blob: d738a6ed131982b776db643272b1cd7ea3b09ef1 [file] [log] [blame]
/*
* Copyright © 2018, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "tests/checkasm/checkasm.h"
#include <math.h>
#include "src/itx.h"
#include "src/levels.h"
#include "src/scan.h"
#include "src/tables.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.707106781186547524401
#endif
enum Tx1D { DCT, ADST, FLIPADST, IDENTITY, WHT };
static const uint8_t itx_1d_types[N_TX_TYPES_PLUS_LL][2] = {
[DCT_DCT] = { DCT, DCT },
[ADST_DCT] = { DCT, ADST },
[DCT_ADST] = { ADST, DCT },
[ADST_ADST] = { ADST, ADST },
[FLIPADST_DCT] = { DCT, FLIPADST },
[DCT_FLIPADST] = { FLIPADST, DCT },
[FLIPADST_FLIPADST] = { FLIPADST, FLIPADST },
[ADST_FLIPADST] = { FLIPADST, ADST },
[FLIPADST_ADST] = { ADST, FLIPADST },
[IDTX] = { IDENTITY, IDENTITY },
[V_DCT] = { IDENTITY, DCT },
[H_DCT] = { DCT, IDENTITY },
[V_ADST] = { IDENTITY, ADST },
[H_ADST] = { ADST, IDENTITY },
[V_FLIPADST] = { IDENTITY, FLIPADST },
[H_FLIPADST] = { FLIPADST, IDENTITY },
[WHT_WHT] = { WHT, WHT },
};
static const char *const itx_1d_names[5] = {
[DCT] = "dct",
[ADST] = "adst",
[FLIPADST] = "flipadst",
[IDENTITY] = "identity",
[WHT] = "wht"
};
static const double scaling_factors[9] = {
4.0000, /* 4x4 */
4.0000 * M_SQRT1_2, /* 4x8 8x4 */
2.0000, /* 4x16 8x8 16x4 */
2.0000 * M_SQRT1_2, /* 8x16 16x8 */
1.0000, /* 8x32 16x16 32x8 */
0.5000 * M_SQRT1_2, /* 16x32 32x16 */
0.2500, /* 16x64 32x32 64x16 */
0.1250 * M_SQRT1_2, /* 32x64 64x32 */
0.0625, /* 64x64 */
};
/* FIXME: Ensure that those forward transforms are similar to the real AV1
* transforms. The FLIPADST currently uses the ADST forward transform for
* example which is obviously "incorrect", but we're just using it for now
* since it does produce coefficients in the correct range at least. */
/* DCT-II */
static void fdct_1d(double *const out, const double *const in, const int sz) {
for (int i = 0; i < sz; i++) {
out[i] = 0.0;
for (int j = 0; j < sz; j++)
out[i] += in[j] * cos(M_PI * (2 * j + 1) * i / (sz * 2.0));
}
out[0] *= M_SQRT1_2;
}
/* See "Towards jointly optimal spatial prediction and adaptive transform in
* video/image coding", by J. Han, A. Saxena, and K. Rose
* IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
* and "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
* by Jingning Han, Yaowu Xu, and Debargha Mukherjee
* http://research.google.com/pubs/archive/41418.pdf
*/
static void fadst_1d(double *const out, const double *const in, const int sz) {
for (int i = 0; i < sz; i++) {
out[i] = 0.0;
for (int j = 0; j < sz; j++)
out[i] += in[j] * sin(M_PI *
(sz == 4 ? ( j + 1) * (2 * i + 1) / (8.0 + 1.0) :
(2 * j + 1) * (2 * i + 1) / (sz * 4.0)));
}
}
static void fwht4_1d(double *const out, const double *const in)
{
const double t0 = in[0] + in[1];
const double t3 = in[3] - in[2];
const double t4 = (t0 - t3) * 0.5;
const double t1 = t4 - in[1];
const double t2 = t4 - in[2];
out[0] = t0 - t2;
out[1] = t2;
out[2] = t3 + t1;
out[3] = t1;
}
static int copy_subcoefs(coef *coeff,
const enum RectTxfmSize tx, const enum TxfmType txtp,
const int sw, const int sh, const int subsh)
{
/* copy the topleft coefficients such that the return value (being the
* coefficient scantable index for the eob token) guarantees that only
* the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
* dimensions are non-zero. This leads to braching to specific optimized
* simd versions (e.g. dc-only) so that we get full asm coverage in this
* test */
const uint16_t *const scan = dav1d_scans[tx][dav1d_tx_type_class[txtp]];
const int sub_high = subsh > 0 ? subsh * 8 - 1 : 0;
const int sub_low = subsh > 1 ? sub_high - 8 : 0;
int n, eob;
for (n = 0, eob = 0; n < sw * sh; n++) {
const int rc = scan[n];
const int rcx = rc % sh, rcy = rc / sh;
/* Pick a random eob within this sub-itx */
if (rcx > sub_high || rcy > sub_high) {
break; /* upper boundary */
} else if (!eob && (rcx > sub_low || rcy > sub_low))
eob = n; /* lower boundary */
}
if (eob)
eob += rnd() % (n - eob - 1);
for (n = eob + 1; n < sw * sh; n++)
coeff[scan[n]] = 0;
for (; n < 32 * 32; n++)
coeff[n] = rnd();
return eob;
}
static int ftx(coef *const buf, const enum RectTxfmSize tx,
const enum TxfmType txtp, const int w, const int h,
const int subsh, const int bitdepth_max)
{
double out[64 * 64], temp[64 * 64];
const double scale = scaling_factors[ctz(w * h) - 4];
const int sw = imin(w, 32), sh = imin(h, 32);
for (int i = 0; i < h; i++) {
double in[64], temp_out[64];
for (int i = 0; i < w; i++)
in[i] = (rnd() & (2 * bitdepth_max + 1)) - bitdepth_max;
switch (itx_1d_types[txtp][0]) {
case DCT:
fdct_1d(temp_out, in, w);
break;
case ADST:
case FLIPADST:
fadst_1d(temp_out, in, w);
break;
case WHT:
fwht4_1d(temp_out, in);
break;
case IDENTITY:
memcpy(temp_out, in, w * sizeof(*temp_out));
break;
}
for (int j = 0; j < w; j++)
temp[j * h + i] = temp_out[j] * scale;
}
for (int i = 0; i < w; i++) {
switch (itx_1d_types[txtp][0]) {
case DCT:
fdct_1d(&out[i * h], &temp[i * h], h);
break;
case ADST:
case FLIPADST:
fadst_1d(&out[i * h], &temp[i * h], h);
break;
case WHT:
fwht4_1d(&out[i * h], &temp[i * h]);
break;
case IDENTITY:
memcpy(&out[i * h], &temp[i * h], h * sizeof(*out));
break;
}
}
for (int y = 0; y < sh; y++)
for (int x = 0; x < sw; x++)
buf[y * sw + x] = (coef) (out[y * w + x] + 0.5);
return copy_subcoefs(buf, tx, txtp, sw, sh, subsh);
}
void bitfn(checkasm_check_itx)(void) {
Dav1dInvTxfmDSPContext c;
bitfn(dav1d_itx_dsp_init)(&c);
ALIGN_STK_32(coef, coeff, 2, [32 * 32]);
ALIGN_STK_32(pixel, c_dst, 64 * 64,);
ALIGN_STK_32(pixel, a_dst, 64 * 64,);
static const uint8_t txfm_size_order[N_RECT_TX_SIZES] = {
TX_4X4, RTX_4X8, RTX_4X16,
RTX_8X4, TX_8X8, RTX_8X16, RTX_8X32,
RTX_16X4, RTX_16X8, TX_16X16, RTX_16X32, RTX_16X64,
RTX_32X8, RTX_32X16, TX_32X32, RTX_32X64,
RTX_64X16, RTX_64X32, TX_64X64
};
static const uint8_t subsh_iters[5] = { 2, 2, 3, 5, 5 };
declare_func(void, pixel *dst, ptrdiff_t dst_stride, coef *coeff, int eob
HIGHBD_DECL_SUFFIX);
for (int i = 0; i < N_RECT_TX_SIZES; i++) {
const enum RectTxfmSize tx = txfm_size_order[i];
const int w = dav1d_txfm_dimensions[tx].w * 4;
const int h = dav1d_txfm_dimensions[tx].h * 4;
const int subsh_max = subsh_iters[imax(dav1d_txfm_dimensions[tx].lw,
dav1d_txfm_dimensions[tx].lh)];
for (enum TxfmType txtp = 0; txtp < N_TX_TYPES_PLUS_LL; txtp++)
for (int subsh = 0; subsh < subsh_max; subsh++)
if (check_func(c.itxfm_add[tx][txtp],
"inv_txfm_add_%dx%d_%s_%s_%d_%dbpc",
w, h, itx_1d_names[itx_1d_types[txtp][0]],
itx_1d_names[itx_1d_types[txtp][1]], subsh,
BITDEPTH))
{
#if BITDEPTH == 16
const int bitdepth_max = rnd() & 1 ? 0x3ff : 0xfff;
#else
const int bitdepth_max = 0xff;
#endif
const int eob = ftx(coeff[0], tx, txtp, w, h, subsh, bitdepth_max);
memcpy(coeff[1], coeff[0], sizeof(*coeff));
for (int j = 0; j < w * h; j++)
c_dst[j] = a_dst[j] = rnd() & bitdepth_max;
call_ref(c_dst, w * sizeof(*c_dst), coeff[0], eob
HIGHBD_TAIL_SUFFIX);
call_new(a_dst, w * sizeof(*c_dst), coeff[1], eob
HIGHBD_TAIL_SUFFIX);
checkasm_check_pixel(c_dst, w * sizeof(*c_dst),
a_dst, w * sizeof(*a_dst),
w, h, "dst");
if (memcmp(coeff[0], coeff[1], sizeof(*coeff)))
fail();
bench_new(a_dst, w * sizeof(*c_dst), coeff[0], eob
HIGHBD_TAIL_SUFFIX);
}
report("add_%dx%d", w, h);
}
}