| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/regexp/x64/regexp-macro-assembler-x64.h" |
| |
| #include "src/codegen/macro-assembler.h" |
| #include "src/heap/factory.h" |
| #include "src/logging/log.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/regexp/regexp-stack.h" |
| #include "src/strings/unicode.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| /* |
| * This assembler uses the following register assignment convention |
| * - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded |
| * using LoadCurrentCharacter before using any of the dispatch methods. |
| * Temporarily stores the index of capture start after a matching pass |
| * for a global regexp. |
| * - rdi : Current position in input, as negative offset from end of string. |
| * Please notice that this is the byte offset, not the character |
| * offset! Is always a 32-bit signed (negative) offset, but must be |
| * maintained sign-extended to 64 bits, since it is used as index. |
| * - rsi : End of input (points to byte after last character in input), |
| * so that rsi+rdi points to the current character. |
| * - rbp : Frame pointer. Used to access arguments, local variables and |
| * RegExp registers. |
| * - rsp : Points to tip of C stack. |
| * - rcx : Points to tip of backtrack stack. The backtrack stack contains |
| * only 32-bit values. Most are offsets from some base (e.g., character |
| * positions from end of string or code location from Code pointer). |
| * - r8 : Code object pointer. Used to convert between absolute and |
| * code-object-relative addresses. |
| * |
| * The registers rax, rbx, r9 and r11 are free to use for computations. |
| * If changed to use r12+, they should be saved as callee-save registers. |
| * The macro assembler special register r13 (kRootRegister) isn't special |
| * during execution of RegExp code (it doesn't hold the value assumed when |
| * creating JS code), so Root related macro operations can be used. |
| * |
| * Each call to a C++ method should retain these registers. |
| * |
| * The stack will have the following content, in some order, indexable from the |
| * frame pointer (see, e.g., kStackHighEnd): |
| * - Address regexp (address of the JSRegExp object; unused in native |
| * code, passed to match signature of interpreter) |
| * - Isolate* isolate (address of the current isolate) |
| * - direct_call (if 1, direct call from JavaScript code, if 0 call |
| * through the runtime system) |
| * - stack_area_base (high end of the memory area to use as |
| * backtracking stack) |
| * - capture array size (may fit multiple sets of matches) |
| * - int* capture_array (int[num_saved_registers_], for output). |
| * - end of input (address of end of string) |
| * - start of input (address of first character in string) |
| * - start index (character index of start) |
| * - String input_string (input string) |
| * - return address |
| * - backup of callee save registers (rbx, possibly rsi and rdi). |
| * - success counter (only useful for global regexp to count matches) |
| * - Offset of location before start of input (effectively character |
| * string start - 1). Used to initialize capture registers to a |
| * non-position. |
| * - At start of string (if 1, we are starting at the start of the |
| * string, otherwise 0) |
| * - register 0 rbp[-n] (Only positions must be stored in the first |
| * - register 1 rbp[-n-8] num_saved_registers_ registers) |
| * - ... |
| * |
| * The first num_saved_registers_ registers are initialized to point to |
| * "character -1" in the string (i.e., char_size() bytes before the first |
| * character of the string). The remaining registers starts out uninitialized. |
| * |
| * The argument values must be provided by the calling code by calling the |
| * code's entry address cast to a function pointer with the following signature: |
| * int (*match)(String input_string, |
| * int start_index, |
| * Address start, |
| * Address end, |
| * int* capture_output_array, |
| * int num_capture_registers, |
| * byte* stack_area_base, |
| * bool direct_call = false, |
| * Isolate* isolate, |
| * Address regexp); |
| */ |
| |
| #define __ ACCESS_MASM((&masm_)) |
| |
| const int RegExpMacroAssemblerX64::kRegExpCodeSize; |
| |
| RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, |
| Mode mode, |
| int registers_to_save) |
| : NativeRegExpMacroAssembler(isolate, zone), |
| masm_(isolate, CodeObjectRequired::kYes, |
| NewAssemblerBuffer(kRegExpCodeSize)), |
| no_root_array_scope_(&masm_), |
| code_relative_fixup_positions_(zone), |
| mode_(mode), |
| num_registers_(registers_to_save), |
| num_saved_registers_(registers_to_save), |
| entry_label_(), |
| start_label_(), |
| success_label_(), |
| backtrack_label_(), |
| exit_label_() { |
| DCHECK_EQ(0, registers_to_save % 2); |
| __ jmp(&entry_label_); // We'll write the entry code when we know more. |
| __ bind(&start_label_); // And then continue from here. |
| } |
| |
| RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() { |
| // Unuse labels in case we throw away the assembler without calling GetCode. |
| entry_label_.Unuse(); |
| start_label_.Unuse(); |
| success_label_.Unuse(); |
| backtrack_label_.Unuse(); |
| exit_label_.Unuse(); |
| check_preempt_label_.Unuse(); |
| stack_overflow_label_.Unuse(); |
| fallback_label_.Unuse(); |
| } |
| |
| |
| int RegExpMacroAssemblerX64::stack_limit_slack() { |
| return RegExpStack::kStackLimitSlack; |
| } |
| |
| |
| void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) { |
| if (by != 0) { |
| __ addq(rdi, Immediate(by * char_size())); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) { |
| DCHECK_LE(0, reg); |
| DCHECK_GT(num_registers_, reg); |
| if (by != 0) { |
| __ addq(register_location(reg), Immediate(by)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Backtrack() { |
| CheckPreemption(); |
| if (has_backtrack_limit()) { |
| Label next; |
| __ incq(Operand(rbp, kBacktrackCount)); |
| __ cmpq(Operand(rbp, kBacktrackCount), Immediate(backtrack_limit())); |
| __ j(not_equal, &next); |
| |
| // Backtrack limit exceeded. |
| if (can_fallback()) { |
| __ jmp(&fallback_label_); |
| } else { |
| // Can't fallback, so we treat it as a failed match. |
| Fail(); |
| } |
| |
| __ bind(&next); |
| } |
| // Pop Code offset from backtrack stack, add Code and jump to location. |
| Pop(rbx); |
| __ addq(rbx, code_object_pointer()); |
| __ jmp(rbx); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Bind(Label* label) { |
| __ bind(label); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) { |
| __ cmpl(current_character(), Immediate(c)); |
| BranchOrBacktrack(equal, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) { |
| __ cmpl(current_character(), Immediate(limit)); |
| BranchOrBacktrack(greater, on_greater); |
| } |
| |
| void RegExpMacroAssemblerX64::CheckAtStart(int cp_offset, Label* on_at_start) { |
| __ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size())); |
| __ cmpq(rax, Operand(rbp, kStringStartMinusOne)); |
| BranchOrBacktrack(equal, on_at_start); |
| } |
| |
| void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset, |
| Label* on_not_at_start) { |
| __ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size())); |
| __ cmpq(rax, Operand(rbp, kStringStartMinusOne)); |
| BranchOrBacktrack(not_equal, on_not_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) { |
| __ cmpl(current_character(), Immediate(limit)); |
| BranchOrBacktrack(less, on_less); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) { |
| Label fallthrough; |
| __ cmpl(rdi, Operand(backtrack_stackpointer(), 0)); |
| __ j(not_equal, &fallthrough); |
| Drop(); |
| BranchOrBacktrack(no_condition, on_equal); |
| __ bind(&fallthrough); |
| } |
| |
| void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase( |
| int start_reg, bool read_backward, bool unicode, Label* on_no_match) { |
| Label fallthrough; |
| ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture |
| ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture |
| __ subq(rbx, rdx); // Length of capture. |
| |
| // ----------------------- |
| // rdx = Start offset of capture. |
| // rbx = Length of capture |
| |
| // At this point, the capture registers are either both set or both cleared. |
| // If the capture length is zero, then the capture is either empty or cleared. |
| // Fall through in both cases. |
| __ j(equal, &fallthrough); |
| |
| // ----------------------- |
| // rdx - Start of capture |
| // rbx - length of capture |
| // Check that there are sufficient characters left in the input. |
| if (read_backward) { |
| __ movl(rax, Operand(rbp, kStringStartMinusOne)); |
| __ addl(rax, rbx); |
| __ cmpl(rdi, rax); |
| BranchOrBacktrack(less_equal, on_no_match); |
| } else { |
| __ movl(rax, rdi); |
| __ addl(rax, rbx); |
| BranchOrBacktrack(greater, on_no_match); |
| } |
| |
| if (mode_ == LATIN1) { |
| Label loop_increment; |
| if (on_no_match == nullptr) { |
| on_no_match = &backtrack_label_; |
| } |
| |
| __ leaq(r9, Operand(rsi, rdx, times_1, 0)); |
| __ leaq(r11, Operand(rsi, rdi, times_1, 0)); |
| if (read_backward) { |
| __ subq(r11, rbx); // Offset by length when matching backwards. |
| } |
| __ addq(rbx, r9); // End of capture |
| // --------------------- |
| // r11 - current input character address |
| // r9 - current capture character address |
| // rbx - end of capture |
| |
| Label loop; |
| __ bind(&loop); |
| __ movzxbl(rdx, Operand(r9, 0)); |
| __ movzxbl(rax, Operand(r11, 0)); |
| // al - input character |
| // dl - capture character |
| __ cmpb(rax, rdx); |
| __ j(equal, &loop_increment); |
| |
| // Mismatch, try case-insensitive match (converting letters to lower-case). |
| // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's |
| // a match. |
| __ orq(rax, Immediate(0x20)); // Convert match character to lower-case. |
| __ orq(rdx, Immediate(0x20)); // Convert capture character to lower-case. |
| __ cmpb(rax, rdx); |
| __ j(not_equal, on_no_match); // Definitely not equal. |
| __ subb(rax, Immediate('a')); |
| __ cmpb(rax, Immediate('z' - 'a')); |
| __ j(below_equal, &loop_increment); // In range 'a'-'z'. |
| // Latin-1: Check for values in range [224,254] but not 247. |
| __ subb(rax, Immediate(224 - 'a')); |
| __ cmpb(rax, Immediate(254 - 224)); |
| __ j(above, on_no_match); // Weren't Latin-1 letters. |
| __ cmpb(rax, Immediate(247 - 224)); // Check for 247. |
| __ j(equal, on_no_match); |
| __ bind(&loop_increment); |
| // Increment pointers into match and capture strings. |
| __ addq(r11, Immediate(1)); |
| __ addq(r9, Immediate(1)); |
| // Compare to end of capture, and loop if not done. |
| __ cmpq(r9, rbx); |
| __ j(below, &loop); |
| |
| // Compute new value of character position after the matched part. |
| __ movq(rdi, r11); |
| __ subq(rdi, rsi); |
| if (read_backward) { |
| // Subtract match length if we matched backward. |
| __ addq(rdi, register_location(start_reg)); |
| __ subq(rdi, register_location(start_reg + 1)); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| // Save important/volatile registers before calling C function. |
| #ifndef V8_TARGET_OS_WIN |
| // Caller save on Linux and callee save in Windows. |
| __ pushq(rsi); |
| __ pushq(rdi); |
| #endif |
| __ pushq(backtrack_stackpointer()); |
| |
| static const int num_arguments = 4; |
| __ PrepareCallCFunction(num_arguments); |
| |
| // Put arguments into parameter registers. Parameters are |
| // Address byte_offset1 - Address captured substring's start. |
| // Address byte_offset2 - Address of current character position. |
| // size_t byte_length - length of capture in bytes(!) |
| // Isolate* isolate. |
| #ifdef V8_TARGET_OS_WIN |
| DCHECK(rcx == arg_reg_1); |
| DCHECK(rdx == arg_reg_2); |
| // Compute and set byte_offset1 (start of capture). |
| __ leaq(rcx, Operand(rsi, rdx, times_1, 0)); |
| // Set byte_offset2. |
| __ leaq(rdx, Operand(rsi, rdi, times_1, 0)); |
| if (read_backward) { |
| __ subq(rdx, rbx); |
| } |
| #else // AMD64 calling convention |
| DCHECK(rdi == arg_reg_1); |
| DCHECK(rsi == arg_reg_2); |
| // Compute byte_offset2 (current position = rsi+rdi). |
| __ leaq(rax, Operand(rsi, rdi, times_1, 0)); |
| // Compute and set byte_offset1 (start of capture). |
| __ leaq(rdi, Operand(rsi, rdx, times_1, 0)); |
| // Set byte_offset2. |
| __ movq(rsi, rax); |
| if (read_backward) { |
| __ subq(rsi, rbx); |
| } |
| #endif // V8_TARGET_OS_WIN |
| |
| // Set byte_length. |
| __ movq(arg_reg_3, rbx); |
| // Isolate. |
| __ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate())); |
| |
| { // NOLINT: Can't find a way to open this scope without confusing the |
| // linter. |
| AllowExternalCallThatCantCauseGC scope(&masm_); |
| ExternalReference compare = |
| unicode ? ExternalReference::re_case_insensitive_compare_unicode( |
| isolate()) |
| : ExternalReference::re_case_insensitive_compare_non_unicode( |
| isolate()); |
| __ CallCFunction(compare, num_arguments); |
| } |
| |
| // Restore original values before reacting on result value. |
| __ Move(code_object_pointer(), masm_.CodeObject()); |
| __ popq(backtrack_stackpointer()); |
| #ifndef V8_TARGET_OS_WIN |
| __ popq(rdi); |
| __ popq(rsi); |
| #endif |
| |
| // Check if function returned non-zero for success or zero for failure. |
| __ testq(rax, rax); |
| BranchOrBacktrack(zero, on_no_match); |
| // On success, advance position by length of capture. |
| // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs). |
| if (read_backward) { |
| __ subq(rdi, rbx); |
| } else { |
| __ addq(rdi, rbx); |
| } |
| } |
| __ bind(&fallthrough); |
| } |
| |
| void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg, |
| bool read_backward, |
| Label* on_no_match) { |
| Label fallthrough; |
| |
| // Find length of back-referenced capture. |
| ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture |
| ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture |
| __ subq(rax, rdx); // Length to check. |
| |
| // At this point, the capture registers are either both set or both cleared. |
| // If the capture length is zero, then the capture is either empty or cleared. |
| // Fall through in both cases. |
| __ j(equal, &fallthrough); |
| |
| // ----------------------- |
| // rdx - Start of capture |
| // rax - length of capture |
| // Check that there are sufficient characters left in the input. |
| if (read_backward) { |
| __ movl(rbx, Operand(rbp, kStringStartMinusOne)); |
| __ addl(rbx, rax); |
| __ cmpl(rdi, rbx); |
| BranchOrBacktrack(less_equal, on_no_match); |
| } else { |
| __ movl(rbx, rdi); |
| __ addl(rbx, rax); |
| BranchOrBacktrack(greater, on_no_match); |
| } |
| |
| // Compute pointers to match string and capture string |
| __ leaq(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match. |
| if (read_backward) { |
| __ subq(rbx, rax); // Offset by length when matching backwards. |
| } |
| __ addq(rdx, rsi); // Start of capture. |
| __ leaq(r9, Operand(rdx, rax, times_1, 0)); // End of capture |
| |
| // ----------------------- |
| // rbx - current capture character address. |
| // rbx - current input character address . |
| // r9 - end of input to match (capture length after rbx). |
| |
| Label loop; |
| __ bind(&loop); |
| if (mode_ == LATIN1) { |
| __ movzxbl(rax, Operand(rdx, 0)); |
| __ cmpb(rax, Operand(rbx, 0)); |
| } else { |
| DCHECK(mode_ == UC16); |
| __ movzxwl(rax, Operand(rdx, 0)); |
| __ cmpw(rax, Operand(rbx, 0)); |
| } |
| BranchOrBacktrack(not_equal, on_no_match); |
| // Increment pointers into capture and match string. |
| __ addq(rbx, Immediate(char_size())); |
| __ addq(rdx, Immediate(char_size())); |
| // Check if we have reached end of match area. |
| __ cmpq(rdx, r9); |
| __ j(below, &loop); |
| |
| // Success. |
| // Set current character position to position after match. |
| __ movq(rdi, rbx); |
| __ subq(rdi, rsi); |
| if (read_backward) { |
| // Subtract match length if we matched backward. |
| __ addq(rdi, register_location(start_reg)); |
| __ subq(rdi, register_location(start_reg + 1)); |
| } |
| |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c, |
| Label* on_not_equal) { |
| __ cmpl(current_character(), Immediate(c)); |
| BranchOrBacktrack(not_equal, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_equal) { |
| if (c == 0) { |
| __ testl(current_character(), Immediate(mask)); |
| } else { |
| __ movl(rax, Immediate(mask)); |
| __ andq(rax, current_character()); |
| __ cmpl(rax, Immediate(c)); |
| } |
| BranchOrBacktrack(equal, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_not_equal) { |
| if (c == 0) { |
| __ testl(current_character(), Immediate(mask)); |
| } else { |
| __ movl(rax, Immediate(mask)); |
| __ andq(rax, current_character()); |
| __ cmpl(rax, Immediate(c)); |
| } |
| BranchOrBacktrack(not_equal, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd( |
| uc16 c, |
| uc16 minus, |
| uc16 mask, |
| Label* on_not_equal) { |
| DCHECK_GT(String::kMaxUtf16CodeUnit, minus); |
| __ leal(rax, Operand(current_character(), -minus)); |
| __ andl(rax, Immediate(mask)); |
| __ cmpl(rax, Immediate(c)); |
| BranchOrBacktrack(not_equal, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacterInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_in_range) { |
| __ leal(rax, Operand(current_character(), -from)); |
| __ cmpl(rax, Immediate(to - from)); |
| BranchOrBacktrack(below_equal, on_in_range); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckCharacterNotInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_not_in_range) { |
| __ leal(rax, Operand(current_character(), -from)); |
| __ cmpl(rax, Immediate(to - from)); |
| BranchOrBacktrack(above, on_not_in_range); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckBitInTable( |
| Handle<ByteArray> table, |
| Label* on_bit_set) { |
| __ Move(rax, table); |
| Register index = current_character(); |
| if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { |
| __ movq(rbx, current_character()); |
| __ andq(rbx, Immediate(kTableMask)); |
| index = rbx; |
| } |
| __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize), |
| Immediate(0)); |
| BranchOrBacktrack(not_equal, on_bit_set); |
| } |
| |
| |
| bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| // Range checks (c in min..max) are generally implemented by an unsigned |
| // (c - min) <= (max - min) check, using the sequence: |
| // leal(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min)) |
| // cmpl(rax, Immediate(max - min)) |
| switch (type) { |
| case 's': |
| // Match space-characters |
| if (mode_ == LATIN1) { |
| // One byte space characters are '\t'..'\r', ' ' and \u00a0. |
| Label success; |
| __ cmpl(current_character(), Immediate(' ')); |
| __ j(equal, &success, Label::kNear); |
| // Check range 0x09..0x0D |
| __ leal(rax, Operand(current_character(), -'\t')); |
| __ cmpl(rax, Immediate('\r' - '\t')); |
| __ j(below_equal, &success, Label::kNear); |
| // \u00a0 (NBSP). |
| __ cmpl(rax, Immediate(0x00A0 - '\t')); |
| BranchOrBacktrack(not_equal, on_no_match); |
| __ bind(&success); |
| return true; |
| } |
| return false; |
| case 'S': |
| // The emitted code for generic character classes is good enough. |
| return false; |
| case 'd': |
| // Match ASCII digits ('0'..'9') |
| __ leal(rax, Operand(current_character(), -'0')); |
| __ cmpl(rax, Immediate('9' - '0')); |
| BranchOrBacktrack(above, on_no_match); |
| return true; |
| case 'D': |
| // Match non ASCII-digits |
| __ leal(rax, Operand(current_character(), -'0')); |
| __ cmpl(rax, Immediate('9' - '0')); |
| BranchOrBacktrack(below_equal, on_no_match); |
| return true; |
| case '.': { |
| // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) |
| __ movl(rax, current_character()); |
| __ xorl(rax, Immediate(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C |
| __ subl(rax, Immediate(0x0B)); |
| __ cmpl(rax, Immediate(0x0C - 0x0B)); |
| BranchOrBacktrack(below_equal, on_no_match); |
| if (mode_ == UC16) { |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0B). I.e., check for |
| // 0x201D (0x2028 - 0x0B) or 0x201E. |
| __ subl(rax, Immediate(0x2028 - 0x0B)); |
| __ cmpl(rax, Immediate(0x2029 - 0x2028)); |
| BranchOrBacktrack(below_equal, on_no_match); |
| } |
| return true; |
| } |
| case 'n': { |
| // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) |
| __ movl(rax, current_character()); |
| __ xorl(rax, Immediate(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C |
| __ subl(rax, Immediate(0x0B)); |
| __ cmpl(rax, Immediate(0x0C - 0x0B)); |
| if (mode_ == LATIN1) { |
| BranchOrBacktrack(above, on_no_match); |
| } else { |
| Label done; |
| BranchOrBacktrack(below_equal, &done); |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0B). I.e., check for |
| // 0x201D (0x2028 - 0x0B) or 0x201E. |
| __ subl(rax, Immediate(0x2028 - 0x0B)); |
| __ cmpl(rax, Immediate(0x2029 - 0x2028)); |
| BranchOrBacktrack(above, on_no_match); |
| __ bind(&done); |
| } |
| return true; |
| } |
| case 'w': { |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ cmpl(current_character(), Immediate('z')); |
| BranchOrBacktrack(above, on_no_match); |
| } |
| __ Move(rbx, ExternalReference::re_word_character_map(isolate())); |
| DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char. |
| __ testb(Operand(rbx, current_character(), times_1, 0), |
| current_character()); |
| BranchOrBacktrack(zero, on_no_match); |
| return true; |
| } |
| case 'W': { |
| Label done; |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ cmpl(current_character(), Immediate('z')); |
| __ j(above, &done); |
| } |
| __ Move(rbx, ExternalReference::re_word_character_map(isolate())); |
| DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char. |
| __ testb(Operand(rbx, current_character(), times_1, 0), |
| current_character()); |
| BranchOrBacktrack(not_zero, on_no_match); |
| if (mode_ != LATIN1) { |
| __ bind(&done); |
| } |
| return true; |
| } |
| |
| case '*': |
| // Match any character. |
| return true; |
| // No custom implementation (yet): s(UC16), S(UC16). |
| default: |
| return false; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Fail() { |
| STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero. |
| if (!global()) { |
| __ Set(rax, FAILURE); |
| } |
| __ jmp(&exit_label_); |
| } |
| |
| |
| Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) { |
| Label return_rax; |
| // Finalize code - write the entry point code now we know how many |
| // registers we need. |
| // Entry code: |
| __ bind(&entry_label_); |
| |
| // Tell the system that we have a stack frame. Because the type is MANUAL, no |
| // is generated. |
| FrameScope scope(&masm_, StackFrame::MANUAL); |
| |
| // Actually emit code to start a new stack frame. |
| __ pushq(rbp); |
| __ movq(rbp, rsp); |
| // Save parameters and callee-save registers. Order here should correspond |
| // to order of kBackup_ebx etc. |
| #ifdef V8_TARGET_OS_WIN |
| // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots. |
| // Store register parameters in pre-allocated stack slots, |
| __ movq(Operand(rbp, kInputString), rcx); |
| __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx. |
| __ movq(Operand(rbp, kInputStart), r8); |
| __ movq(Operand(rbp, kInputEnd), r9); |
| // Callee-save on Win64. |
| __ pushq(rsi); |
| __ pushq(rdi); |
| __ pushq(rbx); |
| #else |
| // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack). |
| // Push register parameters on stack for reference. |
| DCHECK_EQ(kInputString, -1 * kSystemPointerSize); |
| DCHECK_EQ(kStartIndex, -2 * kSystemPointerSize); |
| DCHECK_EQ(kInputStart, -3 * kSystemPointerSize); |
| DCHECK_EQ(kInputEnd, -4 * kSystemPointerSize); |
| DCHECK_EQ(kRegisterOutput, -5 * kSystemPointerSize); |
| DCHECK_EQ(kNumOutputRegisters, -6 * kSystemPointerSize); |
| __ pushq(rdi); |
| __ pushq(rsi); |
| __ pushq(rdx); |
| __ pushq(rcx); |
| __ pushq(r8); |
| __ pushq(r9); |
| |
| __ pushq(rbx); // Callee-save |
| #endif |
| |
| STATIC_ASSERT(kSuccessfulCaptures == |
| kLastCalleeSaveRegister - kSystemPointerSize); |
| __ Push(Immediate(0)); // Number of successful matches in a global regexp. |
| STATIC_ASSERT(kStringStartMinusOne == |
| kSuccessfulCaptures - kSystemPointerSize); |
| __ Push(Immediate(0)); // Make room for "string start - 1" constant. |
| STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize); |
| __ Push(Immediate(0)); // The backtrack counter. |
| |
| // Check if we have space on the stack for registers. |
| Label stack_limit_hit; |
| Label stack_ok; |
| |
| ExternalReference stack_limit = |
| ExternalReference::address_of_jslimit(isolate()); |
| __ movq(rcx, rsp); |
| __ Move(kScratchRegister, stack_limit); |
| __ subq(rcx, Operand(kScratchRegister, 0)); |
| // Handle it if the stack pointer is already below the stack limit. |
| __ j(below_equal, &stack_limit_hit); |
| // Check if there is room for the variable number of registers above |
| // the stack limit. |
| __ cmpq(rcx, Immediate(num_registers_ * kSystemPointerSize)); |
| __ j(above_equal, &stack_ok); |
| // Exit with OutOfMemory exception. There is not enough space on the stack |
| // for our working registers. |
| __ Set(rax, EXCEPTION); |
| __ jmp(&return_rax); |
| |
| __ bind(&stack_limit_hit); |
| __ Move(code_object_pointer(), masm_.CodeObject()); |
| CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp. |
| __ testq(rax, rax); |
| // If returned value is non-zero, we exit with the returned value as result. |
| __ j(not_zero, &return_rax); |
| |
| __ bind(&stack_ok); |
| |
| // Allocate space on stack for registers. |
| __ AllocateStackSpace(num_registers_ * kSystemPointerSize); |
| // Load string length. |
| __ movq(rsi, Operand(rbp, kInputEnd)); |
| // Load input position. |
| __ movq(rdi, Operand(rbp, kInputStart)); |
| // Set up rdi to be negative offset from string end. |
| __ subq(rdi, rsi); |
| // Set rax to address of char before start of the string |
| // (effectively string position -1). |
| __ movq(rbx, Operand(rbp, kStartIndex)); |
| __ negq(rbx); |
| if (mode_ == UC16) { |
| __ leaq(rax, Operand(rdi, rbx, times_2, -char_size())); |
| } else { |
| __ leaq(rax, Operand(rdi, rbx, times_1, -char_size())); |
| } |
| // Store this value in a local variable, for use when clearing |
| // position registers. |
| __ movq(Operand(rbp, kStringStartMinusOne), rax); |
| |
| // Initialize code object pointer. |
| __ Move(code_object_pointer(), masm_.CodeObject()); |
| |
| Label load_char_start_regexp, start_regexp; |
| // Load newline if index is at start, previous character otherwise. |
| __ cmpl(Operand(rbp, kStartIndex), Immediate(0)); |
| __ j(not_equal, &load_char_start_regexp, Label::kNear); |
| __ Set(current_character(), '\n'); |
| __ jmp(&start_regexp, Label::kNear); |
| |
| // Global regexp restarts matching here. |
| __ bind(&load_char_start_regexp); |
| // Load previous char as initial value of current character register. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&start_regexp); |
| |
| // Initialize on-stack registers. |
| if (num_saved_registers_ > 0) { |
| // Fill saved registers with initial value = start offset - 1 |
| // Fill in stack push order, to avoid accessing across an unwritten |
| // page (a problem on Windows). |
| if (num_saved_registers_ > 8) { |
| __ Set(rcx, kRegisterZero); |
| Label init_loop; |
| __ bind(&init_loop); |
| __ movq(Operand(rbp, rcx, times_1, 0), rax); |
| __ subq(rcx, Immediate(kSystemPointerSize)); |
| __ cmpq(rcx, Immediate(kRegisterZero - |
| num_saved_registers_ * kSystemPointerSize)); |
| __ j(greater, &init_loop); |
| } else { // Unroll the loop. |
| for (int i = 0; i < num_saved_registers_; i++) { |
| __ movq(register_location(i), rax); |
| } |
| } |
| } |
| |
| // Initialize backtrack stack pointer. |
| __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); |
| |
| __ jmp(&start_label_); |
| |
| // Exit code: |
| if (success_label_.is_linked()) { |
| // Save captures when successful. |
| __ bind(&success_label_); |
| if (num_saved_registers_ > 0) { |
| // copy captures to output |
| __ movq(rdx, Operand(rbp, kStartIndex)); |
| __ movq(rbx, Operand(rbp, kRegisterOutput)); |
| __ movq(rcx, Operand(rbp, kInputEnd)); |
| __ subq(rcx, Operand(rbp, kInputStart)); |
| if (mode_ == UC16) { |
| __ leaq(rcx, Operand(rcx, rdx, times_2, 0)); |
| } else { |
| __ addq(rcx, rdx); |
| } |
| for (int i = 0; i < num_saved_registers_; i++) { |
| __ movq(rax, register_location(i)); |
| if (i == 0 && global_with_zero_length_check()) { |
| // Keep capture start in rdx for the zero-length check later. |
| __ movq(rdx, rax); |
| } |
| __ addq(rax, rcx); // Convert to index from start, not end. |
| if (mode_ == UC16) { |
| __ sarq(rax, Immediate(1)); // Convert byte index to character index. |
| } |
| __ movl(Operand(rbx, i * kIntSize), rax); |
| } |
| } |
| |
| if (global()) { |
| // Restart matching if the regular expression is flagged as global. |
| // Increment success counter. |
| __ incq(Operand(rbp, kSuccessfulCaptures)); |
| // Capture results have been stored, so the number of remaining global |
| // output registers is reduced by the number of stored captures. |
| __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters)); |
| __ subq(rcx, Immediate(num_saved_registers_)); |
| // Check whether we have enough room for another set of capture results. |
| __ cmpq(rcx, Immediate(num_saved_registers_)); |
| __ j(less, &exit_label_); |
| |
| __ movq(Operand(rbp, kNumOutputRegisters), rcx); |
| // Advance the location for output. |
| __ addq(Operand(rbp, kRegisterOutput), |
| Immediate(num_saved_registers_ * kIntSize)); |
| |
| // Prepare rax to initialize registers with its value in the next run. |
| __ movq(rax, Operand(rbp, kStringStartMinusOne)); |
| |
| if (global_with_zero_length_check()) { |
| // Special case for zero-length matches. |
| // rdx: capture start index |
| __ cmpq(rdi, rdx); |
| // Not a zero-length match, restart. |
| __ j(not_equal, &load_char_start_regexp); |
| // rdi (offset from the end) is zero if we already reached the end. |
| __ testq(rdi, rdi); |
| __ j(zero, &exit_label_, Label::kNear); |
| // Advance current position after a zero-length match. |
| Label advance; |
| __ bind(&advance); |
| if (mode_ == UC16) { |
| __ addq(rdi, Immediate(2)); |
| } else { |
| __ incq(rdi); |
| } |
| if (global_unicode()) CheckNotInSurrogatePair(0, &advance); |
| } |
| |
| __ jmp(&load_char_start_regexp); |
| } else { |
| __ movq(rax, Immediate(SUCCESS)); |
| } |
| } |
| |
| __ bind(&exit_label_); |
| if (global()) { |
| // Return the number of successful captures. |
| __ movq(rax, Operand(rbp, kSuccessfulCaptures)); |
| } |
| |
| __ bind(&return_rax); |
| #ifdef V8_TARGET_OS_WIN |
| // Restore callee save registers. |
| __ leaq(rsp, Operand(rbp, kLastCalleeSaveRegister)); |
| __ popq(rbx); |
| __ popq(rdi); |
| __ popq(rsi); |
| // Stack now at rbp. |
| #else |
| // Restore callee save register. |
| __ movq(rbx, Operand(rbp, kBackup_rbx)); |
| // Skip rsp to rbp. |
| __ movq(rsp, rbp); |
| #endif |
| // Exit function frame, restore previous one. |
| __ popq(rbp); |
| __ ret(0); |
| |
| // Backtrack code (branch target for conditional backtracks). |
| if (backtrack_label_.is_linked()) { |
| __ bind(&backtrack_label_); |
| Backtrack(); |
| } |
| |
| Label exit_with_exception; |
| |
| // Preempt-code |
| if (check_preempt_label_.is_linked()) { |
| SafeCallTarget(&check_preempt_label_); |
| |
| __ pushq(backtrack_stackpointer()); |
| __ pushq(rdi); |
| |
| CallCheckStackGuardState(); |
| __ testq(rax, rax); |
| // If returning non-zero, we should end execution with the given |
| // result as return value. |
| __ j(not_zero, &return_rax); |
| |
| // Restore registers. |
| __ Move(code_object_pointer(), masm_.CodeObject()); |
| __ popq(rdi); |
| __ popq(backtrack_stackpointer()); |
| // String might have moved: Reload esi from frame. |
| __ movq(rsi, Operand(rbp, kInputEnd)); |
| SafeReturn(); |
| } |
| |
| // Backtrack stack overflow code. |
| if (stack_overflow_label_.is_linked()) { |
| SafeCallTarget(&stack_overflow_label_); |
| // Reached if the backtrack-stack limit has been hit. |
| |
| // Save registers before calling C function |
| #ifndef V8_TARGET_OS_WIN |
| // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI. |
| __ pushq(rsi); |
| __ pushq(rdi); |
| #endif |
| |
| // Call GrowStack(backtrack_stackpointer()) |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments); |
| #ifdef V8_TARGET_OS_WIN |
| // Microsoft passes parameters in rcx, rdx, r8. |
| // First argument, backtrack stackpointer, is already in rcx. |
| __ leaq(rdx, Operand(rbp, kStackHighEnd)); // Second argument |
| __ LoadAddress(r8, ExternalReference::isolate_address(isolate())); |
| #else |
| // AMD64 ABI passes parameters in rdi, rsi, rdx. |
| __ movq(rdi, backtrack_stackpointer()); // First argument. |
| __ leaq(rsi, Operand(rbp, kStackHighEnd)); // Second argument. |
| __ LoadAddress(rdx, ExternalReference::isolate_address(isolate())); |
| #endif |
| ExternalReference grow_stack = |
| ExternalReference::re_grow_stack(isolate()); |
| __ CallCFunction(grow_stack, num_arguments); |
| // If return nullptr, we have failed to grow the stack, and |
| // must exit with a stack-overflow exception. |
| __ testq(rax, rax); |
| __ j(equal, &exit_with_exception); |
| // Otherwise use return value as new stack pointer. |
| __ movq(backtrack_stackpointer(), rax); |
| // Restore saved registers and continue. |
| __ Move(code_object_pointer(), masm_.CodeObject()); |
| #ifndef V8_TARGET_OS_WIN |
| __ popq(rdi); |
| __ popq(rsi); |
| #endif |
| SafeReturn(); |
| } |
| |
| if (exit_with_exception.is_linked()) { |
| // If any of the code above needed to exit with an exception. |
| __ bind(&exit_with_exception); |
| // Exit with Result EXCEPTION(-1) to signal thrown exception. |
| __ Set(rax, EXCEPTION); |
| __ jmp(&return_rax); |
| } |
| |
| if (fallback_label_.is_linked()) { |
| __ bind(&fallback_label_); |
| __ Set(rax, FALLBACK_TO_EXPERIMENTAL); |
| __ jmp(&return_rax); |
| } |
| |
| FixupCodeRelativePositions(); |
| |
| CodeDesc code_desc; |
| Isolate* isolate = this->isolate(); |
| masm_.GetCode(isolate, &code_desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, code_desc, CodeKind::REGEXP) |
| .set_self_reference(masm_.CodeObject()) |
| .Build(); |
| PROFILE(isolate, |
| RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source)); |
| return Handle<HeapObject>::cast(code); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::GoTo(Label* to) { |
| BranchOrBacktrack(no_condition, to); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::IfRegisterGE(int reg, |
| int comparand, |
| Label* if_ge) { |
| __ cmpq(register_location(reg), Immediate(comparand)); |
| BranchOrBacktrack(greater_equal, if_ge); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::IfRegisterLT(int reg, |
| int comparand, |
| Label* if_lt) { |
| __ cmpq(register_location(reg), Immediate(comparand)); |
| BranchOrBacktrack(less, if_lt); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg, |
| Label* if_eq) { |
| __ cmpq(rdi, register_location(reg)); |
| BranchOrBacktrack(equal, if_eq); |
| } |
| |
| |
| RegExpMacroAssembler::IrregexpImplementation |
| RegExpMacroAssemblerX64::Implementation() { |
| return kX64Implementation; |
| } |
| |
| |
| void RegExpMacroAssemblerX64::PopCurrentPosition() { |
| Pop(rdi); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::PopRegister(int register_index) { |
| Pop(rax); |
| __ movq(register_location(register_index), rax); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::PushBacktrack(Label* label) { |
| Push(label); |
| CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::PushCurrentPosition() { |
| Push(rdi); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::PushRegister(int register_index, |
| StackCheckFlag check_stack_limit) { |
| __ movq(rax, register_location(register_index)); |
| Push(rax); |
| if (check_stack_limit) CheckStackLimit(); |
| } |
| |
| void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) { |
| __ movq(rdi, register_location(reg)); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) { |
| __ movq(dst, register_location(reg)); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) { |
| __ movq(backtrack_stackpointer(), register_location(reg)); |
| __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) { |
| Label after_position; |
| __ cmpq(rdi, Immediate(-by * char_size())); |
| __ j(greater_equal, &after_position, Label::kNear); |
| __ movq(rdi, Immediate(-by * char_size())); |
| // On RegExp code entry (where this operation is used), the character before |
| // the current position is expected to be already loaded. |
| // We have advanced the position, so it's safe to read backwards. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&after_position); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) { |
| DCHECK(register_index >= num_saved_registers_); // Reserved for positions! |
| __ movq(register_location(register_index), Immediate(to)); |
| } |
| |
| |
| bool RegExpMacroAssemblerX64::Succeed() { |
| __ jmp(&success_label_); |
| return global(); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg, |
| int cp_offset) { |
| if (cp_offset == 0) { |
| __ movq(register_location(reg), rdi); |
| } else { |
| __ leaq(rax, Operand(rdi, cp_offset * char_size())); |
| __ movq(register_location(reg), rax); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) { |
| DCHECK(reg_from <= reg_to); |
| __ movq(rax, Operand(rbp, kStringStartMinusOne)); |
| for (int reg = reg_from; reg <= reg_to; reg++) { |
| __ movq(register_location(reg), rax); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) { |
| __ movq(rax, backtrack_stackpointer()); |
| __ subq(rax, Operand(rbp, kStackHighEnd)); |
| __ movq(register_location(reg), rax); |
| } |
| |
| |
| // Private methods: |
| |
| void RegExpMacroAssemblerX64::CallCheckStackGuardState() { |
| // This function call preserves no register values. Caller should |
| // store anything volatile in a C call or overwritten by this function. |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments); |
| #ifdef V8_TARGET_OS_WIN |
| // Second argument: Code of self. (Do this before overwriting r8). |
| __ movq(rdx, code_object_pointer()); |
| // Third argument: RegExp code frame pointer. |
| __ movq(r8, rbp); |
| // First argument: Next address on the stack (will be address of |
| // return address). |
| __ leaq(rcx, Operand(rsp, -kSystemPointerSize)); |
| #else |
| // Third argument: RegExp code frame pointer. |
| __ movq(rdx, rbp); |
| // Second argument: Code of self. |
| __ movq(rsi, code_object_pointer()); |
| // First argument: Next address on the stack (will be address of |
| // return address). |
| __ leaq(rdi, Operand(rsp, -kSystemPointerSize)); |
| #endif |
| ExternalReference stack_check = |
| ExternalReference::re_check_stack_guard_state(isolate()); |
| __ CallCFunction(stack_check, num_arguments); |
| } |
| |
| |
| // Helper function for reading a value out of a stack frame. |
| template <typename T> |
| static T& frame_entry(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset)); |
| } |
| |
| |
| template <typename T> |
| static T* frame_entry_address(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T*>(re_frame + frame_offset); |
| } |
| |
| int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address, |
| Address raw_code, |
| Address re_frame) { |
| Code re_code = Code::cast(Object(raw_code)); |
| return NativeRegExpMacroAssembler::CheckStackGuardState( |
| frame_entry<Isolate*>(re_frame, kIsolate), |
| frame_entry<int>(re_frame, kStartIndex), |
| static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)), |
| return_address, re_code, |
| frame_entry_address<Address>(re_frame, kInputString), |
| frame_entry_address<const byte*>(re_frame, kInputStart), |
| frame_entry_address<const byte*>(re_frame, kInputEnd)); |
| } |
| |
| |
| Operand RegExpMacroAssemblerX64::register_location(int register_index) { |
| DCHECK(register_index < (1<<30)); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| return Operand(rbp, kRegisterZero - register_index * kSystemPointerSize); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| if (cp_offset >= 0) { |
| __ cmpl(rdi, Immediate(-cp_offset * char_size())); |
| BranchOrBacktrack(greater_equal, on_outside_input); |
| } else { |
| __ leaq(rax, Operand(rdi, cp_offset * char_size())); |
| __ cmpq(rax, Operand(rbp, kStringStartMinusOne)); |
| BranchOrBacktrack(less_equal, on_outside_input); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition, |
| Label* to) { |
| if (condition < 0) { // No condition |
| if (to == nullptr) { |
| Backtrack(); |
| return; |
| } |
| __ jmp(to); |
| return; |
| } |
| if (to == nullptr) { |
| __ j(condition, &backtrack_label_); |
| return; |
| } |
| __ j(condition, to); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::SafeCall(Label* to) { |
| __ call(to); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) { |
| __ bind(label); |
| __ subq(Operand(rsp, 0), code_object_pointer()); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::SafeReturn() { |
| __ addq(Operand(rsp, 0), code_object_pointer()); |
| __ ret(0); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Push(Register source) { |
| DCHECK(source != backtrack_stackpointer()); |
| // Notice: This updates flags, unlike normal Push. |
| __ subq(backtrack_stackpointer(), Immediate(kIntSize)); |
| __ movl(Operand(backtrack_stackpointer(), 0), source); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Push(Immediate value) { |
| // Notice: This updates flags, unlike normal Push. |
| __ subq(backtrack_stackpointer(), Immediate(kIntSize)); |
| __ movl(Operand(backtrack_stackpointer(), 0), value); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::FixupCodeRelativePositions() { |
| for (int position : code_relative_fixup_positions_) { |
| // The position succeeds a relative label offset from position. |
| // Patch the relative offset to be relative to the Code object pointer |
| // instead. |
| int patch_position = position - kIntSize; |
| int offset = masm_.long_at(patch_position); |
| masm_.long_at_put(patch_position, |
| offset |
| + position |
| + Code::kHeaderSize |
| - kHeapObjectTag); |
| } |
| code_relative_fixup_positions_.Rewind(0); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Push(Label* backtrack_target) { |
| __ subq(backtrack_stackpointer(), Immediate(kIntSize)); |
| __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target); |
| MarkPositionForCodeRelativeFixup(); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Pop(Register target) { |
| DCHECK(target != backtrack_stackpointer()); |
| __ movsxlq(target, Operand(backtrack_stackpointer(), 0)); |
| // Notice: This updates flags, unlike normal Pop. |
| __ addq(backtrack_stackpointer(), Immediate(kIntSize)); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::Drop() { |
| __ addq(backtrack_stackpointer(), Immediate(kIntSize)); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckPreemption() { |
| // Check for preemption. |
| Label no_preempt; |
| ExternalReference stack_limit = |
| ExternalReference::address_of_jslimit(isolate()); |
| __ load_rax(stack_limit); |
| __ cmpq(rsp, rax); |
| __ j(above, &no_preempt); |
| |
| SafeCall(&check_preempt_label_); |
| |
| __ bind(&no_preempt); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::CheckStackLimit() { |
| Label no_stack_overflow; |
| ExternalReference stack_limit = |
| ExternalReference::address_of_regexp_stack_limit_address(isolate()); |
| __ load_rax(stack_limit); |
| __ cmpq(backtrack_stackpointer(), rax); |
| __ j(above, &no_stack_overflow); |
| |
| SafeCall(&stack_overflow_label_); |
| |
| __ bind(&no_stack_overflow); |
| } |
| |
| |
| void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset, |
| int characters) { |
| if (mode_ == LATIN1) { |
| if (characters == 4) { |
| __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); |
| } else if (characters == 2) { |
| __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); |
| } else { |
| DCHECK_EQ(1, characters); |
| __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| if (characters == 2) { |
| __ movl(current_character(), |
| Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); |
| } else { |
| DCHECK_EQ(1, characters); |
| __ movzxwl(current_character(), |
| Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); |
| } |
| } |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_X64 |