 |         decNumber *newrhs=bufr;         /* assume will fit on stack  */ | 
 |         needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
 |         if (needbytes>sizeof(bufr)) {   /* need malloc space  */ | 
 |           allocrhs=(decNumber *)malloc(needbytes); | 
 |           if (allocrhs==NULL) {         /* hopeless -- abandon  */ | 
 |             *status|=DEC_Insufficient_storage; | 
 |             break;} | 
 |           newrhs=allocrhs;              /* use the allocated space  */ | 
 |           } | 
 |         uprv_decNumberCopy(newrhs, rhs);     /* copy to safe space  */ | 
 |         newrhs->exponent=use;           /* normalize; now <1  */ | 
 |         x=newrhs;                       /* ready for use  */ | 
 |         /* decNumberShow(x);  */ | 
 |         } | 
 |  | 
 |       /* Now use the usual power series to evaluate exp(x).  The  */ | 
 |       /* series starts as 1 + x + x^2/2 ... so prime ready for the  */ | 
 |       /* third term by setting the term variable t=x, the accumulator  */ | 
 |       /* a=1, and the divisor d=2.  */ | 
 |  | 
 |       /* First determine the working precision.  From Hull & Abrham  */ | 
 |       /* this is set->digits+h+2.  However, if x is 'over-precise' we  */ | 
 |       /* need to allow for all its digits to potentially participate  */ | 
 |       /* (consider an x where all the excess digits are 9s) so in  */ | 
 |       /* this case use x->digits+h+2  */ | 
 |       p=MAXI(x->digits, set->digits)+h+2;    /* [h<=8]  */ | 
 |  | 
 |       /* a and t are variable precision, and depend on p, so space  */ | 
 |       /* must be allocated for them if necessary  */ | 
 |  | 
 |       /* the accumulator needs to be able to hold 2p digits so that  */ | 
 |       /* the additions on the second and subsequent iterations are  */ | 
 |       /* sufficiently exact.  */ | 
 |       needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); | 
 |       if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
 |         allocbufa=(decNumber *)malloc(needbytes); | 
 |         if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
 |           *status|=DEC_Insufficient_storage; | 
 |           break;} | 
 |         a=allocbufa;                    /* use the allocated space  */ | 
 |         } | 
 |       /* the term needs to be able to hold p digits (which is  */ | 
 |       /* guaranteed to be larger than x->digits, so the initial copy  */ | 
 |       /* is safe); it may also be used for the raise-to-power  */ | 
 |       /* calculation below, which needs an extra two digits  */ | 
 |       needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); | 
 |       if (needbytes>sizeof(buft)) {     /* need malloc space  */ | 
 |         allocbuft=(decNumber *)malloc(needbytes); | 
 |         if (allocbuft==NULL) {          /* hopeless -- abandon  */ | 
 |           *status|=DEC_Insufficient_storage; | 
 |           break;} | 
 |         t=allocbuft;                    /* use the allocated space  */ | 
 |         } | 
 |  | 
 |       uprv_decNumberCopy(t, x);              /* term=x  */ | 
 |       uprv_decNumberZero(a); *a->lsu=1;      /* accumulator=1  */ | 
 |       uprv_decNumberZero(d); *d->lsu=2;      /* divisor=2  */ | 
 |       uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment  */ | 
 |  | 
 |       /* set up the contexts for calculating a, t, and d  */ | 
 |       uprv_decContextDefault(&tset, DEC_INIT_DECIMAL64); | 
 |       dset=tset; | 
 |       /* accumulator bounds are set above, set precision now  */ | 
 |       aset.digits=p*2;                  /* double  */ | 
 |       /* term bounds avoid any underflow or overflow  */ | 
 |       tset.digits=p; | 
 |       tset.emin=DEC_MIN_EMIN;           /* [emax is plenty]  */ | 
 |       /* [dset.digits=16, etc., are sufficient]  */ | 
 |  | 
 |       /* finally ready to roll  */ | 
 |       for (;;) { | 
 |         #if DECCHECK | 
 |         iterations++; | 
 |         #endif | 
 |         /* only the status from the accumulation is interesting  */ | 
 |         /* [but it should remain unchanged after first add]  */ | 
 |         decAddOp(a, a, t, &aset, 0, status);           /* a=a+t  */ | 
 |         decMultiplyOp(t, t, x, &tset, &ignore);        /* t=t*x  */ | 
 |         decDivideOp(t, t, d, &tset, DIVIDE, &ignore);  /* t=t/d  */ | 
 |         /* the iteration ends when the term cannot affect the result,  */ | 
 |         /* if rounded to p digits, which is when its value is smaller  */ | 
 |         /* than the accumulator by p+1 digits.  There must also be  */ | 
 |         /* full precision in a.  */ | 
 |         if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) | 
 |             && (a->digits>=p)) break; | 
 |         decAddOp(d, d, &numone, &dset, 0, &ignore);    /* d=d+1  */ | 
 |         } /* iterate  */ | 
 |  | 
 |       #if DECCHECK | 
 |       /* just a sanity check; comment out test to show always  */ | 
 |       if (iterations>p+3) | 
 |         printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
 |                (LI)iterations, (LI)*status, (LI)p, (LI)x->digits); | 
 |       #endif | 
 |       } /* h<=8  */ | 
 |  | 
 |     /* apply postconditioning: a=a**(10**h) -- this is calculated  */ | 
 |     /* at a slightly higher precision than Hull & Abrham suggest  */ | 
 |     if (h>0) { | 
 |       Int seenbit=0;               /* set once a 1-bit is seen  */ | 
 |       Int i;                       /* counter  */ | 
 |       Int n=powers[h];             /* always positive  */ | 
 |       aset.digits=p+2;             /* sufficient precision  */ | 
 |       /* avoid the overhead and many extra digits of decNumberPower  */ | 
 |       /* as all that is needed is the short 'multipliers' loop; here  */ | 
 |       /* accumulate the answer into t  */ | 
 |       uprv_decNumberZero(t); *t->lsu=1; /* acc=1  */ | 
 |       for (i=1;;i++){              /* for each bit [top bit ignored]  */ | 
 |         /* abandon if have had overflow or terminal underflow  */ | 
 |         if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */ | 
 |           if (*status&DEC_Overflow || ISZERO(t)) break;} | 
 |         n=n<<1;                    /* move next bit to testable position  */ | 
 |         if (n<0) {                 /* top bit is set  */ | 
 |           seenbit=1;               /* OK, have a significant bit  */ | 
 |           decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x  */ | 
 |           } | 
 |         if (i==31) break;          /* that was the last bit  */ | 
 |         if (!seenbit) continue;    /* no need to square 1  */ | 
 |         decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square]  */ | 
 |         } /*i*/ /* 32 bits  */ | 
 |       /* decNumberShow(t);  */ | 
 |       a=t;                         /* and carry on using t instead of a  */ | 
 |       } | 
 |  | 
 |     /* Copy and round the result to res  */ | 
 |     residue=1;                          /* indicate dirt to right ..  */ | 
 |     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */ | 
 |     aset.digits=set->digits;            /* [use default rounding]  */ | 
 |     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */ | 
 |     decFinish(res, set, &residue, status);       /* cleanup/set flags  */ | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */ | 
 |   if (allocbufa!=NULL) free(allocbufa); /* ..  */ | 
 |   if (allocbuft!=NULL) free(allocbuft); /* ..  */ | 
 |   /* [status is handled by caller]  */ | 
 |   return res; | 
 |   } /* decExpOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* Initial-estimate natural logarithm table                           */ | 
 | /*                                                                    */ | 
 | /*   LNnn -- 90-entry 16-bit table for values from .10 through .99.   */ | 
 | /*           The result is a 4-digit encode of the coefficient (c=the */ | 
 | /*           top 14 bits encoding 0-9999) and a 2-digit encode of the */ | 
 | /*           exponent (e=the bottom 2 bits encoding 0-3)              */ | 
 | /*                                                                    */ | 
 | /*           The resulting value is given by:                         */ | 
 | /*                                                                    */ | 
 | /*             v = -c * 10**(-e-3)                                    */ | 
 | /*                                                                    */ | 
 | /*           where e and c are extracted from entry k = LNnn[x-10]    */ | 
 | /*           where x is truncated (NB) into the range 10 through 99,  */ | 
 | /*           and then c = k>>2 and e = k&3.                           */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static const uShort LNnn[90]={9016,  8652,  8316,  8008,  7724,  7456,  7208, | 
 |   6972,  6748,  6540,  6340,  6148,  5968,  5792,  5628,  5464,  5312, | 
 |   5164,  5020,  4884,  4748,  4620,  4496,  4376,  4256,  4144,  4032, | 
 |  39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, | 
 |  29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, | 
 |  22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, | 
 |  15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, | 
 |  10197,  9685,  9177,  8677,  8185,  7697,  7213,  6737,  6269,  5801, | 
 |   5341,  4889,  4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, | 
 |  10130,  6046, 20055}; | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decLnOp -- effect natural logarithm                                */ | 
 | /*                                                                    */ | 
 | /*   This computes C = ln(A)                                          */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A                                */ | 
 | /*   rhs is A                                                         */ | 
 | /*   set is the context; note that rounding mode has no effect        */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Notable cases:                                                     */ | 
 | /*   A<0 -> Invalid                                                   */ | 
 | /*   A=0 -> -Infinity (Exact)                                         */ | 
 | /*   A=+Infinity -> +Infinity (Exact)                                 */ | 
 | /*   A=1 exactly -> 0 (Exact)                                         */ | 
 | /*                                                                    */ | 
 | /* Restrictions (as for Exp):                                         */ | 
 | /*                                                                    */ | 
 | /*   digits, emax, and -emin in the context must be less than         */ | 
 | /*   DEC_MAX_MATH+11 (1000010), and the rhs must be within these      */ | 
 | /*   bounds or a zero.  This is an internal routine, so these         */ | 
 | /*   restrictions are contractual and not enforced.                   */ | 
 | /*                                                                    */ | 
 | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */ | 
 | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
 | /* error in rare cases.                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* The result is calculated using Newton's method, with each          */ | 
 | /* iteration calculating a' = a + x * exp(-a) - 1.  See, for example, */ | 
 | /* Epperson 1989.                                                     */ | 
 | /*                                                                    */ | 
 | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ | 
 | /* This has to be calculated at the sum of the precision of x and the */ | 
 | /* working precision.                                                 */ | 
 | /*                                                                    */ | 
 | /* Implementation notes:                                              */ | 
 | /*                                                                    */ | 
 | /* 1. This is separated out as decLnOp so it can be called from       */ | 
 | /*    other Mathematical functions (e.g., Log 10) with a wider range  */ | 
 | /*    than normal.  In particular, it can handle the slightly wider   */ | 
 | /*    (+9+2) range needed by a power function.                        */ | 
 | /*                                                                    */ | 
 | /* 2. The speed of this function is about 10x slower than exp, as     */ | 
 | /*    it typically needs 4-6 iterations for short numbers, and the    */ | 
 | /*    extra precision needed adds a squaring effect, twice.           */ | 
 | /*                                                                    */ | 
 | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40,   */ | 
 | /*    as these are common requests.  ln(10) is used by log10(x).      */ | 
 | /*                                                                    */ | 
 | /* 4. An iteration might be saved by widening the LNnn table, and     */ | 
 | /*    would certainly save at least one if it were made ten times     */ | 
 | /*    bigger, too (for truncated fractions 0.100 through 0.999).      */ | 
 | /*    However, for most practical evaluations, at least four or five  */ | 
 | /*    iterations will be neede -- so this would only speed up by      */ | 
 | /*    20-25% and that probably does not justify increasing the table  */ | 
 | /*    size.                                                           */ | 
 | /*                                                                    */ | 
 | /* 5. The static buffers are larger than might be expected to allow   */ | 
 | /*    for calls from decNumberPower.                                  */ | 
 | /* ------------------------------------------------------------------ */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic push | 
 | #pragma GCC diagnostic ignored "-Warray-bounds" | 
 | #endif | 
 | decNumber * decLnOp(decNumber *res, const decNumber *rhs, | 
 |                     decContext *set, uInt *status) { | 
 |   uInt ignore=0;                   /* working status accumulator  */ | 
 |   uInt needbytes;                  /* for space calculations  */ | 
 |   Int residue;                     /* rounding residue  */ | 
 |   Int r;                           /* rhs=f*10**r [see below]  */ | 
 |   Int p;                           /* working precision  */ | 
 |   Int pp;                          /* precision for iteration  */ | 
 |   Int t;                           /* work  */ | 
 |  | 
 |   /* buffers for a (accumulator, typically precision+2) and b  */ | 
 |   /* (adjustment calculator, same size)  */ | 
 |   decNumber bufa[D2N(DECBUFFER+12)]; | 
 |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *a=bufa;               /* accumulator/work  */ | 
 |   decNumber bufb[D2N(DECBUFFER*2+2)]; | 
 |   decNumber *allocbufb=NULL;       /* -> allocated bufa, iff allocated  */ | 
 |   decNumber *b=bufb;               /* adjustment/work  */ | 
 |  | 
 |   decNumber  numone;               /* constant 1  */ | 
 |   decNumber  cmp;                  /* work  */ | 
 |   decContext aset, bset;           /* working contexts  */ | 
 |  | 
 |   #if DECCHECK | 
 |   Int iterations=0;                /* for later sanity check  */ | 
 |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                                  /* protect allocated storage  */ | 
 |     if (SPECIALARG) {                   /* handle infinities and NaNs  */ | 
 |       if (decNumberIsInfinite(rhs)) {   /* an infinity  */ | 
 |         if (decNumberIsNegative(rhs))   /* -Infinity -> error  */ | 
 |           *status|=DEC_Invalid_operation; | 
 |          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */ | 
 |         } | 
 |        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */ | 
 |       break;} | 
 |  | 
 |     if (ISZERO(rhs)) {                  /* +/- zeros -> -Infinity  */ | 
 |       uprv_decNumberZero(res);               /* make clean  */ | 
 |       res->bits=DECINF|DECNEG;          /* set - infinity  */ | 
 |       break;}                           /* [no status to set]  */ | 
 |  | 
 |     /* Non-zero negatives are bad...  */ | 
 |     if (decNumberIsNegative(rhs)) {     /* -x -> error  */ | 
 |       *status|=DEC_Invalid_operation; | 
 |       break;} | 
 |  | 
 |     /* Here, rhs is positive, finite, and in range  */ | 
 |  | 
 |     /* lookaside fastpath code for ln(2) and ln(10) at common lengths  */ | 
 |     if (rhs->exponent==0 && set->digits<=40) { | 
 |       #if DECDPUN==1 | 
 |       if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10)  */ | 
 |       #else | 
 |       if (rhs->lsu[0]==10 && rhs->digits==2) {                  /* ln(10)  */ | 
 |       #endif | 
 |         aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | 
 |         #define LN10 "2.302585092994045684017991454684364207601" | 
 |         uprv_decNumberFromString(res, LN10, &aset); | 
 |         *status|=(DEC_Inexact | DEC_Rounded); /* is inexact  */ | 
 |         break;} | 
 |       if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2)  */ | 
 |         aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | 
 |         #define LN2 "0.6931471805599453094172321214581765680755" | 
 |         uprv_decNumberFromString(res, LN2, &aset); | 
 |         *status|=(DEC_Inexact | DEC_Rounded); | 
 |         break;} | 
 |       } /* integer and short  */ | 
 |  | 
 |     /* Determine the working precision.  This is normally the  */ | 
 |     /* requested precision + 2, with a minimum of 9.  However, if  */ | 
 |     /* the rhs is 'over-precise' then allow for all its digits to  */ | 
 |     /* potentially participate (consider an rhs where all the excess  */ | 
 |     /* digits are 9s) so in this case use rhs->digits+2.  */ | 
 |     p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; | 
 |  | 
 |     /* Allocate space for the accumulator and the high-precision  */ | 
 |     /* adjustment calculator, if necessary.  The accumulator must  */ | 
 |     /* be able to hold p digits, and the adjustment up to  */ | 
 |     /* rhs->digits+p digits.  They are also made big enough for 16  */ | 
 |     /* digits so that they can be used for calculating the initial  */ | 
 |     /* estimate.  */ | 
 |     needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); | 
 |     if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
 |       allocbufa=(decNumber *)malloc(needbytes); | 
 |       if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
 |         *status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       a=allocbufa;                    /* use the allocated space  */ | 
 |       } | 
 |     pp=p+rhs->digits; | 
 |     needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); | 
 |     if (needbytes>sizeof(bufb)) {     /* need malloc space  */ | 
 |       allocbufb=(decNumber *)malloc(needbytes); | 
 |       if (allocbufb==NULL) {          /* hopeless -- abandon  */ | 
 |         *status|=DEC_Insufficient_storage; | 
 |         break;} | 
 |       b=allocbufb;                    /* use the allocated space  */ | 
 |       } | 
 |  | 
 |     /* Prepare an initial estimate in acc. Calculate this by  */ | 
 |     /* considering the coefficient of x to be a normalized fraction,  */ | 
 |     /* f, with the decimal point at far left and multiplied by  */ | 
 |     /* 10**r.  Then, rhs=f*10**r and 0.1<=f<1, and  */ | 
 |     /*   ln(x) = ln(f) + ln(10)*r  */ | 
 |     /* Get the initial estimate for ln(f) from a small lookup  */ | 
 |     /* table (see above) indexed by the first two digits of f,  */ | 
 |     /* truncated.  */ | 
 |  | 
 |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended  */ | 
 |     r=rhs->exponent+rhs->digits;        /* 'normalised' exponent  */ | 
 |     uprv_decNumberFromInt32(a, r);           /* a=r  */ | 
 |     uprv_decNumberFromInt32(b, 2302585);     /* b=ln(10) (2.302585)  */ | 
 |     b->exponent=-6;                     /*  ..  */ | 
 |     decMultiplyOp(a, a, b, &aset, &ignore);  /* a=a*b  */ | 
 |     /* now get top two digits of rhs into b by simple truncate and  */ | 
 |     /* force to integer  */ | 
 |     residue=0;                          /* (no residue)  */ | 
 |     aset.digits=2; aset.round=DEC_ROUND_DOWN; | 
 |     decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten  */ | 
 |     b->exponent=0;                      /* make integer  */ | 
 |     t=decGetInt(b);                     /* [cannot fail]  */ | 
 |     if (t<10) t=X10(t);                 /* adjust single-digit b  */ | 
 |     t=LNnn[t-10];                       /* look up ln(b)  */ | 
 |     uprv_decNumberFromInt32(b, t>>2);        /* b=ln(b) coefficient  */ | 
 |     b->exponent=-(t&3)-3;               /* set exponent  */ | 
 |     b->bits=DECNEG;                     /* ln(0.10)->ln(0.99) always -ve  */ | 
 |     aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore  */ | 
 |     decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b  */ | 
 |     /* the initial estimate is now in a, with up to 4 digits correct.  */ | 
 |     /* When rhs is at or near Nmax the estimate will be low, so we  */ | 
 |     /* will approach it from below, avoiding overflow when calling exp.  */ | 
 |  | 
 |     uprv_decNumberZero(&numone); *numone.lsu=1;   /* constant 1 for adjustment  */ | 
 |  | 
 |     /* accumulator bounds are as requested (could underflow, but  */ | 
 |     /* cannot overflow)  */ | 
 |     aset.emax=set->emax; | 
 |     aset.emin=set->emin; | 
 |     aset.clamp=0;                       /* no concrete format  */ | 
 |     /* set up a context to be used for the multiply and subtract  */ | 
 |     bset=aset; | 
 |     bset.emax=DEC_MAX_MATH*2;           /* use double bounds for the  */ | 
 |     bset.emin=-DEC_MAX_MATH*2;          /* adjustment calculation  */ | 
 |                                         /* [see decExpOp call below]  */ | 
 |     /* for each iteration double the number of digits to calculate,  */ | 
 |     /* up to a maximum of p  */ | 
 |     pp=9;                               /* initial precision  */ | 
 |     /* [initially 9 as then the sequence starts 7+2, 16+2, and  */ | 
 |     /* 34+2, which is ideal for standard-sized numbers]  */ | 
 |     aset.digits=pp;                     /* working context  */ | 
 |     bset.digits=pp+rhs->digits;         /* wider context  */ | 
 |     for (;;) {                          /* iterate  */ | 
 |       #if DECCHECK | 
 |       iterations++; | 
 |       if (iterations>24) break;         /* consider 9 * 2**24  */ | 
 |       #endif | 
 |       /* calculate the adjustment (exp(-a)*x-1) into b.  This is a  */ | 
 |       /* catastrophic subtraction but it really is the difference  */ | 
 |       /* from 1 that is of interest.  */ | 
 |       /* Use the internal entry point to Exp as it allows the double  */ | 
 |       /* range for calculating exp(-a) when a is the tiniest subnormal.  */ | 
 |       a->bits^=DECNEG;                  /* make -a  */ | 
 |       decExpOp(b, a, &bset, &ignore);   /* b=exp(-a)  */ | 
 |       a->bits^=DECNEG;                  /* restore sign of a  */ | 
 |       /* now multiply by rhs and subtract 1, at the wider precision  */ | 
 |       decMultiplyOp(b, b, rhs, &bset, &ignore);        /* b=b*rhs  */ | 
 |       decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1  */ | 
 |  | 
 |       /* the iteration ends when the adjustment cannot affect the  */ | 
 |       /* result by >=0.5 ulp (at the requested digits), which  */ | 
 |       /* is when its value is smaller than the accumulator by  */ | 
 |       /* set->digits+1 digits (or it is zero) -- this is a looser  */ | 
 |       /* requirement than for Exp because all that happens to the  */ | 
 |       /* accumulator after this is the final rounding (but note that  */ | 
 |       /* there must also be full precision in a, or a=0).  */ | 
 |  | 
 |       if (decNumberIsZero(b) || | 
 |           (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { | 
 |         if (a->digits==p) break; | 
 |         if (decNumberIsZero(a)) { | 
 |           decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ?  */ | 
 |           if (cmp.lsu[0]==0) a->exponent=0;            /* yes, exact 0  */ | 
 |            else *status|=(DEC_Inexact | DEC_Rounded);  /* no, inexact  */ | 
 |           break; | 
 |           } | 
 |         /* force padding if adjustment has gone to 0 before full length  */ | 
 |         if (decNumberIsZero(b)) b->exponent=a->exponent-p; | 
 |         } | 
 |  | 
 |       /* not done yet ...  */ | 
 |       decAddOp(a, a, b, &aset, 0, &ignore);  /* a=a+b for next estimate  */ | 
 |       if (pp==p) continue;                   /* precision is at maximum  */ | 
 |       /* lengthen the next calculation  */ | 
 |       pp=pp*2;                               /* double precision  */ | 
 |       if (pp>p) pp=p;                        /* clamp to maximum  */ | 
 |       aset.digits=pp;                        /* working context  */ | 
 |       bset.digits=pp+rhs->digits;            /* wider context  */ | 
 |       } /* Newton's iteration  */ | 
 |  | 
 |     #if DECCHECK | 
 |     /* just a sanity check; remove the test to show always  */ | 
 |     if (iterations>24) | 
 |       printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
 |             (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits); | 
 |     #endif | 
 |  | 
 |     /* Copy and round the result to res  */ | 
 |     residue=1;                          /* indicate dirt to right  */ | 
 |     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */ | 
 |     aset.digits=set->digits;            /* [use default rounding]  */ | 
 |     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */ | 
 |     decFinish(res, set, &residue, status);       /* cleanup/set flags  */ | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */ | 
 |   if (allocbufb!=NULL) free(allocbufb); /* ..  */ | 
 |   /* [status is handled by caller]  */ | 
 |   return res; | 
 |   } /* decLnOp  */ | 
 | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406 | 
 | #pragma GCC diagnostic pop | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decQuantizeOp  -- force exponent to requested value                */ | 
 | /*                                                                    */ | 
 | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
 | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
 | /*   of C has the value B or matches the exponent of B.               */ | 
 | /*   The numerical value of C will equal A, except for the effects of */ | 
 | /*   any rounding that occurred.                                      */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A or B                           */ | 
 | /*   lhs is A, the number to adjust                                   */ | 
 | /*   rhs is B, the requested exponent                                 */ | 
 | /*   set is the context                                               */ | 
 | /*   quant is 1 for quantize or 0 for rescale                         */ | 
 | /*   status is the status accumulator (this can be called without     */ | 
 | /*          risk of control loss)                                     */ | 
 | /*                                                                    */ | 
 | /* C must have space for set->digits digits.                          */ | 
 | /*                                                                    */ | 
 | /* Unless there is an error or the result is infinite, the exponent   */ | 
 | /* after the operation is guaranteed to be that requested.            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, | 
 |                                  const decNumber *rhs, decContext *set, | 
 |                                  Flag quant, uInt *status) { | 
 |   #if DECSUBSET | 
 |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */ | 
 |   decNumber *allocrhs=NULL;        /* .., rhs  */ | 
 |   #endif | 
 |   const decNumber *inrhs=rhs;      /* save original rhs  */ | 
 |   Int   reqdigits=set->digits;     /* requested DIGITS  */ | 
 |   Int   reqexp;                    /* requested exponent [-scale]  */ | 
 |   Int   residue=0;                 /* rounding residue  */ | 
 |   Int   etiny=set->emin-(reqdigits-1); | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operands and set lostDigits status, as needed  */ | 
 |       if (lhs->digits>reqdigits) { | 
 |         alloclhs=decRoundOperand(lhs, set, status); | 
 |         if (alloclhs==NULL) break; | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>reqdigits) { /* [this only checks lostDigits]  */ | 
 |         allocrhs=decRoundOperand(rhs, set, status); | 
 |         if (allocrhs==NULL) break; | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* Handle special values  */ | 
 |     if (SPECIALARGS) { | 
 |       /* NaNs get usual processing  */ | 
 |       if (SPECIALARGS & (DECSNAN | DECNAN)) | 
 |         decNaNs(res, lhs, rhs, set, status); | 
 |       /* one infinity but not both is bad  */ | 
 |       else if ((lhs->bits ^ rhs->bits) & DECINF) | 
 |         *status|=DEC_Invalid_operation; | 
 |       /* both infinity: return lhs  */ | 
 |       else uprv_decNumberCopy(res, lhs);          /* [nop if in place]  */ | 
 |       break; | 
 |       } | 
 |  | 
 |     /* set requested exponent  */ | 
 |     if (quant) reqexp=inrhs->exponent;  /* quantize -- match exponents  */ | 
 |      else {                             /* rescale -- use value of rhs  */ | 
 |       /* Original rhs must be an integer that fits and is in range,  */ | 
 |       /* which could be from -1999999997 to +999999999, thanks to  */ | 
 |       /* subnormals  */ | 
 |       reqexp=decGetInt(inrhs);               /* [cannot fail]  */ | 
 |       } | 
 |  | 
 |     #if DECSUBSET | 
 |     if (!set->extended) etiny=set->emin;     /* no subnormals  */ | 
 |     #endif | 
 |  | 
 |     if (reqexp==BADINT                       /* bad (rescale only) or ..  */ | 
 |      || reqexp==BIGODD || reqexp==BIGEVEN    /* very big (ditto) or ..  */ | 
 |      || (reqexp<etiny)                       /* < lowest  */ | 
 |      || (reqexp>set->emax)) {                /* > emax  */ | 
 |       *status|=DEC_Invalid_operation; | 
 |       break;} | 
 |  | 
 |     /* the RHS has been processed, so it can be overwritten now if necessary  */ | 
 |     if (ISZERO(lhs)) {                       /* zero coefficient unchanged  */ | 
 |       uprv_decNumberCopy(res, lhs);               /* [nop if in place]  */ | 
 |       res->exponent=reqexp;                  /* .. just set exponent  */ | 
 |       #if DECSUBSET | 
 |       if (!set->extended) res->bits=0;       /* subset specification; no -0  */ | 
 |       #endif | 
 |       } | 
 |      else {                                  /* non-zero lhs  */ | 
 |       Int adjust=reqexp-lhs->exponent;       /* digit adjustment needed  */ | 
 |       /* if adjusted coefficient will definitely not fit, give up now  */ | 
 |       if ((lhs->digits-adjust)>reqdigits) { | 
 |         *status|=DEC_Invalid_operation; | 
 |         break; | 
 |         } | 
 |  | 
 |       if (adjust>0) {                        /* increasing exponent  */ | 
 |         /* this will decrease the length of the coefficient by adjust  */ | 
 |         /* digits, and must round as it does so  */ | 
 |         decContext workset;                  /* work  */ | 
 |         workset=*set;                        /* clone rounding, etc.  */ | 
 |         workset.digits=lhs->digits-adjust;   /* set requested length  */ | 
 |         /* [note that the latter can be <1, here]  */ | 
 |         decCopyFit(res, lhs, &workset, &residue, status); /* fit to result  */ | 
 |         decApplyRound(res, &workset, residue, status);    /* .. and round  */ | 
 |         residue=0;                                        /* [used]  */ | 
 |         /* If just rounded a 999s case, exponent will be off by one;  */ | 
 |         /* adjust back (after checking space), if so.  */ | 
 |         if (res->exponent>reqexp) { | 
 |           /* re-check needed, e.g., for quantize(0.9999, 0.001) under  */ | 
 |           /* set->digits==3  */ | 
 |           if (res->digits==reqdigits) {      /* cannot shift by 1  */ | 
 |             *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these]  */ | 
 |             *status|=DEC_Invalid_operation; | 
 |             break; | 
 |             } | 
 |           res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift  */ | 
 |           res->exponent--;                   /* (re)adjust the exponent.  */ | 
 |           } | 
 |         #if DECSUBSET | 
 |         if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0  */ | 
 |         #endif | 
 |         } /* increase  */ | 
 |        else /* adjust<=0 */ {                /* decreasing or = exponent  */ | 
 |         /* this will increase the length of the coefficient by -adjust  */ | 
 |         /* digits, by adding zero or more trailing zeros; this is  */ | 
 |         /* already checked for fit, above  */ | 
 |         uprv_decNumberCopy(res, lhs);             /* [it will fit]  */ | 
 |         /* if padding needed (adjust<0), add it now...  */ | 
 |         if (adjust<0) { | 
 |           res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
 |           res->exponent+=adjust;             /* adjust the exponent  */ | 
 |           } | 
 |         } /* decrease  */ | 
 |       } /* non-zero  */ | 
 |  | 
 |     /* Check for overflow [do not use Finalize in this case, as an  */ | 
 |     /* overflow here is a "don't fit" situation]  */ | 
 |     if (res->exponent>set->emax-res->digits+1) {  /* too big  */ | 
 |       *status|=DEC_Invalid_operation; | 
 |       break; | 
 |       } | 
 |      else { | 
 |       decFinalize(res, set, &residue, status);    /* set subnormal flags  */ | 
 |       *status&=~DEC_Underflow;          /* suppress Underflow [as per 754]  */ | 
 |       } | 
 |     } while(0);                         /* end protected  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   if (allocrhs!=NULL) free(allocrhs);   /* drop any storage used  */ | 
 |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */ | 
 |   #endif | 
 |   return res; | 
 |   } /* decQuantizeOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCompareOp -- compare, min, or max two Numbers                   */ | 
 | /*                                                                    */ | 
 | /*   This computes C = A ? B and carries out one of four operations:  */ | 
 | /*     COMPARE    -- returns the signum (as a number) giving the      */ | 
 | /*                   result of a comparison unless one or both        */ | 
 | /*                   operands is a NaN (in which case a NaN results)  */ | 
 | /*     COMPSIG    -- as COMPARE except that a quiet NaN raises        */ | 
 | /*                   Invalid operation.                               */ | 
 | /*     COMPMAX    -- returns the larger of the operands, using the    */ | 
 | /*                   754 maxnum operation                             */ | 
 | /*     COMPMAXMAG -- ditto, comparing absolute values                 */ | 
 | /*     COMPMIN    -- the 754 minnum operation                         */ | 
 | /*     COMPMINMAG -- ditto, comparing absolute values                 */ | 
 | /*     COMTOTAL   -- returns the signum (as a number) giving the      */ | 
 | /*                   result of a comparison using 754 total ordering  */ | 
 | /*                                                                    */ | 
 | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */ | 
 | /*   lhs is A                                                         */ | 
 | /*   rhs is B                                                         */ | 
 | /*   set is the context                                               */ | 
 | /*   op  is the operation flag                                        */ | 
 | /*   status is the usual accumulator                                  */ | 
 | /*                                                                    */ | 
 | /* C must have space for one digit for COMPARE or set->digits for     */ | 
 | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG.                       */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* The emphasis here is on speed for common cases, and avoiding       */ | 
 | /* coefficient comparison if possible.                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decCompareOp(decNumber *res, const decNumber *lhs, | 
 |                          const decNumber *rhs, decContext *set, | 
 |                          Flag op, uInt *status) { | 
 |   #if DECSUBSET | 
 |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */ | 
 |   decNumber *allocrhs=NULL;        /* .., rhs  */ | 
 |   #endif | 
 |   Int   result=0;                  /* default result value  */ | 
 |   uByte merged;                    /* work  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(res, lhs, rhs, set)) return res; | 
 |   #endif | 
 |  | 
 |   do {                             /* protect allocated storage  */ | 
 |     #if DECSUBSET | 
 |     if (!set->extended) { | 
 |       /* reduce operands and set lostDigits status, as needed  */ | 
 |       if (lhs->digits>set->digits) { | 
 |         alloclhs=decRoundOperand(lhs, set, status); | 
 |         if (alloclhs==NULL) {result=BADINT; break;} | 
 |         lhs=alloclhs; | 
 |         } | 
 |       if (rhs->digits>set->digits) { | 
 |         allocrhs=decRoundOperand(rhs, set, status); | 
 |         if (allocrhs==NULL) {result=BADINT; break;} | 
 |         rhs=allocrhs; | 
 |         } | 
 |       } | 
 |     #endif | 
 |     /* [following code does not require input rounding]  */ | 
 |  | 
 |     /* If total ordering then handle differing signs 'up front'  */ | 
 |     if (op==COMPTOTAL) {                /* total ordering  */ | 
 |       if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { | 
 |         result=-1; | 
 |         break; | 
 |         } | 
 |       if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { | 
 |         result=+1; | 
 |         break; | 
 |         } | 
 |       } | 
 |  | 
 |     /* handle NaNs specially; let infinities drop through  */ | 
 |     /* This assumes sNaN (even just one) leads to NaN.  */ | 
 |     merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); | 
 |     if (merged) {                       /* a NaN bit set  */ | 
 |       if (op==COMPARE);                 /* result will be NaN  */ | 
 |        else if (op==COMPSIG)            /* treat qNaN as sNaN  */ | 
 |         *status|=DEC_Invalid_operation | DEC_sNaN; | 
 |        else if (op==COMPTOTAL) {        /* total ordering, always finite  */ | 
 |         /* signs are known to be the same; compute the ordering here  */ | 
 |         /* as if the signs are both positive, then invert for negatives  */ | 
 |         if (!decNumberIsNaN(lhs)) result=-1; | 
 |          else if (!decNumberIsNaN(rhs)) result=+1; | 
 |          /* here if both NaNs  */ | 
 |          else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; | 
 |          else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; | 
 |          else { /* both NaN or both sNaN  */ | 
 |           /* now it just depends on the payload  */ | 
 |           result=decUnitCompare(lhs->lsu, D2U(lhs->digits), | 
 |                                 rhs->lsu, D2U(rhs->digits), 0); | 
 |           /* [Error not possible, as these are 'aligned']  */ | 
 |           } /* both same NaNs  */ | 
 |         if (decNumberIsNegative(lhs)) result=-result; | 
 |         break; | 
 |         } /* total order  */ | 
 |  | 
 |        else if (merged & DECSNAN);           /* sNaN -> qNaN  */ | 
 |        else { /* here if MIN or MAX and one or two quiet NaNs  */ | 
 |         /* min or max -- 754 rules ignore single NaN  */ | 
 |         if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { | 
 |           /* just one NaN; force choice to be the non-NaN operand  */ | 
 |           op=COMPMAX; | 
 |           if (lhs->bits & DECNAN) result=-1; /* pick rhs  */ | 
 |                              else result=+1; /* pick lhs  */ | 
 |           break; | 
 |           } | 
 |         } /* max or min  */ | 
 |       op=COMPNAN;                            /* use special path  */ | 
 |       decNaNs(res, lhs, rhs, set, status);   /* propagate NaN  */ | 
 |       break; | 
 |       } | 
 |     /* have numbers  */ | 
 |     if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); | 
 |      else result=decCompare(lhs, rhs, 0);    /* sign matters  */ | 
 |     } while(0);                              /* end protected  */ | 
 |  | 
 |   if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare  */ | 
 |    else { | 
 |     if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum  */ | 
 |       if (op==COMPTOTAL && result==0) { | 
 |         /* operands are numerically equal or same NaN (and same sign,  */ | 
 |         /* tested first); if identical, leave result 0  */ | 
 |         if (lhs->exponent!=rhs->exponent) { | 
 |           if (lhs->exponent<rhs->exponent) result=-1; | 
 |            else result=+1; | 
 |           if (decNumberIsNegative(lhs)) result=-result; | 
 |           } /* lexp!=rexp  */ | 
 |         } /* total-order by exponent  */ | 
 |       uprv_decNumberZero(res);               /* [always a valid result]  */ | 
 |       if (result!=0) {                  /* must be -1 or +1  */ | 
 |         *res->lsu=1; | 
 |         if (result<0) res->bits=DECNEG; | 
 |         } | 
 |       } | 
 |      else if (op==COMPNAN);             /* special, drop through  */ | 
 |      else {                             /* MAX or MIN, non-NaN result  */ | 
 |       Int residue=0;                    /* rounding accumulator  */ | 
 |       /* choose the operand for the result  */ | 
 |       const decNumber *choice; | 
 |       if (result==0) { /* operands are numerically equal  */ | 
 |         /* choose according to sign then exponent (see 754)  */ | 
 |         uByte slhs=(lhs->bits & DECNEG); | 
 |         uByte srhs=(rhs->bits & DECNEG); | 
 |         #if DECSUBSET | 
 |         if (!set->extended) {           /* subset: force left-hand  */ | 
 |           op=COMPMAX; | 
 |           result=+1; | 
 |           } | 
 |         else | 
 |         #endif | 
 |         if (slhs!=srhs) {          /* signs differ  */ | 
 |           if (slhs) result=-1;     /* rhs is max  */ | 
 |                else result=+1;     /* lhs is max  */ | 
 |           } | 
 |          else if (slhs && srhs) {  /* both negative  */ | 
 |           if (lhs->exponent<rhs->exponent) result=+1; | 
 |                                       else result=-1; | 
 |           /* [if equal, use lhs, technically identical]  */ | 
 |           } | 
 |          else {                    /* both positive  */ | 
 |           if (lhs->exponent>rhs->exponent) result=+1; | 
 |                                       else result=-1; | 
 |           /* [ditto]  */ | 
 |           } | 
 |         } /* numerically equal  */ | 
 |       /* here result will be non-0; reverse if looking for MIN  */ | 
 |       if (op==COMPMIN || op==COMPMINMAG) result=-result; | 
 |       choice=(result>0 ? lhs : rhs);    /* choose  */ | 
 |       /* copy chosen to result, rounding if need be  */ | 
 |       decCopyFit(res, choice, set, &residue, status); | 
 |       decFinish(res, set, &residue, status); | 
 |       } | 
 |     } | 
 |   #if DECSUBSET | 
 |   if (allocrhs!=NULL) free(allocrhs);   /* free any storage used  */ | 
 |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */ | 
 |   #endif | 
 |   return res; | 
 |   } /* decCompareOp  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCompare -- compare two decNumbers by numerical value            */ | 
 | /*                                                                    */ | 
 | /*  This routine compares A ? B without altering them.                */ | 
 | /*                                                                    */ | 
 | /*  Arg1 is A, a decNumber which is not a NaN                         */ | 
 | /*  Arg2 is B, a decNumber which is not a NaN                         */ | 
 | /*  Arg3 is 1 for a sign-independent compare, 0 otherwise             */ | 
 | /*                                                                    */ | 
 | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */ | 
 | /*  (the only possible failure is an allocation error)                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decCompare(const decNumber *lhs, const decNumber *rhs, | 
 |                       Flag abs_c) { | 
 |   Int   result;                    /* result value  */ | 
 |   Int   sigr;                      /* rhs signum  */ | 
 |   Int   compare;                   /* work  */ | 
 |  | 
 |   result=1;                                  /* assume signum(lhs)  */ | 
 |   if (ISZERO(lhs)) result=0; | 
 |   if (abs_c) { | 
 |     if (ISZERO(rhs)) return result;          /* LHS wins or both 0  */ | 
 |     /* RHS is non-zero  */ | 
 |     if (result==0) return -1;                /* LHS is 0; RHS wins  */ | 
 |     /* [here, both non-zero, result=1]  */ | 
 |     } | 
 |    else {                                    /* signs matter  */ | 
 |     if (result && decNumberIsNegative(lhs)) result=-1; | 
 |     sigr=1;                                  /* compute signum(rhs)  */ | 
 |     if (ISZERO(rhs)) sigr=0; | 
 |      else if (decNumberIsNegative(rhs)) sigr=-1; | 
 |     if (result > sigr) return +1;            /* L > R, return 1  */ | 
 |     if (result < sigr) return -1;            /* L < R, return -1  */ | 
 |     if (result==0) return 0;                   /* both 0  */ | 
 |     } | 
 |  | 
 |   /* signums are the same; both are non-zero  */ | 
 |   if ((lhs->bits | rhs->bits) & DECINF) {    /* one or more infinities  */ | 
 |     if (decNumberIsInfinite(rhs)) { | 
 |       if (decNumberIsInfinite(lhs)) result=0;/* both infinite  */ | 
 |        else result=-result;                  /* only rhs infinite  */ | 
 |       } | 
 |     return result; | 
 |     } | 
 |   /* must compare the coefficients, allowing for exponents  */ | 
 |   if (lhs->exponent>rhs->exponent) {         /* LHS exponent larger  */ | 
 |     /* swap sides, and sign  */ | 
 |     const decNumber *temp=lhs; | 
 |     lhs=rhs; | 
 |     rhs=temp; | 
 |     result=-result; | 
 |     } | 
 |   compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), | 
 |                          rhs->lsu, D2U(rhs->digits), | 
 |                          rhs->exponent-lhs->exponent); | 
 |   if (compare!=BADINT) compare*=result;      /* comparison succeeded  */ | 
 |   return compare; | 
 |   } /* decCompare  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decUnitCompare -- compare two >=0 integers in Unit arrays          */ | 
 | /*                                                                    */ | 
 | /*  This routine compares A ? B*10**E where A and B are unit arrays   */ | 
 | /*  A is a plain integer                                              */ | 
 | /*  B has an exponent of E (which must be non-negative)               */ | 
 | /*                                                                    */ | 
 | /*  Arg1 is A first Unit (lsu)                                        */ | 
 | /*  Arg2 is A length in Units                                         */ | 
 | /*  Arg3 is B first Unit (lsu)                                        */ | 
 | /*  Arg4 is B length in Units                                         */ | 
 | /*  Arg5 is E (0 if the units are aligned)                            */ | 
 | /*                                                                    */ | 
 | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */ | 
 | /*  (the only possible failure is an allocation error, which can      */ | 
 | /*  only occur if E!=0)                                               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decUnitCompare(const Unit *a, Int alength, | 
 |                           const Unit *b, Int blength, Int exp) { | 
 |   Unit  *acc;                      /* accumulator for result  */ | 
 |   Unit  accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer  */ | 
 |   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */ | 
 |   Int   accunits, need;            /* units in use or needed for acc  */ | 
 |   const Unit *l, *r, *u;           /* work  */ | 
 |   Int   expunits, exprem, result;  /* ..  */ | 
 |  | 
 |   if (exp==0) {                    /* aligned; fastpath  */ | 
 |     if (alength>blength) return 1; | 
 |     if (alength<blength) return -1; | 
 |     /* same number of units in both -- need unit-by-unit compare  */ | 
 |     l=a+alength-1; | 
 |     r=b+alength-1; | 
 |     for (;l>=a; l--, r--) { | 
 |       if (*l>*r) return 1; | 
 |       if (*l<*r) return -1; | 
 |       } | 
 |     return 0;                      /* all units match  */ | 
 |     } /* aligned  */ | 
 |  | 
 |   /* Unaligned.  If one is >1 unit longer than the other, padded  */ | 
 |   /* approximately, then can return easily  */ | 
 |   if (alength>blength+(Int)D2U(exp)) return 1; | 
 |   if (alength+1<blength+(Int)D2U(exp)) return -1; | 
 |  | 
 |   /* Need to do a real subtract.  For this, a result buffer is needed  */ | 
 |   /* even though only the sign is of interest.  Its length needs  */ | 
 |   /* to be the larger of alength and padded blength, +2  */ | 
 |   need=blength+D2U(exp);                /* maximum real length of B  */ | 
 |   if (need<alength) need=alength; | 
 |   need+=2; | 
 |   acc=accbuff;                          /* assume use local buffer  */ | 
 |   if (need*sizeof(Unit)>sizeof(accbuff)) { | 
 |     allocacc=(Unit *)malloc(need*sizeof(Unit)); | 
 |     if (allocacc==NULL) return BADINT;  /* hopeless -- abandon  */ | 
 |     acc=allocacc; | 
 |     } | 
 |   /* Calculate units and remainder from exponent.  */ | 
 |   expunits=exp/DECDPUN; | 
 |   exprem=exp%DECDPUN; | 
 |   /* subtract [A+B*(-m)]  */ | 
 |   accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, | 
 |                          -(Int)powers[exprem]); | 
 |   /* [UnitAddSub result may have leading zeros, even on zero]  */ | 
 |   if (accunits<0) result=-1;            /* negative result  */ | 
 |    else {                               /* non-negative result  */ | 
 |     /* check units of the result before freeing any storage  */ | 
 |     for (u=acc; u<acc+accunits-1 && *u==0;) u++; | 
 |     result=(*u==0 ? 0 : +1); | 
 |     } | 
 |   /* clean up and return the result  */ | 
 |   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */ | 
 |   return result; | 
 |   } /* decUnitCompare  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays   */ | 
 | /*                                                                    */ | 
 | /*  This routine performs the calculation:                            */ | 
 | /*                                                                    */ | 
 | /*  C=A+(B*M)                                                         */ | 
 | /*                                                                    */ | 
 | /*  Where M is in the range -DECDPUNMAX through +DECDPUNMAX.          */ | 
 | /*                                                                    */ | 
 | /*  A may be shorter or longer than B.                                */ | 
 | /*                                                                    */ | 
 | /*  Leading zeros are not removed after a calculation.  The result is */ | 
 | /*  either the same length as the longer of A and B (adding any       */ | 
 | /*  shift), or one Unit longer than that (if a Unit carry occurred).  */ | 
 | /*                                                                    */ | 
 | /*  A and B content are not altered unless C is also A or B.          */ | 
 | /*  C may be the same array as A or B, but only if no zero padding is */ | 
 | /*  requested (that is, C may be B only if bshift==0).                */ | 
 | /*  C is filled from the lsu; only those units necessary to complete  */ | 
 | /*  the calculation are referenced.                                   */ | 
 | /*                                                                    */ | 
 | /*  Arg1 is A first Unit (lsu)                                        */ | 
 | /*  Arg2 is A length in Units                                         */ | 
 | /*  Arg3 is B first Unit (lsu)                                        */ | 
 | /*  Arg4 is B length in Units                                         */ | 
 | /*  Arg5 is B shift in Units  (>=0; pads with 0 units if positive)    */ | 
 | /*  Arg6 is C first Unit (lsu)                                        */ | 
 | /*  Arg7 is M, the multiplier                                         */ | 
 | /*                                                                    */ | 
 | /*  returns the count of Units written to C, which will be non-zero   */ | 
 | /*  and negated if the result is negative.  That is, the sign of the  */ | 
 | /*  returned Int is the sign of the result (positive for zero) and    */ | 
 | /*  the absolute value of the Int is the count of Units.              */ | 
 | /*                                                                    */ | 
 | /*  It is the caller's responsibility to make sure that C size is     */ | 
 | /*  safe, allowing space if necessary for a one-Unit carry.           */ | 
 | /*                                                                    */ | 
 | /*  This routine is severely performance-critical; *any* change here  */ | 
 | /*  must be measured (timed) to assure no performance degradation.    */ | 
 | /*  In particular, trickery here tends to be counter-productive, as   */ | 
 | /*  increased complexity of code hurts register optimizations on      */ | 
 | /*  register-poor architectures.  Avoiding divisions is nearly        */ | 
 | /*  always a Good Idea, however.                                      */ | 
 | /*                                                                    */ | 
 | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark  */ | 
 | /* (IBM Warwick, UK) for some of the ideas used in this routine.      */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decUnitAddSub(const Unit *a, Int alength, | 
 |                          const Unit *b, Int blength, Int bshift, | 
 |                          Unit *c, Int m) { | 
 |   const Unit *alsu=a;              /* A lsu [need to remember it]  */ | 
 |   Unit *clsu=c;                    /* C ditto  */ | 
 |   Unit *minC;                      /* low water mark for C  */ | 
 |   Unit *maxC;                      /* high water mark for C  */ | 
 |   eInt carry=0;                    /* carry integer (could be Long)  */ | 
 |   Int  add;                        /* work  */ | 
 |   #if DECDPUN<=4                   /* myriadal, millenary, etc.  */ | 
 |   Int  est;                        /* estimated quotient  */ | 
 |   #endif | 
 |  | 
 |   #if DECTRACE | 
 |   if (alength<1 || blength<1) | 
 |     printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); | 
 |   #endif | 
 |  | 
 |   maxC=c+alength;                  /* A is usually the longer  */ | 
 |   minC=c+blength;                  /* .. and B the shorter  */ | 
 |   if (bshift!=0) {                 /* B is shifted; low As copy across  */ | 
 |     minC+=bshift; | 
 |     /* if in place [common], skip copy unless there's a gap [rare]  */ | 
 |     if (a==c && bshift<=alength) { | 
 |       c+=bshift; | 
 |       a+=bshift; | 
 |       } | 
 |      else for (; c<clsu+bshift; a++, c++) {  /* copy needed  */ | 
 |       if (a<alsu+alength) *c=*a; | 
 |        else *c=0; | 
 |       } | 
 |     } | 
 |   if (minC>maxC) { /* swap  */ | 
 |     Unit *hold=minC; | 
 |     minC=maxC; | 
 |     maxC=hold; | 
 |     } | 
 |  | 
 |   /* For speed, do the addition as two loops; the first where both A  */ | 
 |   /* and B contribute, and the second (if necessary) where only one or  */ | 
 |   /* other of the numbers contribute.  */ | 
 |   /* Carry handling is the same (i.e., duplicated) in each case.  */ | 
 |   for (; c<minC; c++) { | 
 |     carry+=*a; | 
 |     a++; | 
 |     carry+=((eInt)*b)*m;                /* [special-casing m=1/-1  */ | 
 |     b++;                                /* here is not a win]  */ | 
 |     /* here carry is new Unit of digits; it could be +ve or -ve  */ | 
 |     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */ | 
 |       *c=(Unit)carry; | 
 |       carry=0; | 
 |       continue; | 
 |       } | 
 |     #if DECDPUN==4                           /* use divide-by-multiply  */ | 
 |       if (carry>=0) { | 
 |         est=(((ueInt)carry>>11)*53687)>>18; | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* likely quotient [89%]  */ | 
 |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */ | 
 |         carry++; | 
 |         *c-=DECDPUNMAX+1; | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=(((ueInt)carry>>11)*53687)>>18; | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */ | 
 |       carry++; | 
 |       *c-=DECDPUNMAX+1; | 
 |     #elif DECDPUN==3 | 
 |       if (carry>=0) { | 
 |         est=(((ueInt)carry>>3)*16777)>>21; | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* likely quotient [99%]  */ | 
 |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */ | 
 |         carry++; | 
 |         *c-=DECDPUNMAX+1; | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=(((ueInt)carry>>3)*16777)>>21; | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */ | 
 |       carry++; | 
 |       *c-=DECDPUNMAX+1; | 
 |     #elif DECDPUN<=2 | 
 |       /* Can use QUOT10 as carry <= 4 digits  */ | 
 |       if (carry>=0) { | 
 |         est=QUOT10(carry, DECDPUN); | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* quotient  */ | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=QUOT10(carry, DECDPUN); | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |     #else | 
 |       /* remainder operator is undefined if negative, so must test  */ | 
 |       if ((ueInt)carry<(DECDPUNMAX+1)*2) {   /* fastpath carry +1  */ | 
 |         *c=(Unit)(carry-(DECDPUNMAX+1));     /* [helps additions]  */ | 
 |         carry=1; | 
 |         continue; | 
 |         } | 
 |       if (carry>=0) { | 
 |         *c=(Unit)(carry%(DECDPUNMAX+1)); | 
 |         carry=carry/(DECDPUNMAX+1); | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       *c=(Unit)(carry%(DECDPUNMAX+1)); | 
 |       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); | 
 |     #endif | 
 |     } /* c  */ | 
 |  | 
 |   /* now may have one or other to complete  */ | 
 |   /* [pretest to avoid loop setup/shutdown]  */ | 
 |   if (c<maxC) for (; c<maxC; c++) { | 
 |     if (a<alsu+alength) {               /* still in A  */ | 
 |       carry+=*a; | 
 |       a++; | 
 |       } | 
 |      else {                             /* inside B  */ | 
 |       carry+=((eInt)*b)*m; | 
 |       b++; | 
 |       } | 
 |     /* here carry is new Unit of digits; it could be +ve or -ve and  */ | 
 |     /* magnitude up to DECDPUNMAX squared  */ | 
 |     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */ | 
 |       *c=(Unit)carry; | 
 |       carry=0; | 
 |       continue; | 
 |       } | 
 |     /* result for this unit is negative or >DECDPUNMAX  */ | 
 |     #if DECDPUN==4                           /* use divide-by-multiply  */ | 
 |       if (carry>=0) { | 
 |         est=(((ueInt)carry>>11)*53687)>>18; | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* likely quotient [79.7%]  */ | 
 |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */ | 
 |         carry++; | 
 |         *c-=DECDPUNMAX+1; | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=(((ueInt)carry>>11)*53687)>>18; | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */ | 
 |       carry++; | 
 |       *c-=DECDPUNMAX+1; | 
 |     #elif DECDPUN==3 | 
 |       if (carry>=0) { | 
 |         est=(((ueInt)carry>>3)*16777)>>21; | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* likely quotient [99%]  */ | 
 |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */ | 
 |         carry++; | 
 |         *c-=DECDPUNMAX+1; | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=(((ueInt)carry>>3)*16777)>>21; | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */ | 
 |       carry++; | 
 |       *c-=DECDPUNMAX+1; | 
 |     #elif DECDPUN<=2 | 
 |       if (carry>=0) { | 
 |         est=QUOT10(carry, DECDPUN); | 
 |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */ | 
 |         carry=est;                           /* quotient  */ | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       est=QUOT10(carry, DECDPUN); | 
 |       *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
 |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */ | 
 |     #else | 
 |       if ((ueInt)carry<(DECDPUNMAX+1)*2){    /* fastpath carry 1  */ | 
 |         *c=(Unit)(carry-(DECDPUNMAX+1)); | 
 |         carry=1; | 
 |         continue; | 
 |         } | 
 |       /* remainder operator is undefined if negative, so must test  */ | 
 |       if (carry>=0) { | 
 |         *c=(Unit)(carry%(DECDPUNMAX+1)); | 
 |         carry=carry/(DECDPUNMAX+1); | 
 |         continue; | 
 |         } | 
 |       /* negative case  */ | 
 |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */ | 
 |       *c=(Unit)(carry%(DECDPUNMAX+1)); | 
 |       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); | 
 |     #endif | 
 |     } /* c  */ | 
 |  | 
 |   /* OK, all A and B processed; might still have carry or borrow  */ | 
 |   /* return number of Units in the result, negated if a borrow  */ | 
 |   if (carry==0) return static_cast<int32_t>(c-clsu);     /* no carry, so no more to do  */ | 
 |   if (carry>0) {                   /* positive carry  */ | 
 |     *c=(Unit)carry;                /* place as new unit  */ | 
 |     c++;                           /* ..  */ | 
 |     return static_cast<int32_t>(c-clsu); | 
 |     } | 
 |   /* -ve carry: it's a borrow; complement needed  */ | 
 |   add=1;                           /* temporary carry...  */ | 
 |   for (c=clsu; c<maxC; c++) { | 
 |     add=DECDPUNMAX+add-*c; | 
 |     if (add<=DECDPUNMAX) { | 
 |       *c=(Unit)add; | 
 |       add=0; | 
 |       } | 
 |      else { | 
 |       *c=0; | 
 |       add=1; | 
 |       } | 
 |     } | 
 |   /* add an extra unit iff it would be non-zero  */ | 
 |   #if DECTRACE | 
 |     printf("UAS borrow: add %ld, carry %ld\n", add, carry); | 
 |   #endif | 
 |   if ((add-carry-1)!=0) { | 
 |     *c=(Unit)(add-carry-1); | 
 |     c++;                      /* interesting, include it  */ | 
 |     } | 
 |   return static_cast<int32_t>(clsu-c);              /* -ve result indicates borrowed  */ | 
 |   } /* decUnitAddSub  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decTrim -- trim trailing zeros or normalize                        */ | 
 | /*                                                                    */ | 
 | /*   dn is the number to trim or normalize                            */ | 
 | /*   set is the context to use to check for clamp                     */ | 
 | /*   all is 1 to remove all trailing zeros, 0 for just fraction ones  */ | 
 | /*   noclamp is 1 to unconditional (unclamped) trim                   */ | 
 | /*   dropped returns the number of discarded trailing zeros           */ | 
 | /*   returns dn                                                       */ | 
 | /*                                                                    */ | 
 | /* If clamp is set in the context then the number of zeros trimmed    */ | 
 | /* may be limited if the exponent is high.                            */ | 
 | /* All fields are updated as required.  This is a utility operation,  */ | 
 | /* so special values are unchanged and no error is possible.          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decTrim(decNumber *dn, decContext *set, Flag all, | 
 |                            Flag noclamp, Int *dropped) { | 
 |   Int   d, exp;                    /* work  */ | 
 |   uInt  cut;                       /* ..  */ | 
 |   Unit  *up;                       /* -> current Unit  */ | 
 |  | 
 |   #if DECCHECK | 
 |   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | 
 |   #endif | 
 |  | 
 |   *dropped=0;                           /* assume no zeros dropped  */ | 
 |   if ((dn->bits & DECSPECIAL)           /* fast exit if special ..  */ | 
 |     || (*dn->lsu & 0x01)) return dn;    /* .. or odd  */ | 
 |   if (ISZERO(dn)) {                     /* .. or 0  */ | 
 |     dn->exponent=0;                     /* (sign is preserved)  */ | 
 |     return dn; | 
 |     } | 
 |  | 
 |   /* have a finite number which is even  */ | 
 |   exp=dn->exponent; | 
 |   cut=1;                           /* digit (1-DECDPUN) in Unit  */ | 
 |   up=dn->lsu;                      /* -> current Unit  */ | 
 |   for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit]  */ | 
 |     /* slice by powers  */ | 
 |     #if DECDPUN<=4 | 
 |       uInt quot=QUOT10(*up, cut); | 
 |       if ((*up-quot*powers[cut])!=0) break;  /* found non-0 digit  */ | 
 |     #else | 
 |       if (*up%powers[cut]!=0) break;         /* found non-0 digit  */ | 
 |     #endif | 
 |     /* have a trailing 0  */ | 
 |     if (!all) {                    /* trimming  */ | 
 |       /* [if exp>0 then all trailing 0s are significant for trim]  */ | 
 |       if (exp<=0) {                /* if digit might be significant  */ | 
 |         if (exp==0) break;         /* then quit  */ | 
 |         exp++;                     /* next digit might be significant  */ | 
 |         } | 
 |       } | 
 |     cut++;                         /* next power  */ | 
 |     if (cut>DECDPUN) {             /* need new Unit  */ | 
 |       up++; | 
 |       cut=1; | 
 |       } | 
 |     } /* d  */ | 
 |   if (d==0) return dn;             /* none to drop  */ | 
 |  | 
 |   /* may need to limit drop if clamping  */ | 
 |   if (set->clamp && !noclamp) { | 
 |     Int maxd=set->emax-set->digits+1-dn->exponent; | 
 |     if (maxd<=0) return dn;        /* nothing possible  */ | 
 |     if (d>maxd) d=maxd; | 
 |     } | 
 |  | 
 |   /* effect the drop  */ | 
 |   decShiftToLeast(dn->lsu, D2U(dn->digits), d); | 
 |   dn->exponent+=d;                 /* maintain numerical value  */ | 
 |   dn->digits-=d;                   /* new length  */ | 
 |   *dropped=d;                      /* report the count  */ | 
 |   return dn; | 
 |   } /* decTrim  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decReverse -- reverse a Unit array in place                        */ | 
 | /*                                                                    */ | 
 | /*   ulo    is the start of the array                                 */ | 
 | /*   uhi    is the end of the array (highest Unit to include)         */ | 
 | /*                                                                    */ | 
 | /* The units ulo through uhi are reversed in place (if the number     */ | 
 | /* of units is odd, the middle one is untouched).  Note that the      */ | 
 | /* digit(s) in each unit are unaffected.                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decReverse(Unit *ulo, Unit *uhi) { | 
 |   Unit temp; | 
 |   for (; ulo<uhi; ulo++, uhi--) { | 
 |     temp=*ulo; | 
 |     *ulo=*uhi; | 
 |     *uhi=temp; | 
 |     } | 
 |   return; | 
 |   } /* decReverse  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decShiftToMost -- shift digits in array towards most significant   */ | 
 | /*                                                                    */ | 
 | /*   uar    is the array                                              */ | 
 | /*   digits is the count of digits in use in the array                */ | 
 | /*   shift  is the number of zeros to pad with (least significant);   */ | 
 | /*     it must be zero or positive                                    */ | 
 | /*                                                                    */ | 
 | /*   returns the new length of the integer in the array, in digits    */ | 
 | /*                                                                    */ | 
 | /* No overflow is permitted (that is, the uar array must be known to  */ | 
 | /* be large enough to hold the result, after shifting).               */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decShiftToMost(Unit *uar, Int digits, Int shift) { | 
 |   Unit  *target, *source, *first;  /* work  */ | 
 |   Int   cut;                       /* odd 0's to add  */ | 
 |   uInt  next;                      /* work  */ | 
 |  | 
 |   if (shift==0) return digits;     /* [fastpath] nothing to do  */ | 
 |   if ((digits+shift)<=DECDPUN) {   /* [fastpath] single-unit case  */ | 
 |     *uar=(Unit)(*uar*powers[shift]); | 
 |     return digits+shift; | 
 |     } | 
 |  | 
 |   next=0;                          /* all paths  */ | 
 |   source=uar+D2U(digits)-1;        /* where msu comes from  */ | 
 |   target=source+D2U(shift);        /* where upper part of first cut goes  */ | 
 |   cut=DECDPUN-MSUDIGITS(shift);    /* where to slice  */ | 
 |   if (cut==0) {                    /* unit-boundary case  */ | 
 |     for (; source>=uar; source--, target--) *target=*source; | 
 |     } | 
 |    else { | 
 |     first=uar+D2U(digits+shift)-1; /* where msu of source will end up  */ | 
 |     for (; source>=uar; source--, target--) { | 
 |       /* split the source Unit and accumulate remainder for next  */ | 
 |       #if DECDPUN<=4 | 
 |         uInt quot=QUOT10(*source, cut); | 
 |         uInt rem=*source-quot*powers[cut]; | 
 |         next+=quot; | 
 |       #else | 
 |         uInt rem=*source%powers[cut]; | 
 |         next+=*source/powers[cut]; | 
 |       #endif | 
 |       if (target<=first) *target=(Unit)next;   /* write to target iff valid  */ | 
 |       next=rem*powers[DECDPUN-cut];            /* save remainder for next Unit  */ | 
 |       } | 
 |     } /* shift-move  */ | 
 |  | 
 |   /* propagate any partial unit to one below and clear the rest  */ | 
 |   for (; target>=uar; target--) { | 
 |     *target=(Unit)next; | 
 |     next=0; | 
 |     } | 
 |   return digits+shift; | 
 |   } /* decShiftToMost  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decShiftToLeast -- shift digits in array towards least significant */ | 
 | /*                                                                    */ | 
 | /*   uar   is the array                                               */ | 
 | /*   units is length of the array, in units                           */ | 
 | /*   shift is the number of digits to remove from the lsu end; it     */ | 
 | /*     must be zero or positive and <= than units*DECDPUN.            */ | 
 | /*                                                                    */ | 
 | /*   returns the new length of the integer in the array, in units     */ | 
 | /*                                                                    */ | 
 | /* Removed digits are discarded (lost).  Units not required to hold   */ | 
 | /* the final result are unchanged.                                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decShiftToLeast(Unit *uar, Int units, Int shift) { | 
 |   Unit  *target, *up;              /* work  */ | 
 |   Int   cut, count;                /* work  */ | 
 |   Int   quot, rem;                 /* for division  */ | 
 |  | 
 |   if (shift==0) return units;      /* [fastpath] nothing to do  */ | 
 |   if (shift==units*DECDPUN) {      /* [fastpath] little to do  */ | 
 |     *uar=0;                        /* all digits cleared gives zero  */ | 
 |     return 1;                      /* leaves just the one  */ | 
 |     } | 
 |  | 
 |   target=uar;                      /* both paths  */ | 
 |   cut=MSUDIGITS(shift); | 
 |   if (cut==DECDPUN) {              /* unit-boundary case; easy  */ | 
 |     up=uar+D2U(shift); | 
 |     for (; up<uar+units; target++, up++) *target=*up; | 
 |     return static_cast<int32_t>(target-uar); | 
 |     } | 
 |  | 
 |   /* messier  */ | 
 |   up=uar+D2U(shift-cut);           /* source; correct to whole Units  */ | 
 |   count=units*DECDPUN-shift;       /* the maximum new length  */ | 
 |   #if DECDPUN<=4 | 
 |     quot=QUOT10(*up, cut); | 
 |   #else | 
 |     quot=*up/powers[cut]; | 
 |   #endif | 
 |   for (; ; target++) { | 
 |     *target=(Unit)quot; | 
 |     count-=(DECDPUN-cut); | 
 |     if (count<=0) break; | 
 |     up++; | 
 |     quot=*up; | 
 |     #if DECDPUN<=4 | 
 |       quot=QUOT10(quot, cut); | 
 |       rem=*up-quot*powers[cut]; | 
 |     #else | 
 |       rem=quot%powers[cut]; | 
 |       quot=quot/powers[cut]; | 
 |     #endif | 
 |     *target=(Unit)(*target+rem*powers[DECDPUN-cut]); | 
 |     count-=cut; | 
 |     if (count<=0) break; | 
 |     } | 
 |   return static_cast<int32_t>(target-uar+1); | 
 |   } /* decShiftToLeast  */ | 
 |  | 
 | #if DECSUBSET | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decRoundOperand -- round an operand  [used for subset only]        */ | 
 | /*                                                                    */ | 
 | /*   dn is the number to round (dn->digits is > set->digits)          */ | 
 | /*   set is the relevant context                                      */ | 
 | /*   status is the status accumulator                                 */ | 
 | /*                                                                    */ | 
 | /*   returns an allocated decNumber with the rounded result.          */ | 
 | /*                                                                    */ | 
 | /* lostDigits and other status may be set by this.                    */ | 
 | /*                                                                    */ | 
 | /* Since the input is an operand, it must not be modified.            */ | 
 | /* Instead, return an allocated decNumber, rounded as required.       */ | 
 | /* It is the caller's responsibility to free the allocated storage.   */ | 
 | /*                                                                    */ | 
 | /* If no storage is available then the result cannot be used, so NULL */ | 
 | /* is returned.                                                       */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber *decRoundOperand(const decNumber *dn, decContext *set, | 
 |                                   uInt *status) { | 
 |   decNumber *res;                       /* result structure  */ | 
 |   uInt newstatus=0;                     /* status from round  */ | 
 |   Int  residue=0;                       /* rounding accumulator  */ | 
 |  | 
 |   /* Allocate storage for the returned decNumber, big enough for the  */ | 
 |   /* length specified by the context  */ | 
 |   res=(decNumber *)malloc(sizeof(decNumber) | 
 |                           +(D2U(set->digits)-1)*sizeof(Unit)); | 
 |   if (res==NULL) { | 
 |     *status|=DEC_Insufficient_storage; | 
 |     return NULL; | 
 |     } | 
 |   decCopyFit(res, dn, set, &residue, &newstatus); | 
 |   decApplyRound(res, set, residue, &newstatus); | 
 |  | 
 |   /* If that set Inexact then "lost digits" is raised...  */ | 
 |   if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; | 
 |   *status|=newstatus; | 
 |   return res; | 
 |   } /* decRoundOperand  */ | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCopyFit -- copy a number, truncating the coefficient if needed  */ | 
 | /*                                                                    */ | 
 | /*   dest is the target decNumber                                     */ | 
 | /*   src  is the source decNumber                                     */ | 
 | /*   set is the context [used for length (digits) and rounding mode]  */ | 
 | /*   residue is the residue accumulator                               */ | 
 | /*   status contains the current status to be updated                 */ | 
 | /*                                                                    */ | 
 | /* (dest==src is allowed and will be a no-op if fits)                 */ | 
 | /* All fields are updated as required.                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decCopyFit(decNumber *dest, const decNumber *src, | 
 |                        decContext *set, Int *residue, uInt *status) { | 
 |   dest->bits=src->bits; | 
 |   dest->exponent=src->exponent; | 
 |   decSetCoeff(dest, set, src->lsu, src->digits, residue, status); | 
 |   } /* decCopyFit  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decSetCoeff -- set the coefficient of a number                     */ | 
 | /*                                                                    */ | 
 | /*   dn    is the number whose coefficient array is to be set.        */ | 
 | /*         It must have space for set->digits digits                  */ | 
 | /*   set   is the context [for size]                                  */ | 
 | /*   lsu   -> lsu of the source coefficient [may be dn->lsu]          */ | 
 | /*   len   is digits in the source coefficient [may be dn->digits]    */ | 
 | /*   residue is the residue accumulator.  This has values as in       */ | 
 | /*         decApplyRound, and will be unchanged unless the            */ | 
 | /*         target size is less than len.  In this case, the           */ | 
 | /*         coefficient is truncated and the residue is updated to     */ | 
 | /*         reflect the previous residue and the dropped digits.       */ | 
 | /*   status is the status accumulator, as usual                       */ | 
 | /*                                                                    */ | 
 | /* The coefficient may already be in the number, or it can be an      */ | 
 | /* external intermediate array.  If it is in the number, lsu must ==  */ | 
 | /* dn->lsu and len must == dn->digits.                                */ | 
 | /*                                                                    */ | 
 | /* Note that the coefficient length (len) may be < set->digits, and   */ | 
 | /* in this case this merely copies the coefficient (or is a no-op     */ | 
 | /* if dn->lsu==lsu).                                                  */ | 
 | /*                                                                    */ | 
 | /* Note also that (only internally, from decQuantizeOp and            */ | 
 | /* decSetSubnormal) the value of set->digits may be less than one,    */ | 
 | /* indicating a round to left.  This routine handles that case        */ | 
 | /* correctly; caller ensures space.                                   */ | 
 | /*                                                                    */ | 
 | /* dn->digits, dn->lsu (and as required), and dn->exponent are        */ | 
 | /* updated as necessary.   dn->bits (sign) is unchanged.              */ | 
 | /*                                                                    */ | 
 | /* DEC_Rounded status is set if any digits are discarded.             */ | 
 | /* DEC_Inexact status is set if any non-zero digits are discarded, or */ | 
 | /*                       incoming residue was non-0 (implies rounded) */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* mapping array: maps 0-9 to canonical residues, so that a residue  */ | 
 | /* can be adjusted in the range [-1, +1] and achieve correct rounding  */ | 
 | /*                             0  1  2  3  4  5  6  7  8  9  */ | 
 | static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; | 
 | static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, | 
 |                         Int len, Int *residue, uInt *status) { | 
 |   Int   discard;              /* number of digits to discard  */ | 
 |   uInt  cut;                  /* cut point in Unit  */ | 
 |   const Unit *up;             /* work  */ | 
 |   Unit  *target;              /* ..  */ | 
 |   Int   count;                /* ..  */ | 
 |   #if DECDPUN<=4 | 
 |   uInt  temp;                 /* ..  */ | 
 |   #endif | 
 |  | 
 |   discard=len-set->digits;    /* digits to discard  */ | 
 |   if (discard<=0) {           /* no digits are being discarded  */ | 
 |     if (dn->lsu!=lsu) {       /* copy needed  */ | 
 |       /* copy the coefficient array to the result number; no shift needed  */ | 
 |       count=len;              /* avoids D2U  */ | 
 |       up=lsu; | 
 |       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) | 
 |         *target=*up; | 
 |       dn->digits=len;         /* set the new length  */ | 
 |       } | 
 |     /* dn->exponent and residue are unchanged, record any inexactitude  */ | 
 |     if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); | 
 |     return; | 
 |     } | 
 |  | 
 |   /* some digits must be discarded ...  */ | 
 |   dn->exponent+=discard;      /* maintain numerical value  */ | 
 |   *status|=DEC_Rounded;       /* accumulate Rounded status  */ | 
 |   if (*residue>1) *residue=1; /* previous residue now to right, so reduce  */ | 
 |  | 
 |   if (discard>len) {          /* everything, +1, is being discarded  */ | 
 |     /* guard digit is 0  */ | 
 |     /* residue is all the number [NB could be all 0s]  */ | 
 |     if (*residue<=0) {        /* not already positive  */ | 
 |       count=len;              /* avoids D2U  */ | 
 |       for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0  */ | 
 |         *residue=1; | 
 |         break;                /* no need to check any others  */ | 
 |         } | 
 |       } | 
 |     if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */ | 
 |     *dn->lsu=0;               /* coefficient will now be 0  */ | 
 |     dn->digits=1;             /* ..  */ | 
 |     return; | 
 |     } /* total discard  */ | 
 |  | 
 |   /* partial discard [most common case]  */ | 
 |   /* here, at least the first (most significant) discarded digit exists  */ | 
 |  | 
 |   /* spin up the number, noting residue during the spin, until get to  */ | 
 |   /* the Unit with the first discarded digit.  When reach it, extract  */ | 
 |   /* it and remember its position  */ | 
 |   count=0; | 
 |   for (up=lsu;; up++) { | 
 |     count+=DECDPUN; | 
 |     if (count>=discard) break; /* full ones all checked  */ | 
 |     if (*up!=0) *residue=1; | 
 |     } /* up  */ | 
 |  | 
 |   /* here up -> Unit with first discarded digit  */ | 
 |   cut=discard-(count-DECDPUN)-1; | 
 |   if (cut==DECDPUN-1) {       /* unit-boundary case (fast)  */ | 
 |     Unit half=(Unit)powers[DECDPUN]>>1; | 
 |     /* set residue directly  */ | 
 |     if (*up>=half) { | 
 |       if (*up>half) *residue=7; | 
 |       else *residue+=5;       /* add sticky bit  */ | 
 |       } | 
 |      else { /* <half  */ | 
 |       if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit]  */ | 
 |       } | 
 |     if (set->digits<=0) {     /* special for Quantize/Subnormal :-(  */ | 
 |       *dn->lsu=0;             /* .. result is 0  */ | 
 |       dn->digits=1;           /* ..  */ | 
 |       } | 
 |      else {                   /* shift to least  */ | 
 |       count=set->digits;      /* now digits to end up with  */ | 
 |       dn->digits=count;       /* set the new length  */ | 
 |       up++;                   /* move to next  */ | 
 |       /* on unit boundary, so shift-down copy loop is simple  */ | 
 |       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) | 
 |         *target=*up; | 
 |       } | 
 |     } /* unit-boundary case  */ | 
 |  | 
 |    else { /* discard digit is in low digit(s), and not top digit  */ | 
 |     uInt  discard1;                /* first discarded digit  */ | 
 |     uInt  quot, rem;               /* for divisions  */ | 
 |     if (cut==0) quot=*up;          /* is at bottom of unit  */ | 
 |      else /* cut>0 */ {            /* it's not at bottom of unit  */ | 
 |       #if DECDPUN<=4 | 
 |         U_ASSERT(/* cut >= 0 &&*/ cut <= 4); | 
 |         quot=QUOT10(*up, cut); | 
 |         rem=*up-quot*powers[cut]; | 
 |       #else | 
 |         rem=*up%powers[cut]; | 
 |         quot=*up/powers[cut]; | 
 |       #endif | 
 |       if (rem!=0) *residue=1; | 
 |       } | 
 |     /* discard digit is now at bottom of quot  */ | 
 |     #if DECDPUN<=4 | 
 |       temp=(quot*6554)>>16;        /* fast /10  */ | 
 |       /* Vowels algorithm here not a win (9 instructions)  */ | 
 |       discard1=quot-X10(temp); | 
 |       quot=temp; | 
 |     #else | 
 |       discard1=quot%10; | 
 |       quot=quot/10; | 
 |     #endif | 
 |     /* here, discard1 is the guard digit, and residue is everything  */ | 
 |     /* else [use mapping array to accumulate residue safely]  */ | 
 |     *residue+=resmap[discard1]; | 
 |     cut++;                         /* update cut  */ | 
 |     /* here: up -> Unit of the array with bottom digit  */ | 
 |     /*       cut is the division point for each Unit  */ | 
 |     /*       quot holds the uncut high-order digits for the current unit  */ | 
 |     if (set->digits<=0) {          /* special for Quantize/Subnormal :-(  */ | 
 |       *dn->lsu=0;                  /* .. result is 0  */ | 
 |       dn->digits=1;                /* ..  */ | 
 |       } | 
 |      else {                        /* shift to least needed  */ | 
 |       count=set->digits;           /* now digits to end up with  */ | 
 |       dn->digits=count;            /* set the new length  */ | 
 |       /* shift-copy the coefficient array to the result number  */ | 
 |       for (target=dn->lsu; ; target++) { | 
 |         *target=(Unit)quot; | 
 |         count-=(DECDPUN-cut); | 
 |         if (count<=0) break; | 
 |         up++; | 
 |         quot=*up; | 
 |         #if DECDPUN<=4 | 
 |           quot=QUOT10(quot, cut); | 
 |           rem=*up-quot*powers[cut]; | 
 |         #else | 
 |           rem=quot%powers[cut]; | 
 |           quot=quot/powers[cut]; | 
 |         #endif | 
 |         *target=(Unit)(*target+rem*powers[DECDPUN-cut]); | 
 |         count-=cut; | 
 |         if (count<=0) break; | 
 |         } /* shift-copy loop  */ | 
 |       } /* shift to least  */ | 
 |     } /* not unit boundary  */ | 
 |  | 
 |   if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */ | 
 |   return; | 
 |   } /* decSetCoeff  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decApplyRound -- apply pending rounding to a number                */ | 
 | /*                                                                    */ | 
 | /*   dn    is the number, with space for set->digits digits           */ | 
 | /*   set   is the context [for size and rounding mode]                */ | 
 | /*   residue indicates pending rounding, being any accumulated        */ | 
 | /*         guard and sticky information.  It may be:                  */ | 
 | /*         6-9: rounding digit is >5                                  */ | 
 | /*         5:   rounding digit is exactly half-way                    */ | 
 | /*         1-4: rounding digit is <5 and >0                           */ | 
 | /*         0:   the coefficient is exact                              */ | 
 | /*        -1:   as 1, but the hidden digits are subtractive, that     */ | 
 | /*              is, of the opposite sign to dn.  In this case the     */ | 
 | /*              coefficient must be non-0.  This case occurs when     */ | 
 | /*              subtracting a small number (which can be reduced to   */ | 
 | /*              a sticky bit); see decAddOp.                          */ | 
 | /*   status is the status accumulator, as usual                       */ | 
 | /*                                                                    */ | 
 | /* This routine applies rounding while keeping the length of the      */ | 
 | /* coefficient constant.  The exponent and status are unchanged       */ | 
 | /* except if:                                                         */ | 
 | /*                                                                    */ | 
 | /*   -- the coefficient was increased and is all nines (in which      */ | 
 | /*      case Overflow could occur, and is handled directly here so    */ | 
 | /*      the caller does not need to re-test for overflow)             */ | 
 | /*                                                                    */ | 
 | /*   -- the coefficient was decreased and becomes all nines (in which */ | 
 | /*      case Underflow could occur, and is also handled directly).    */ | 
 | /*                                                                    */ | 
 | /* All fields in dn are updated as required.                          */ | 
 | /*                                                                    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decApplyRound(decNumber *dn, decContext *set, Int residue, | 
 |                           uInt *status) { | 
 |   Int  bump;                  /* 1 if coefficient needs to be incremented  */ | 
 |                               /* -1 if coefficient needs to be decremented  */ | 
 |  | 
 |   if (residue==0) return;     /* nothing to apply  */ | 
 |  | 
 |   bump=0;                     /* assume a smooth ride  */ | 
 |  | 
 |   /* now decide whether, and how, to round, depending on mode  */ | 
 |   switch (set->round) { | 
 |     case DEC_ROUND_05UP: {    /* round zero or five up (for reround)  */ | 
 |       /* This is the same as DEC_ROUND_DOWN unless there is a  */ | 
 |       /* positive residue and the lsd of dn is 0 or 5, in which case  */ | 
 |       /* it is bumped; when residue is <0, the number is therefore  */ | 
 |       /* bumped down unless the final digit was 1 or 6 (in which  */ | 
 |       /* case it is bumped down and then up -- a no-op)  */ | 
 |       Int lsd5=*dn->lsu%5;     /* get lsd and quintate  */ | 
 |       if (residue<0 && lsd5!=1) bump=-1; | 
 |        else if (residue>0 && lsd5==0) bump=1; | 
 |       /* [bump==1 could be applied directly; use common path for clarity]  */ | 
 |       break;} /* r-05  */ | 
 |  | 
 |     case DEC_ROUND_DOWN: { | 
 |       /* no change, except if negative residue  */ | 
 |       if (residue<0) bump=-1; | 
 |       break;} /* r-d  */ | 
 |  | 
 |     case DEC_ROUND_HALF_DOWN: { | 
 |       if (residue>5) bump=1; | 
 |       break;} /* r-h-d  */ | 
 |  | 
 |     case DEC_ROUND_HALF_EVEN: { | 
 |       if (residue>5) bump=1;            /* >0.5 goes up  */ | 
 |        else if (residue==5) {           /* exactly 0.5000...  */ | 
 |         /* 0.5 goes up iff [new] lsd is odd  */ | 
 |         if (*dn->lsu & 0x01) bump=1; | 
 |         } | 
 |       break;} /* r-h-e  */ | 
 |  | 
 |     case DEC_ROUND_HALF_UP: { | 
 |       if (residue>=5) bump=1; | 
 |       break;} /* r-h-u  */ | 
 |  | 
 |     case DEC_ROUND_UP: { | 
 |       if (residue>0) bump=1; | 
 |       break;} /* r-u  */ | 
 |  | 
 |     case DEC_ROUND_CEILING: { | 
 |       /* same as _UP for positive numbers, and as _DOWN for negatives  */ | 
 |       /* [negative residue cannot occur on 0]  */ | 
 |       if (decNumberIsNegative(dn)) { | 
 |         if (residue<0) bump=-1; | 
 |         } | 
 |        else { | 
 |         if (residue>0) bump=1; | 
 |         } | 
 |       break;} /* r-c  */ | 
 |  | 
 |     case DEC_ROUND_FLOOR: { | 
 |       /* same as _UP for negative numbers, and as _DOWN for positive  */ | 
 |       /* [negative residue cannot occur on 0]  */ | 
 |       if (!decNumberIsNegative(dn)) { | 
 |         if (residue<0) bump=-1; | 
 |         } | 
 |        else { | 
 |         if (residue>0) bump=1; | 
 |         } | 
 |       break;} /* r-f  */ | 
 |  | 
 |     default: {      /* e.g., DEC_ROUND_MAX  */ | 
 |       *status|=DEC_Invalid_context; | 
 |       #if DECTRACE || (DECCHECK && DECVERB) | 
 |       printf("Unknown rounding mode: %d\n", set->round); | 
 |       #endif | 
 |       break;} | 
 |     } /* switch  */ | 
 |  | 
 |   /* now bump the number, up or down, if need be  */ | 
 |   if (bump==0) return;                       /* no action required  */ | 
 |  | 
 |   /* Simply use decUnitAddSub unless bumping up and the number is  */ | 
 |   /* all nines.  In this special case set to 100... explicitly  */ | 
 |   /* and adjust the exponent by one (as otherwise could overflow  */ | 
 |   /* the array)  */ | 
 |   /* Similarly handle all-nines result if bumping down.  */ | 
 |   if (bump>0) { | 
 |     Unit *up;                                /* work  */ | 
 |     uInt count=dn->digits;                   /* digits to be checked  */ | 
 |     for (up=dn->lsu; ; up++) { | 
 |       if (count<=DECDPUN) { | 
 |         /* this is the last Unit (the msu)  */ | 
 |         if (*up!=powers[count]-1) break;     /* not still 9s  */ | 
 |         /* here if it, too, is all nines  */ | 
 |         *up=(Unit)powers[count-1];           /* here 999 -> 100 etc.  */ | 
 |         for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0  */ | 
 |         dn->exponent++;                      /* and bump exponent  */ | 
 |         /* [which, very rarely, could cause Overflow...]  */ | 
 |         if ((dn->exponent+dn->digits)>set->emax+1) { | 
 |           decSetOverflow(dn, set, status); | 
 |           } | 
 |         return;                              /* done  */ | 
 |         } | 
 |       /* a full unit to check, with more to come  */ | 
 |       if (*up!=DECDPUNMAX) break;            /* not still 9s  */ | 
 |       count-=DECDPUN; | 
 |       } /* up  */ | 
 |     } /* bump>0  */ | 
 |    else {                                    /* -1  */ | 
 |     /* here checking for a pre-bump of 1000... (leading 1, all  */ | 
 |     /* other digits zero)  */ | 
 |     Unit *up, *sup;                          /* work  */ | 
 |     uInt count=dn->digits;                   /* digits to be checked  */ | 
 |     for (up=dn->lsu; ; up++) { | 
 |       if (count<=DECDPUN) { | 
 |         /* this is the last Unit (the msu)  */ | 
 |         if (*up!=powers[count-1]) break;     /* not 100..  */ | 
 |         /* here if have the 1000... case  */ | 
 |         sup=up;                              /* save msu pointer  */ | 
 |         *up=(Unit)powers[count]-1;           /* here 100 in msu -> 999  */ | 
 |         /* others all to all-nines, too  */ | 
 |         for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; | 
 |         dn->exponent--;                      /* and bump exponent  */ | 
 |  | 
 |         /* iff the number was at the subnormal boundary (exponent=etiny)  */ | 
 |         /* then the exponent is now out of range, so it will in fact get  */ | 
 |         /* clamped to etiny and the final 9 dropped.  */ | 
 |         /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin,  */ | 
 |         /*        dn->exponent, set->digits);  */ | 
 |         if (dn->exponent+1==set->emin-set->digits+1) { | 
 |           if (count==1 && dn->digits==1) *sup=0;  /* here 9 -> 0[.9]  */ | 
 |            else { | 
 |             *sup=(Unit)powers[count-1]-1;    /* here 999.. in msu -> 99..  */ | 
 |             dn->digits--; | 
 |             } | 
 |           dn->exponent++; | 
 |           *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; | 
 |           } | 
 |         return;                              /* done  */ | 
 |         } | 
 |  | 
 |       /* a full unit to check, with more to come  */ | 
 |       if (*up!=0) break;                     /* not still 0s  */ | 
 |       count-=DECDPUN; | 
 |       } /* up  */ | 
 |  | 
 |     } /* bump<0  */ | 
 |  | 
 |   /* Actual bump needed.  Do it.  */ | 
 |   decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); | 
 |   } /* decApplyRound  */ | 
 |  | 
 | #if DECSUBSET | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decFinish -- finish processing a number                            */ | 
 | /*                                                                    */ | 
 | /*   dn is the number                                                 */ | 
 | /*   set is the context                                               */ | 
 | /*   residue is the rounding accumulator (as in decApplyRound)        */ | 
 | /*   status is the accumulator                                        */ | 
 | /*                                                                    */ | 
 | /* This finishes off the current number by:                           */ | 
 | /*    1. If not extended:                                             */ | 
 | /*       a. Converting a zero result to clean '0'                     */ | 
 | /*       b. Reducing positive exponents to 0, if would fit in digits  */ | 
 | /*    2. Checking for overflow and subnormals (always)                */ | 
 | /* Note this is just Finalize when no subset arithmetic.              */ | 
 | /* All fields are updated as required.                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decFinish(decNumber *dn, decContext *set, Int *residue, | 
 |                       uInt *status) { | 
 |   if (!set->extended) { | 
 |     if ISZERO(dn) {                /* value is zero  */ | 
 |       dn->exponent=0;              /* clean exponent ..  */ | 
 |       dn->bits=0;                  /* .. and sign  */ | 
 |       return;                      /* no error possible  */ | 
 |       } | 
 |     if (dn->exponent>=0) {         /* non-negative exponent  */ | 
 |       /* >0; reduce to integer if possible  */ | 
 |       if (set->digits >= (dn->exponent+dn->digits)) { | 
 |         dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); | 
 |         dn->exponent=0; | 
 |         } | 
 |       } | 
 |     } /* !extended  */ | 
 |  | 
 |   decFinalize(dn, set, residue, status); | 
 |   } /* decFinish  */ | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decFinalize -- final check, clamp, and round of a number           */ | 
 | /*                                                                    */ | 
 | /*   dn is the number                                                 */ | 
 | /*   set is the context                                               */ | 
 | /*   residue is the rounding accumulator (as in decApplyRound)        */ | 
 | /*   status is the status accumulator                                 */ | 
 | /*                                                                    */ | 
 | /* This finishes off the current number by checking for subnormal     */ | 
 | /* results, applying any pending rounding, checking for overflow,     */ | 
 | /* and applying any clamping.                                         */ | 
 | /* Underflow and overflow conditions are raised as appropriate.       */ | 
 | /* All fields are updated as required.                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decFinalize(decNumber *dn, decContext *set, Int *residue, | 
 |                         uInt *status) { | 
 |   Int shift;                            /* shift needed if clamping  */ | 
 |   Int tinyexp=set->emin-dn->digits+1;   /* precalculate subnormal boundary  */ | 
 |  | 
 |   /* Must be careful, here, when checking the exponent as the  */ | 
 |   /* adjusted exponent could overflow 31 bits [because it may already  */ | 
 |   /* be up to twice the expected].  */ | 
 |  | 
 |   /* First test for subnormal.  This must be done before any final  */ | 
 |   /* round as the result could be rounded to Nmin or 0.  */ | 
 |   if (dn->exponent<=tinyexp) {          /* prefilter  */ | 
 |     Int comp; | 
 |     decNumber nmin; | 
 |     /* A very nasty case here is dn == Nmin and residue<0  */ | 
 |     if (dn->exponent<tinyexp) { | 
 |       /* Go handle subnormals; this will apply round if needed.  */ | 
 |       decSetSubnormal(dn, set, residue, status); | 
 |       return; | 
 |       } | 
 |     /* Equals case: only subnormal if dn=Nmin and negative residue  */ | 
 |     uprv_decNumberZero(&nmin); | 
 |     nmin.lsu[0]=1; | 
 |     nmin.exponent=set->emin; | 
 |     comp=decCompare(dn, &nmin, 1);                /* (signless compare)  */ | 
 |     if (comp==BADINT) {                           /* oops  */ | 
 |       *status|=DEC_Insufficient_storage;          /* abandon...  */ | 
 |       return; | 
 |       } | 
 |     if (*residue<0 && comp==0) {                  /* neg residue and dn==Nmin  */ | 
 |       decApplyRound(dn, set, *residue, status);   /* might force down  */ | 
 |       decSetSubnormal(dn, set, residue, status); | 
 |       return; | 
 |       } | 
 |     } | 
 |  | 
 |   /* now apply any pending round (this could raise overflow).  */ | 
 |   if (*residue!=0) decApplyRound(dn, set, *residue, status); | 
 |  | 
 |   /* Check for overflow [redundant in the 'rare' case] or clamp  */ | 
 |   if (dn->exponent<=set->emax-set->digits+1) return;   /* neither needed  */ | 
 |  | 
 |  | 
 |   /* here when might have an overflow or clamp to do  */ | 
 |   if (dn->exponent>set->emax-dn->digits+1) {           /* too big  */ | 
 |     decSetOverflow(dn, set, status); | 
 |     return; | 
 |     } | 
 |   /* here when the result is normal but in clamp range  */ | 
 |   if (!set->clamp) return; | 
 |  | 
 |   /* here when need to apply the IEEE exponent clamp (fold-down)  */ | 
 |   shift=dn->exponent-(set->emax-set->digits+1); | 
 |  | 
 |   /* shift coefficient (if non-zero)  */ | 
 |   if (!ISZERO(dn)) { | 
 |     dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); | 
 |     } | 
 |   dn->exponent-=shift;   /* adjust the exponent to match  */ | 
 |   *status|=DEC_Clamped;  /* and record the dirty deed  */ | 
 |   return; | 
 |   } /* decFinalize  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decSetOverflow -- set number to proper overflow value              */ | 
 | /*                                                                    */ | 
 | /*   dn is the number (used for sign [only] and result)               */ | 
 | /*   set is the context [used for the rounding mode, etc.]            */ | 
 | /*   status contains the current status to be updated                 */ | 
 | /*                                                                    */ | 
 | /* This sets the sign of a number and sets its value to either        */ | 
 | /* Infinity or the maximum finite value, depending on the sign of     */ | 
 | /* dn and the rounding mode, following IEEE 754 rules.                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { | 
 |   Flag needmax=0;                  /* result is maximum finite value  */ | 
 |   uByte sign=dn->bits&DECNEG;      /* clean and save sign bit  */ | 
 |  | 
 |   if (ISZERO(dn)) {                /* zero does not overflow magnitude  */ | 
 |     Int emax=set->emax;                      /* limit value  */ | 
 |     if (set->clamp) emax-=set->digits-1;     /* lower if clamping  */ | 
 |     if (dn->exponent>emax) {                 /* clamp required  */ | 
 |       dn->exponent=emax; | 
 |       *status|=DEC_Clamped; | 
 |       } | 
 |     return; | 
 |     } | 
 |  | 
 |   uprv_decNumberZero(dn); | 
 |   switch (set->round) { | 
 |     case DEC_ROUND_DOWN: { | 
 |       needmax=1;                   /* never Infinity  */ | 
 |       break;} /* r-d  */ | 
 |     case DEC_ROUND_05UP: { | 
 |       needmax=1;                   /* never Infinity  */ | 
 |       break;} /* r-05  */ | 
 |     case DEC_ROUND_CEILING: { | 
 |       if (sign) needmax=1;         /* Infinity if non-negative  */ | 
 |       break;} /* r-c  */ | 
 |     case DEC_ROUND_FLOOR: { | 
 |       if (!sign) needmax=1;        /* Infinity if negative  */ | 
 |       break;} /* r-f  */ | 
 |     default: break;                /* Infinity in all other cases  */ | 
 |     } | 
 |   if (needmax) { | 
 |     decSetMaxValue(dn, set); | 
 |     dn->bits=sign;                 /* set sign  */ | 
 |     } | 
 |    else dn->bits=sign|DECINF;      /* Value is +/-Infinity  */ | 
 |   *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; | 
 |   } /* decSetOverflow  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decSetMaxValue -- set number to +Nmax (maximum normal value)       */ | 
 | /*                                                                    */ | 
 | /*   dn is the number to set                                          */ | 
 | /*   set is the context [used for digits and emax]                    */ | 
 | /*                                                                    */ | 
 | /* This sets the number to the maximum positive value.                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decSetMaxValue(decNumber *dn, decContext *set) { | 
 |   Unit *up;                        /* work  */ | 
 |   Int count=set->digits;           /* nines to add  */ | 
 |   dn->digits=count; | 
 |   /* fill in all nines to set maximum value  */ | 
 |   for (up=dn->lsu; ; up++) { | 
 |     if (count>DECDPUN) *up=DECDPUNMAX;  /* unit full o'nines  */ | 
 |      else {                             /* this is the msu  */ | 
 |       *up=(Unit)(powers[count]-1); | 
 |       break; | 
 |       } | 
 |     count-=DECDPUN;                /* filled those digits  */ | 
 |     } /* up  */ | 
 |   dn->bits=0;                      /* + sign  */ | 
 |   dn->exponent=set->emax-set->digits+1; | 
 |   } /* decSetMaxValue  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decSetSubnormal -- process value whose exponent is <Emin           */ | 
 | /*                                                                    */ | 
 | /*   dn is the number (used as input as well as output; it may have   */ | 
 | /*         an allowed subnormal value, which may need to be rounded)  */ | 
 | /*   set is the context [used for the rounding mode]                  */ | 
 | /*   residue is any pending residue                                   */ | 
 | /*   status contains the current status to be updated                 */ | 
 | /*                                                                    */ | 
 | /* If subset mode, set result to zero and set Underflow flags.        */ | 
 | /*                                                                    */ | 
 | /* Value may be zero with a low exponent; this does not set Subnormal */ | 
 | /* but the exponent will be clamped to Etiny.                         */ | 
 | /*                                                                    */ | 
 | /* Otherwise ensure exponent is not out of range, and round as        */ | 
 | /* necessary.  Underflow is set if the result is Inexact.             */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue, | 
 |                             uInt *status) { | 
 |   decContext workset;         /* work  */ | 
 |   Int        etiny, adjust;   /* ..  */ | 
 |  | 
 |   #if DECSUBSET | 
 |   /* simple set to zero and 'hard underflow' for subset  */ | 
 |   if (!set->extended) { | 
 |     uprv_decNumberZero(dn); | 
 |     /* always full overflow  */ | 
 |     *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; | 
 |     return; | 
 |     } | 
 |   #endif | 
 |  | 
 |   /* Full arithmetic -- allow subnormals, rounded to minimum exponent  */ | 
 |   /* (Etiny) if needed  */ | 
 |   etiny=set->emin-(set->digits-1);      /* smallest allowed exponent  */ | 
 |  | 
 |   if ISZERO(dn) {                       /* value is zero  */ | 
 |     /* residue can never be non-zero here  */ | 
 |     #if DECCHECK | 
 |       if (*residue!=0) { | 
 |         printf("++ Subnormal 0 residue %ld\n", (LI)*residue); | 
 |         *status|=DEC_Invalid_operation; | 
 |         } | 
 |     #endif | 
 |     if (dn->exponent<etiny) {           /* clamp required  */ | 
 |       dn->exponent=etiny; | 
 |       *status|=DEC_Clamped; | 
 |       } | 
 |     return; | 
 |     } | 
 |  | 
 |   *status|=DEC_Subnormal;               /* have a non-zero subnormal  */ | 
 |   adjust=etiny-dn->exponent;            /* calculate digits to remove  */ | 
 |   if (adjust<=0) {                      /* not out of range; unrounded  */ | 
 |     /* residue can never be non-zero here, except in the Nmin-residue  */ | 
 |     /* case (which is a subnormal result), so can take fast-path here  */ | 
 |     /* it may already be inexact (from setting the coefficient)  */ | 
 |     if (*status&DEC_Inexact) *status|=DEC_Underflow; | 
 |     return; | 
 |     } | 
 |  | 
 |   /* adjust>0, so need to rescale the result so exponent becomes Etiny  */ | 
 |   /* [this code is similar to that in rescale]  */ | 
 |   workset=*set;                         /* clone rounding, etc.  */ | 
 |   workset.digits=dn->digits-adjust;     /* set requested length  */ | 
 |   workset.emin-=adjust;                 /* and adjust emin to match  */ | 
 |   /* [note that the latter can be <1, here, similar to Rescale case]  */ | 
 |   decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); | 
 |   decApplyRound(dn, &workset, *residue, status); | 
 |  | 
 |   /* Use 754 default rule: Underflow is set iff Inexact  */ | 
 |   /* [independent of whether trapped]  */ | 
 |   if (*status&DEC_Inexact) *status|=DEC_Underflow; | 
 |  | 
 |   /* if rounded up a 999s case, exponent will be off by one; adjust  */ | 
 |   /* back if so [it will fit, because it was shortened earlier]  */ | 
 |   if (dn->exponent>etiny) { | 
 |     dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); | 
 |     dn->exponent--;                     /* (re)adjust the exponent.  */ | 
 |     } | 
 |  | 
 |   /* if rounded to zero, it is by definition clamped...  */ | 
 |   if (ISZERO(dn)) *status|=DEC_Clamped; | 
 |   } /* decSetSubnormal  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCheckMath - check entry conditions for a math function          */ | 
 | /*                                                                    */ | 
 | /*   This checks the context and the operand                          */ | 
 | /*                                                                    */ | 
 | /*   rhs is the operand to check                                      */ | 
 | /*   set is the context to check                                      */ | 
 | /*   status is unchanged if both are good                             */ | 
 | /*                                                                    */ | 
 | /* returns non-zero if status is changed, 0 otherwise                 */ | 
 | /*                                                                    */ | 
 | /* Restrictions enforced:                                             */ | 
 | /*                                                                    */ | 
 | /*   digits, emax, and -emin in the context must be less than         */ | 
 | /*   DEC_MAX_MATH (999999), and A must be within these bounds if      */ | 
 | /*   non-zero.  Invalid_operation is set in the status if a           */ | 
 | /*   restriction is violated.                                         */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static uInt decCheckMath(const decNumber *rhs, decContext *set, | 
 |                          uInt *status) { | 
 |   uInt save=*status;                         /* record  */ | 
 |   if (set->digits>DEC_MAX_MATH | 
 |    || set->emax>DEC_MAX_MATH | 
 |    || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; | 
 |    else if ((rhs->digits>DEC_MAX_MATH | 
 |      || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 | 
 |      || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) | 
 |      && !ISZERO(rhs)) *status|=DEC_Invalid_operation; | 
 |   return (*status!=save); | 
 |   } /* decCheckMath  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decGetInt -- get integer from a number                             */ | 
 | /*                                                                    */ | 
 | /*   dn is the number [which will not be altered]                     */ | 
 | /*                                                                    */ | 
 | /*   returns one of:                                                  */ | 
 | /*     BADINT if there is a non-zero fraction                         */ | 
 | /*     the converted integer                                          */ | 
 | /*     BIGEVEN if the integer is even and magnitude > 2*10**9         */ | 
 | /*     BIGODD  if the integer is odd  and magnitude > 2*10**9         */ | 
 | /*                                                                    */ | 
 | /* This checks and gets a whole number from the input decNumber.      */ | 
 | /* The sign can be determined from dn by the caller when BIGEVEN or   */ | 
 | /* BIGODD is returned.                                                */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Int decGetInt(const decNumber *dn) { | 
 |   Int  theInt;                          /* result accumulator  */ | 
 |   const Unit *up;                       /* work  */ | 
 |   Int  got;                             /* digits (real or not) processed  */ | 
 |   Int  ilength=dn->digits+dn->exponent; /* integral length  */ | 
 |   Flag neg=decNumberIsNegative(dn);     /* 1 if -ve  */ | 
 |  | 
 |   /* The number must be an integer that fits in 10 digits  */ | 
 |   /* Assert, here, that 10 is enough for any rescale Etiny  */ | 
 |   #if DEC_MAX_EMAX > 999999999 | 
 |     #error GetInt may need updating [for Emax] | 
 |   #endif | 
 |   #if DEC_MIN_EMIN < -999999999 | 
 |     #error GetInt may need updating [for Emin] | 
 |   #endif | 
 |   if (ISZERO(dn)) return 0;             /* zeros are OK, with any exponent  */ | 
 |  | 
 |   up=dn->lsu;                           /* ready for lsu  */ | 
 |   theInt=0;                             /* ready to accumulate  */ | 
 |   if (dn->exponent>=0) {                /* relatively easy  */ | 
 |     /* no fractional part [usual]; allow for positive exponent  */ | 
 |     got=dn->exponent; | 
 |     } | 
 |    else { /* -ve exponent; some fractional part to check and discard  */ | 
 |     Int count=-dn->exponent;            /* digits to discard  */ | 
 |     /* spin up whole units until reach the Unit with the unit digit  */ | 
 |     for (; count>=DECDPUN; up++) { | 
 |       if (*up!=0) return BADINT;        /* non-zero Unit to discard  */ | 
 |       count-=DECDPUN; | 
 |       } | 
 |     if (count==0) got=0;                /* [a multiple of DECDPUN]  */ | 
 |      else {                             /* [not multiple of DECDPUN]  */ | 
 |       Int rem;                          /* work  */ | 
 |       /* slice off fraction digits and check for non-zero  */ | 
 |       #if DECDPUN<=4 | 
 |         theInt=QUOT10(*up, count); | 
 |         rem=*up-theInt*powers[count]; | 
 |       #else | 
 |         rem=*up%powers[count];          /* slice off discards  */ | 
 |         theInt=*up/powers[count]; | 
 |       #endif | 
 |       if (rem!=0) return BADINT;        /* non-zero fraction  */ | 
 |       /* it looks good  */ | 
 |       got=DECDPUN-count;                /* number of digits so far  */ | 
 |       up++;                             /* ready for next  */ | 
 |       } | 
 |     } | 
 |   /* now it's known there's no fractional part  */ | 
 |  | 
 |   /* tricky code now, to accumulate up to 9.3 digits  */ | 
 |   if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there  */ | 
 |  | 
 |   if (ilength<11) { | 
 |     Int save=theInt; | 
 |     /* collect any remaining unit(s)  */ | 
 |     for (; got<ilength; up++) { | 
 |       theInt+=*up*powers[got]; | 
 |       got+=DECDPUN; | 
 |       } | 
 |     if (ilength==10) {                  /* need to check for wrap  */ | 
 |       if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11; | 
 |          /* [that test also disallows the BADINT result case]  */ | 
 |        else if (neg && theInt>1999999997) ilength=11; | 
 |        else if (!neg && theInt>999999999) ilength=11; | 
 |       if (ilength==11) theInt=save;     /* restore correct low bit  */ | 
 |       } | 
 |     } | 
 |  | 
 |   if (ilength>10) {                     /* too big  */ | 
 |     if (theInt&1) return BIGODD;        /* bottom bit 1  */ | 
 |     return BIGEVEN;                     /* bottom bit 0  */ | 
 |     } | 
 |  | 
 |   if (neg) theInt=-theInt;              /* apply sign  */ | 
 |   return theInt; | 
 |   } /* decGetInt  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decDecap -- decapitate the coefficient of a number                 */ | 
 | /*                                                                    */ | 
 | /*   dn   is the number to be decapitated                             */ | 
 | /*   drop is the number of digits to be removed from the left of dn;  */ | 
 | /*     this must be <= dn->digits (if equal, the coefficient is       */ | 
 | /*     set to 0)                                                      */ | 
 | /*                                                                    */ | 
 | /* Returns dn; dn->digits will be <= the initial digits less drop     */ | 
 | /* (after removing drop digits there may be leading zero digits       */ | 
 | /* which will also be removed).  Only dn->lsu and dn->digits change.  */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber *decDecap(decNumber *dn, Int drop) { | 
 |   Unit *msu;                            /* -> target cut point  */ | 
 |   Int cut;                              /* work  */ | 
 |   if (drop>=dn->digits) {               /* losing the whole thing  */ | 
 |     #if DECCHECK | 
 |     if (drop>dn->digits) | 
 |       printf("decDecap called with drop>digits [%ld>%ld]\n", | 
 |              (LI)drop, (LI)dn->digits); | 
 |     #endif | 
 |     dn->lsu[0]=0; | 
 |     dn->digits=1; | 
 |     return dn; | 
 |     } | 
 |   msu=dn->lsu+D2U(dn->digits-drop)-1;   /* -> likely msu  */ | 
 |   cut=MSUDIGITS(dn->digits-drop);       /* digits to be in use in msu  */ | 
 |   if (cut!=DECDPUN) *msu%=powers[cut];  /* clear left digits  */ | 
 |   /* that may have left leading zero digits, so do a proper count...  */ | 
 |   dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(msu-dn->lsu+1)); | 
 |   return dn; | 
 |   } /* decDecap  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decBiStr -- compare string with pairwise options                   */ | 
 | /*                                                                    */ | 
 | /*   targ is the string to compare                                    */ | 
 | /*   str1 is one of the strings to compare against (length may be 0)  */ | 
 | /*   str2 is the other; it must be the same length as str1            */ | 
 | /*                                                                    */ | 
 | /*   returns 1 if strings compare equal, (that is, it is the same     */ | 
 | /*   length as str1 and str2, and each character of targ is in either */ | 
 | /*   str1 or str2 in the corresponding position), or 0 otherwise      */ | 
 | /*                                                                    */ | 
 | /* This is used for generic caseless compare, including the awkward   */ | 
 | /* case of the Turkish dotted and dotless Is.  Use as (for example):  */ | 
 | /*   if (decBiStr(test, "mike", "MIKE")) ...                          */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Flag decBiStr(const char *targ, const char *str1, const char *str2) { | 
 |   for (;;targ++, str1++, str2++) { | 
 |     if (*targ!=*str1 && *targ!=*str2) return 0; | 
 |     /* *targ has a match in one (or both, if terminator)  */ | 
 |     if (*targ=='\0') break; | 
 |     } /* forever  */ | 
 |   return 1; | 
 |   } /* decBiStr  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNaNs -- handle NaN operand or operands                          */ | 
 | /*                                                                    */ | 
 | /*   res     is the result number                                     */ | 
 | /*   lhs     is the first operand                                     */ | 
 | /*   rhs     is the second operand, or NULL if none                   */ | 
 | /*   context is used to limit payload length                          */ | 
 | /*   status  contains the current status                              */ | 
 | /*   returns res in case convenient                                   */ | 
 | /*                                                                    */ | 
 | /* Called when one or both operands is a NaN, and propagates the      */ | 
 | /* appropriate result to res.  When an sNaN is found, it is changed   */ | 
 | /* to a qNaN and Invalid operation is set.                            */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static decNumber * decNaNs(decNumber *res, const decNumber *lhs, | 
 |                            const decNumber *rhs, decContext *set, | 
 |                            uInt *status) { | 
 |   /* This decision tree ends up with LHS being the source pointer,  */ | 
 |   /* and status updated if need be  */ | 
 |   if (lhs->bits & DECSNAN) | 
 |     *status|=DEC_Invalid_operation | DEC_sNaN; | 
 |    else if (rhs==NULL); | 
 |    else if (rhs->bits & DECSNAN) { | 
 |     lhs=rhs; | 
 |     *status|=DEC_Invalid_operation | DEC_sNaN; | 
 |     } | 
 |    else if (lhs->bits & DECNAN); | 
 |    else lhs=rhs; | 
 |  | 
 |   /* propagate the payload  */ | 
 |   if (lhs->digits<=set->digits) uprv_decNumberCopy(res, lhs); /* easy  */ | 
 |    else { /* too long  */ | 
 |     const Unit *ul; | 
 |     Unit *ur, *uresp1; | 
 |     /* copy safe number of units, then decapitate  */ | 
 |     res->bits=lhs->bits;                /* need sign etc.  */ | 
 |     uresp1=res->lsu+D2U(set->digits); | 
 |     for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; | 
 |     res->digits=D2U(set->digits)*DECDPUN; | 
 |     /* maybe still too long  */ | 
 |     if (res->digits>set->digits) decDecap(res, res->digits-set->digits); | 
 |     } | 
 |  | 
 |   res->bits&=~DECSNAN;        /* convert any sNaN to NaN, while  */ | 
 |   res->bits|=DECNAN;          /* .. preserving sign  */ | 
 |   res->exponent=0;            /* clean exponent  */ | 
 |                               /* [coefficient was copied/decapitated]  */ | 
 |   return res; | 
 |   } /* decNaNs  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decStatus -- apply non-zero status                                 */ | 
 | /*                                                                    */ | 
 | /*   dn     is the number to set if error                             */ | 
 | /*   status contains the current status (not yet in context)          */ | 
 | /*   set    is the context                                            */ | 
 | /*                                                                    */ | 
 | /* If the status is an error status, the number is set to a NaN,      */ | 
 | /* unless the error was an overflow, divide-by-zero, or underflow,    */ | 
 | /* in which case the number will have already been set.               */ | 
 | /*                                                                    */ | 
 | /* The context status is then updated with the new status.  Note that */ | 
 | /* this may raise a signal, so control may never return from this     */ | 
 | /* routine (hence resources must be recovered before it is called).   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decStatus(decNumber *dn, uInt status, decContext *set) { | 
 |   if (status & DEC_NaNs) {              /* error status -> NaN  */ | 
 |     /* if cause was an sNaN, clear and propagate [NaN is already set up]  */ | 
 |     if (status & DEC_sNaN) status&=~DEC_sNaN; | 
 |      else { | 
 |       uprv_decNumberZero(dn);                /* other error: clean throughout  */ | 
 |       dn->bits=DECNAN;                  /* and make a quiet NaN  */ | 
 |       } | 
 |     } | 
 |   uprv_decContextSetStatus(set, status);     /* [may not return]  */ | 
 |   return; | 
 |   } /* decStatus  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decGetDigits -- count digits in a Units array                      */ | 
 | /*                                                                    */ | 
 | /*   uar is the Unit array holding the number (this is often an       */ | 
 | /*          accumulator of some sort)                                 */ | 
 | /*   len is the length of the array in units [>=1]                    */ | 
 | /*                                                                    */ | 
 | /*   returns the number of (significant) digits in the array          */ | 
 | /*                                                                    */ | 
 | /* All leading zeros are excluded, except the last if the array has   */ | 
 | /* only zero Units.                                                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This may be called twice during some operations.  */ | 
 | static Int decGetDigits(Unit *uar, Int len) { | 
 |   Unit *up=uar+(len-1);            /* -> msu  */ | 
 |   Int  digits=(len-1)*DECDPUN+1;   /* possible digits excluding msu  */ | 
 |   #if DECDPUN>4 | 
 |   uInt const *pow;                 /* work  */ | 
 |   #endif | 
 |                                    /* (at least 1 in final msu)  */ | 
 |   #if DECCHECK | 
 |   if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); | 
 |   #endif | 
 |  | 
 |   for (; up>=uar; up--) { | 
 |     if (*up==0) {                  /* unit is all 0s  */ | 
 |       if (digits==1) break;        /* a zero has one digit  */ | 
 |       digits-=DECDPUN;             /* adjust for 0 unit  */ | 
 |       continue;} | 
 |     /* found the first (most significant) non-zero Unit  */ | 
 |     #if DECDPUN>1                  /* not done yet  */ | 
 |     if (*up<10) break;             /* is 1-9  */ | 
 |     digits++; | 
 |     #if DECDPUN>2                  /* not done yet  */ | 
 |     if (*up<100) break;            /* is 10-99  */ | 
 |     digits++; | 
 |     #if DECDPUN>3                  /* not done yet  */ | 
 |     if (*up<1000) break;           /* is 100-999  */ | 
 |     digits++; | 
 |     #if DECDPUN>4                  /* count the rest ...  */ | 
 |     for (pow=&powers[4]; *up>=*pow; pow++) digits++; | 
 |     #endif | 
 |     #endif | 
 |     #endif | 
 |     #endif | 
 |     break; | 
 |     } /* up  */ | 
 |   return digits; | 
 |   } /* decGetDigits  */ | 
 |  | 
 | #if DECTRACE | DECCHECK | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decNumberShow -- display a number [debug aid]                      */ | 
 | /*   dn is the number to show                                         */ | 
 | /*                                                                    */ | 
 | /* Shows: sign, exponent, coefficient (msu first), digits             */ | 
 | /*    or: sign, special-value                                         */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* this is public so other modules can use it  */ | 
 | void uprv_decNumberShow(const decNumber *dn) { | 
 |   const Unit *up;                  /* work  */ | 
 |   uInt u, d;                       /* ..  */ | 
 |   Int cut;                         /* ..  */ | 
 |   char isign='+';                  /* main sign  */ | 
 |   if (dn==NULL) { | 
 |     printf("NULL\n"); | 
 |     return;} | 
 |   if (decNumberIsNegative(dn)) isign='-'; | 
 |   printf(" >> %c ", isign); | 
 |   if (dn->bits&DECSPECIAL) {       /* Is a special value  */ | 
 |     if (decNumberIsInfinite(dn)) printf("Infinity"); | 
 |      else {                                  /* a NaN  */ | 
 |       if (dn->bits&DECSNAN) printf("sNaN");  /* signalling NaN  */ | 
 |        else printf("NaN"); | 
 |       } | 
 |     /* if coefficient and exponent are 0, no more to do  */ | 
 |     if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { | 
 |       printf("\n"); | 
 |       return;} | 
 |     /* drop through to report other information  */ | 
 |     printf(" "); | 
 |     } | 
 |  | 
 |   /* now carefully display the coefficient  */ | 
 |   up=dn->lsu+D2U(dn->digits)-1;         /* msu  */ | 
 |   printf("%ld", (LI)*up); | 
 |   for (up=up-1; up>=dn->lsu; up--) { | 
 |     u=*up; | 
 |     printf(":"); | 
 |     for (cut=DECDPUN-1; cut>=0; cut--) { | 
 |       d=u/powers[cut]; | 
 |       u-=d*powers[cut]; | 
 |       printf("%ld", (LI)d); | 
 |       } /* cut  */ | 
 |     } /* up  */ | 
 |   if (dn->exponent!=0) { | 
 |     char esign='+'; | 
 |     if (dn->exponent<0) esign='-'; | 
 |     printf(" E%c%ld", esign, (LI)abs(dn->exponent)); | 
 |     } | 
 |   printf(" [%ld]\n", (LI)dn->digits); | 
 |   } /* decNumberShow  */ | 
 | #endif | 
 |  | 
 | #if DECTRACE || DECCHECK | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decDumpAr -- display a unit array [debug/check aid]                */ | 
 | /*   name is a single-character tag name                              */ | 
 | /*   ar   is the array to display                                     */ | 
 | /*   len  is the length of the array in Units                         */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decDumpAr(char name, const Unit *ar, Int len) { | 
 |   Int i; | 
 |   const char *spec; | 
 |   #if DECDPUN==9 | 
 |     spec="%09d "; | 
 |   #elif DECDPUN==8 | 
 |     spec="%08d "; | 
 |   #elif DECDPUN==7 | 
 |     spec="%07d "; | 
 |   #elif DECDPUN==6 | 
 |     spec="%06d "; | 
 |   #elif DECDPUN==5 | 
 |     spec="%05d "; | 
 |   #elif DECDPUN==4 | 
 |     spec="%04d "; | 
 |   #elif DECDPUN==3 | 
 |     spec="%03d "; | 
 |   #elif DECDPUN==2 | 
 |     spec="%02d "; | 
 |   #else | 
 |     spec="%d "; | 
 |   #endif | 
 |   printf("  :%c: ", name); | 
 |   for (i=len-1; i>=0; i--) { | 
 |     if (i==len-1) printf("%ld ", (LI)ar[i]); | 
 |      else printf(spec, ar[i]); | 
 |     } | 
 |   printf("\n"); | 
 |   return;} | 
 | #endif | 
 |  | 
 | #if DECCHECK | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCheckOperands -- check operand(s) to a routine                  */ | 
 | /*   res is the result structure (not checked; it will be set to      */ | 
 | /*          quiet NaN if error found (and it is not NULL))            */ | 
 | /*   lhs is the first operand (may be DECUNRESU)                      */ | 
 | /*   rhs is the second (may be DECUNUSED)                             */ | 
 | /*   set is the context (may be DECUNCONT)                            */ | 
 | /*   returns 0 if both operands, and the context are clean, or 1      */ | 
 | /*     otherwise (in which case the context will show an error,       */ | 
 | /*     unless NULL).  Note that res is not cleaned; caller should     */ | 
 | /*     handle this so res=NULL case is safe.                          */ | 
 | /* The caller is expected to abandon immediately if 1 is returned.    */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Flag decCheckOperands(decNumber *res, const decNumber *lhs, | 
 |                              const decNumber *rhs, decContext *set) { | 
 |   Flag bad=0; | 
 |   if (set==NULL) {                 /* oops; hopeless  */ | 
 |     #if DECTRACE || DECVERB | 
 |     printf("Reference to context is NULL.\n"); | 
 |     #endif | 
 |     bad=1; | 
 |     return 1;} | 
 |    else if (set!=DECUNCONT | 
 |      && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { | 
 |     bad=1; | 
 |     #if DECTRACE || DECVERB | 
 |     printf("Bad context [digits=%ld round=%ld].\n", | 
 |            (LI)set->digits, (LI)set->round); | 
 |     #endif | 
 |     } | 
 |    else { | 
 |     if (res==NULL) { | 
 |       bad=1; | 
 |       #if DECTRACE | 
 |       /* this one not DECVERB as standard tests include NULL  */ | 
 |       printf("Reference to result is NULL.\n"); | 
 |       #endif | 
 |       } | 
 |     if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); | 
 |     if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); | 
 |     } | 
 |   if (bad) { | 
 |     if (set!=DECUNCONT) uprv_decContextSetStatus(set, DEC_Invalid_operation); | 
 |     if (res!=DECUNRESU && res!=NULL) { | 
 |       uprv_decNumberZero(res); | 
 |       res->bits=DECNAN;       /* qNaN  */ | 
 |       } | 
 |     } | 
 |   return bad; | 
 |   } /* decCheckOperands  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCheckNumber -- check a number                                   */ | 
 | /*   dn is the number to check                                        */ | 
 | /*   returns 0 if the number is clean, or 1 otherwise                 */ | 
 | /*                                                                    */ | 
 | /* The number is considered valid if it could be a result from some   */ | 
 | /* operation in some valid context.                                   */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static Flag decCheckNumber(const decNumber *dn) { | 
 |   const Unit *up;             /* work  */ | 
 |   uInt maxuint;               /* ..  */ | 
 |   Int ae, d, digits;          /* ..  */ | 
 |   Int emin, emax;             /* ..  */ | 
 |  | 
 |   if (dn==NULL) {             /* hopeless  */ | 
 |     #if DECTRACE | 
 |     /* this one not DECVERB as standard tests include NULL  */ | 
 |     printf("Reference to decNumber is NULL.\n"); | 
 |     #endif | 
 |     return 1;} | 
 |  | 
 |   /* check special values  */ | 
 |   if (dn->bits & DECSPECIAL) { | 
 |     if (dn->exponent!=0) { | 
 |       #if DECTRACE || DECVERB | 
 |       printf("Exponent %ld (not 0) for a special value [%02x].\n", | 
 |              (LI)dn->exponent, dn->bits); | 
 |       #endif | 
 |       return 1;} | 
 |  | 
 |     /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only  */ | 
 |     if (decNumberIsInfinite(dn)) { | 
 |       if (dn->digits!=1) { | 
 |         #if DECTRACE || DECVERB | 
 |         printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); | 
 |         #endif | 
 |         return 1;} | 
 |       if (*dn->lsu!=0) { | 
 |         #if DECTRACE || DECVERB | 
 |         printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); | 
 |         #endif | 
 |         decDumpAr('I', dn->lsu, D2U(dn->digits)); | 
 |         return 1;} | 
 |       } /* Inf  */ | 
 |     /* 2002.12.26: negative NaNs can now appear through proposed IEEE  */ | 
 |     /*             concrete formats (decimal64, etc.).  */ | 
 |     return 0; | 
 |     } | 
 |  | 
 |   /* check the coefficient  */ | 
 |   if (dn->digits<1 || dn->digits>DECNUMMAXP) { | 
 |     #if DECTRACE || DECVERB | 
 |     printf("Digits %ld in number.\n", (LI)dn->digits); | 
 |     #endif | 
 |     return 1;} | 
 |  | 
 |   d=dn->digits; | 
 |  | 
 |   for (up=dn->lsu; d>0; up++) { | 
 |     if (d>DECDPUN) maxuint=DECDPUNMAX; | 
 |      else {                   /* reached the msu  */ | 
 |       maxuint=powers[d]-1; | 
 |       if (dn->digits>1 && *up<powers[d-1]) { | 
 |         #if DECTRACE || DECVERB | 
 |         printf("Leading 0 in number.\n"); | 
 |         uprv_decNumberShow(dn); | 
 |         #endif | 
 |         return 1;} | 
 |       } | 
 |     if (*up>maxuint) { | 
 |       #if DECTRACE || DECVERB | 
 |       printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", | 
 |               (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); | 
 |       #endif | 
 |       return 1;} | 
 |     d-=DECDPUN; | 
 |     } | 
 |  | 
 |   /* check the exponent.  Note that input operands can have exponents  */ | 
 |   /* which are out of the set->emin/set->emax and set->digits range  */ | 
 |   /* (just as they can have more digits than set->digits).  */ | 
 |   ae=dn->exponent+dn->digits-1;    /* adjusted exponent  */ | 
 |   emax=DECNUMMAXE; | 
 |   emin=DECNUMMINE; | 
 |   digits=DECNUMMAXP; | 
 |   if (ae<emin-(digits-1)) { | 
 |     #if DECTRACE || DECVERB | 
 |     printf("Adjusted exponent underflow [%ld].\n", (LI)ae); | 
 |     uprv_decNumberShow(dn); | 
 |     #endif | 
 |     return 1;} | 
 |   if (ae>+emax) { | 
 |     #if DECTRACE || DECVERB | 
 |     printf("Adjusted exponent overflow [%ld].\n", (LI)ae); | 
 |     uprv_decNumberShow(dn); | 
 |     #endif | 
 |     return 1;} | 
 |  | 
 |   return 0;              /* it's OK  */ | 
 |   } /* decCheckNumber  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decCheckInexact -- check a normal finite inexact result has digits */ | 
 | /*   dn is the number to check                                        */ | 
 | /*   set is the context (for status and precision)                    */ | 
 | /*   sets Invalid operation, etc., if some digits are missing         */ | 
 | /* [this check is not made for DECSUBSET compilation or when          */ | 
 | /* subnormal is not set]                                              */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decCheckInexact(const decNumber *dn, decContext *set) { | 
 |   #if !DECSUBSET && DECEXTFLAG | 
 |     if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact | 
 |      && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { | 
 |       #if DECTRACE || DECVERB | 
 |       printf("Insufficient digits [%ld] on normal Inexact result.\n", | 
 |              (LI)dn->digits); | 
 |       uprv_decNumberShow(dn); | 
 |       #endif | 
 |       uprv_decContextSetStatus(set, DEC_Invalid_operation); | 
 |       } | 
 |   #else | 
 |     /* next is a noop for quiet compiler  */ | 
 |     if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; | 
 |   #endif | 
 |   return; | 
 |   } /* decCheckInexact  */ | 
 | #endif | 
 |  | 
 | #if DECALLOC | 
 | #undef malloc | 
 | #undef free | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decMalloc -- accountable allocation routine                        */ | 
 | /*   n is the number of bytes to allocate                             */ | 
 | /*                                                                    */ | 
 | /* Semantics is the same as the stdlib malloc routine, but bytes      */ | 
 | /* allocated are accounted for globally, and corruption fences are    */ | 
 | /* added before and after the 'actual' storage.                       */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This routine allocates storage with an extra twelve bytes; 8 are   */ | 
 | /* at the start and hold:                                             */ | 
 | /*   0-3 the original length requested                                */ | 
 | /*   4-7 buffer corruption detection fence (DECFENCE, x4)             */ | 
 | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void *decMalloc(size_t n) { | 
 |   uInt  size=n+12;                 /* true size  */ | 
 |   void  *alloc;                    /* -> allocated storage  */ | 
 |   uByte *b, *b0;                   /* work  */ | 
 |   uInt  uiwork;                    /* for macros  */ | 
 |  | 
 |   alloc=malloc(size);              /* -> allocated storage  */ | 
 |   if (alloc==NULL) return NULL;    /* out of strorage  */ | 
 |   b0=(uByte *)alloc;               /* as bytes  */ | 
 |   decAllocBytes+=n;                /* account for storage  */ | 
 |   UBFROMUI(alloc, n);              /* save n  */ | 
 |   /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n);  */ | 
 |   for (b=b0+4; b<b0+8; b++) *b=DECFENCE; | 
 |   for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; | 
 |   return b0+8;                     /* -> play area  */ | 
 |   } /* decMalloc  */ | 
 |  | 
 | /* ------------------------------------------------------------------ */ | 
 | /* decFree -- accountable free routine                                */ | 
 | /*   alloc is the storage to free                                     */ | 
 | /*                                                                    */ | 
 | /* Semantics is the same as the stdlib malloc routine, except that    */ | 
 | /* the global storage accounting is updated and the fences are        */ | 
 | /* checked to ensure that no routine has written 'out of bounds'.     */ | 
 | /* ------------------------------------------------------------------ */ | 
 | /* This routine first checks that the fences have not been corrupted. */ | 
 | /* It then frees the storage using the 'truw' storage address (that   */ | 
 | /* is, offset by 8).                                                  */ | 
 | /* ------------------------------------------------------------------ */ | 
 | static void decFree(void *alloc) { | 
 |   uInt  n;                         /* original length  */ | 
 |   uByte *b, *b0;                   /* work  */ | 
 |   uInt  uiwork;                    /* for macros  */ | 
 |  | 
 |   if (alloc==NULL) return;         /* allowed; it's a nop  */ | 
 |   b0=(uByte *)alloc;               /* as bytes  */ | 
 |   b0-=8;                           /* -> true start of storage  */ | 
 |   n=UBTOUI(b0);                    /* lift length  */ | 
 |   for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) | 
 |     printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, | 
 |            b-b0-8, (LI)b0); | 
 |   for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) | 
 |     printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, | 
 |            b-b0-8, (LI)b0, (LI)n); | 
 |   free(b0);                        /* drop the storage  */ | 
 |   decAllocBytes-=n;                /* account for storage  */ | 
 |   /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n);  */ | 
 |   } /* decFree  */ | 
 | #define malloc(a) decMalloc(a) | 
 | #define free(a) decFree(a) | 
 | #endif |