| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been modified |
| // significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_CODEGEN_ARM_ASSEMBLER_ARM_INL_H_ |
| #define V8_CODEGEN_ARM_ASSEMBLER_ARM_INL_H_ |
| |
| #include "src/codegen/arm/assembler-arm.h" |
| |
| #include "src/codegen/assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| bool CpuFeatures::SupportsOptimizer() { return true; } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(NEON); } |
| |
| int DoubleRegister::SupportedRegisterCount() { |
| return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16; |
| } |
| |
| void RelocInfo::apply(intptr_t delta) { |
| if (RelocInfo::IsInternalReference(rmode_)) { |
| // absolute code pointer inside code object moves with the code object. |
| int32_t* p = reinterpret_cast<int32_t*>(pc_); |
| *p += delta; // relocate entry |
| } else if (RelocInfo::IsRelativeCodeTarget(rmode_)) { |
| Instruction* branch = Instruction::At(pc_); |
| int32_t branch_offset = branch->GetBranchOffset() - delta; |
| branch->SetBranchOffset(branch_offset); |
| } |
| } |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) || |
| IsWasmCall(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(HasTargetAddressAddress()); |
| if (Assembler::IsMovW(Memory<int32_t>(pc_))) { |
| return pc_; |
| } else if (Assembler::IsLdrPcImmediateOffset(Memory<int32_t>(pc_))) { |
| return constant_pool_entry_address(); |
| } else { |
| DCHECK(Assembler::IsBOrBlPcImmediateOffset(Memory<int32_t>(pc_))); |
| DCHECK(IsRelativeCodeTarget(rmode_)); |
| return pc_; |
| } |
| } |
| |
| Address RelocInfo::constant_pool_entry_address() { |
| DCHECK(IsInConstantPool()); |
| return Assembler::constant_pool_entry_address(pc_, constant_pool_); |
| } |
| |
| int RelocInfo::target_address_size() { return kPointerSize; } |
| |
| HeapObject RelocInfo::target_object() { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT); |
| return HeapObject::cast( |
| Object(Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| HeapObject RelocInfo::target_object_no_host(Isolate* isolate) { |
| return target_object(); |
| } |
| |
| Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| if (IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT) { |
| return Handle<HeapObject>(reinterpret_cast<Address*>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| DCHECK(IsRelativeCodeTarget(rmode_)); |
| return origin->relative_code_target_object_handle_at(pc_); |
| } |
| |
| void RelocInfo::set_target_object(Heap* heap, HeapObject target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT); |
| Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), |
| icache_flush_mode); |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() && |
| !FLAG_disable_write_barriers) { |
| WriteBarrierForCode(host(), this, target); |
| } |
| } |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void RelocInfo::set_target_external_reference( |
| Address target, ICacheFlushMode icache_flush_mode) { |
| DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); |
| Assembler::set_target_address_at(pc_, constant_pool_, target, |
| icache_flush_mode); |
| } |
| |
| Address RelocInfo::target_internal_reference() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE); |
| return Memory<Address>(pc_); |
| } |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE); |
| return pc_; |
| } |
| |
| Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| return target_address(); |
| } |
| |
| void RelocInfo::set_target_runtime_entry(Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| if (target_address() != target) |
| set_target_address(target, write_barrier_mode, icache_flush_mode); |
| } |
| |
| Address RelocInfo::target_off_heap_target() { |
| DCHECK(IsOffHeapTarget(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void RelocInfo::WipeOut() { |
| DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
| IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)); |
| if (IsInternalReference(rmode_)) { |
| Memory<Address>(pc_) = kNullAddress; |
| } else { |
| Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); |
| } |
| } |
| |
| Handle<Code> Assembler::relative_code_target_object_handle_at( |
| Address pc) const { |
| Instruction* branch = Instruction::At(pc); |
| int code_target_index = branch->GetBranchOffset() / kInstrSize; |
| return GetCodeTarget(code_target_index); |
| } |
| |
| Operand Operand::Zero() { return Operand(static_cast<int32_t>(0)); } |
| |
| Operand::Operand(const ExternalReference& f) |
| : rmode_(RelocInfo::EXTERNAL_REFERENCE) { |
| value_.immediate = static_cast<int32_t>(f.address()); |
| } |
| |
| Operand::Operand(Smi value) : rmode_(RelocInfo::NONE) { |
| value_.immediate = static_cast<intptr_t>(value.ptr()); |
| } |
| |
| Operand::Operand(Register rm) : rm_(rm), shift_op_(LSL), shift_imm_(0) {} |
| |
| void Assembler::CheckBuffer() { |
| if (buffer_space() <= kGap) { |
| GrowBuffer(); |
| } |
| MaybeCheckConstPool(); |
| } |
| |
| void Assembler::emit(Instr x) { |
| CheckBuffer(); |
| *reinterpret_cast<Instr*>(pc_) = x; |
| pc_ += kInstrSize; |
| } |
| |
| void Assembler::deserialization_set_special_target_at( |
| Address constant_pool_entry, Code code, Address target) { |
| DCHECK(!Builtins::IsIsolateIndependentBuiltin(code)); |
| Memory<Address>(constant_pool_entry) = target; |
| } |
| |
| int Assembler::deserialization_special_target_size(Address location) { |
| return kSpecialTargetSize; |
| } |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Address pc, Address target, RelocInfo::Mode mode) { |
| Memory<Address>(pc) = target; |
| } |
| |
| bool Assembler::is_constant_pool_load(Address pc) { |
| return IsLdrPcImmediateOffset(Memory<int32_t>(pc)); |
| } |
| |
| Address Assembler::constant_pool_entry_address(Address pc, |
| Address constant_pool) { |
| DCHECK(Assembler::IsLdrPcImmediateOffset(Memory<int32_t>(pc))); |
| Instr instr = Memory<int32_t>(pc); |
| return pc + GetLdrRegisterImmediateOffset(instr) + Instruction::kPcLoadDelta; |
| } |
| |
| Address Assembler::target_address_at(Address pc, Address constant_pool) { |
| if (is_constant_pool_load(pc)) { |
| // This is a constant pool lookup. Return the value in the constant pool. |
| return Memory<Address>(constant_pool_entry_address(pc, constant_pool)); |
| } else if (CpuFeatures::IsSupported(ARMv7) && IsMovW(Memory<int32_t>(pc))) { |
| // This is an movw / movt immediate load. Return the immediate. |
| DCHECK(IsMovW(Memory<int32_t>(pc)) && |
| IsMovT(Memory<int32_t>(pc + kInstrSize))); |
| Instruction* movw_instr = Instruction::At(pc); |
| Instruction* movt_instr = Instruction::At(pc + kInstrSize); |
| return static_cast<Address>((movt_instr->ImmedMovwMovtValue() << 16) | |
| movw_instr->ImmedMovwMovtValue()); |
| } else if (IsMovImmed(Memory<int32_t>(pc))) { |
| // This is an mov / orr immediate load. Return the immediate. |
| DCHECK(IsMovImmed(Memory<int32_t>(pc)) && |
| IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); |
| Instr mov_instr = instr_at(pc); |
| Instr orr_instr_1 = instr_at(pc + kInstrSize); |
| Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize); |
| Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize); |
| Address ret = static_cast<Address>( |
| DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) | |
| DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3)); |
| return ret; |
| } else { |
| Instruction* branch = Instruction::At(pc); |
| int32_t delta = branch->GetBranchOffset(); |
| return pc + delta + Instruction::kPcLoadDelta; |
| } |
| } |
| |
| void Assembler::set_target_address_at(Address pc, Address constant_pool, |
| Address target, |
| ICacheFlushMode icache_flush_mode) { |
| if (is_constant_pool_load(pc)) { |
| // This is a constant pool lookup. Update the entry in the constant pool. |
| Memory<Address>(constant_pool_entry_address(pc, constant_pool)) = target; |
| // Intuitively, we would think it is necessary to always flush the |
| // instruction cache after patching a target address in the code as follows: |
| // FlushInstructionCache(pc, sizeof(target)); |
| // However, on ARM, no instruction is actually patched in the case |
| // of embedded constants of the form: |
| // ldr ip, [pp, #...] |
| // since the instruction accessing this address in the constant pool remains |
| // unchanged. |
| } else if (CpuFeatures::IsSupported(ARMv7) && IsMovW(Memory<int32_t>(pc))) { |
| // This is an movw / movt immediate load. Patch the immediate embedded in |
| // the instructions. |
| DCHECK(IsMovW(Memory<int32_t>(pc))); |
| DCHECK(IsMovT(Memory<int32_t>(pc + kInstrSize))); |
| uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); |
| uint32_t immediate = static_cast<uint32_t>(target); |
| instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF); |
| instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16); |
| DCHECK(IsMovW(Memory<int32_t>(pc))); |
| DCHECK(IsMovT(Memory<int32_t>(pc + kInstrSize))); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, 2 * kInstrSize); |
| } |
| } else if (IsMovImmed(Memory<int32_t>(pc))) { |
| // This is an mov / orr immediate load. Patch the immediate embedded in |
| // the instructions. |
| DCHECK(IsMovImmed(Memory<int32_t>(pc)) && |
| IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); |
| uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); |
| uint32_t immediate = static_cast<uint32_t>(target); |
| instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask); |
| instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8)); |
| instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16)); |
| instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24)); |
| DCHECK(IsMovImmed(Memory<int32_t>(pc)) && |
| IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && |
| IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, 4 * kInstrSize); |
| } |
| } else { |
| intptr_t branch_offset = target - pc - Instruction::kPcLoadDelta; |
| Instruction* branch = Instruction::At(pc); |
| branch->SetBranchOffset(branch_offset); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, kInstrSize); |
| } |
| } |
| } |
| |
| EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| |
| template <typename T> |
| bool UseScratchRegisterScope::CanAcquireVfp() const { |
| VfpRegList* available = assembler_->GetScratchVfpRegisterList(); |
| DCHECK_NOT_NULL(available); |
| for (int index = 0; index < T::kNumRegisters; index++) { |
| T reg = T::from_code(index); |
| uint64_t mask = reg.ToVfpRegList(); |
| if ((*available & mask) == mask) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| template <typename T> |
| T UseScratchRegisterScope::AcquireVfp() { |
| VfpRegList* available = assembler_->GetScratchVfpRegisterList(); |
| DCHECK_NOT_NULL(available); |
| for (int index = 0; index < T::kNumRegisters; index++) { |
| T reg = T::from_code(index); |
| uint64_t mask = reg.ToVfpRegList(); |
| if ((*available & mask) == mask) { |
| *available &= ~mask; |
| return reg; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_ARM_ASSEMBLER_ARM_INL_H_ |