| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <algorithm> |
| #include <limits> |
| #include <vector> |
| |
| #include "base/debug/activity_tracker.h" |
| #include "base/logging.h" |
| #include "base/synchronization/condition_variable.h" |
| #include "base/synchronization/lock.h" |
| #include "base/synchronization/waitable_event.h" |
| #include "base/threading/scoped_blocking_call.h" |
| #include "base/threading/thread_restrictions.h" |
| #include "starboard/types.h" |
| |
| // ----------------------------------------------------------------------------- |
| // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't |
| // support cross-process events (where one process can signal an event which |
| // others are waiting on). Because of this, we can avoid having one thread per |
| // listener in several cases. |
| // |
| // The WaitableEvent maintains a list of waiters, protected by a lock. Each |
| // waiter is either an async wait, in which case we have a Task and the |
| // MessageLoop to run it on, or a blocking wait, in which case we have the |
| // condition variable to signal. |
| // |
| // Waiting involves grabbing the lock and adding oneself to the wait list. Async |
| // waits can be canceled, which means grabbing the lock and removing oneself |
| // from the list. |
| // |
| // Waiting on multiple events is handled by adding a single, synchronous wait to |
| // the wait-list of many events. An event passes a pointer to itself when |
| // firing a waiter and so we can store that pointer to find out which event |
| // triggered. |
| // ----------------------------------------------------------------------------- |
| |
| namespace base { |
| |
| // ----------------------------------------------------------------------------- |
| // This is just an abstract base class for waking the two types of waiters |
| // ----------------------------------------------------------------------------- |
| WaitableEvent::WaitableEvent(ResetPolicy reset_policy, |
| InitialState initial_state) |
| : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {} |
| |
| WaitableEvent::~WaitableEvent() = default; |
| |
| void WaitableEvent::Reset() { |
| base::AutoLock locked(kernel_->lock_); |
| kernel_->signaled_ = false; |
| } |
| |
| void WaitableEvent::Signal() { |
| base::AutoLock locked(kernel_->lock_); |
| |
| if (kernel_->signaled_) |
| return; |
| |
| if (kernel_->manual_reset_) { |
| SignalAll(); |
| kernel_->signaled_ = true; |
| } else { |
| // In the case of auto reset, if no waiters were woken, we remain |
| // signaled. |
| if (!SignalOne()) |
| kernel_->signaled_ = true; |
| } |
| } |
| |
| bool WaitableEvent::IsSignaled() { |
| base::AutoLock locked(kernel_->lock_); |
| |
| const bool result = kernel_->signaled_; |
| if (result && !kernel_->manual_reset_) |
| kernel_->signaled_ = false; |
| return result; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Synchronous waits |
| |
| // ----------------------------------------------------------------------------- |
| // This is a synchronous waiter. The thread is waiting on the given condition |
| // variable and the fired flag in this object. |
| // ----------------------------------------------------------------------------- |
| class SyncWaiter : public WaitableEvent::Waiter { |
| public: |
| SyncWaiter() |
| : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {} |
| |
| bool Fire(WaitableEvent* signaling_event) override { |
| base::AutoLock locked(lock_); |
| |
| if (fired_) |
| return false; |
| |
| fired_ = true; |
| signaling_event_ = signaling_event; |
| |
| cv_.Broadcast(); |
| |
| // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on |
| // the blocking thread's stack. There is no |delete this;| in Fire. The |
| // SyncWaiter object is destroyed when it goes out of scope. |
| |
| return true; |
| } |
| |
| WaitableEvent* signaling_event() const { |
| return signaling_event_; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // These waiters are always stack allocated and don't delete themselves. Thus |
| // there's no problem and the ABA tag is the same as the object pointer. |
| // --------------------------------------------------------------------------- |
| bool Compare(void* tag) override { return this == tag; } |
| |
| // --------------------------------------------------------------------------- |
| // Called with lock held. |
| // --------------------------------------------------------------------------- |
| bool fired() const { |
| return fired_; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // During a TimedWait, we need a way to make sure that an auto-reset |
| // WaitableEvent doesn't think that this event has been signaled between |
| // unlocking it and removing it from the wait-list. Called with lock held. |
| // --------------------------------------------------------------------------- |
| void Disable() { |
| fired_ = true; |
| } |
| |
| base::Lock* lock() { |
| return &lock_; |
| } |
| |
| base::ConditionVariable* cv() { |
| return &cv_; |
| } |
| |
| private: |
| bool fired_; |
| WaitableEvent* signaling_event_; // The WaitableEvent which woke us |
| base::Lock lock_; |
| base::ConditionVariable cv_; |
| }; |
| |
| void WaitableEvent::Wait() { |
| bool result = TimedWaitUntil(TimeTicks::Max()); |
| DCHECK(result) << "TimedWait() should never fail with infinite timeout"; |
| } |
| |
| bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) { |
| // TimeTicks takes care of overflow including the cases when wait_delta |
| // is a maximum value. |
| return TimedWaitUntil(TimeTicks::Now() + wait_delta); |
| } |
| |
| bool WaitableEvent::TimedWaitUntil(const TimeTicks& end_time) { |
| #if !defined(STARBOARD) |
| internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call( |
| BlockingType::MAY_BLOCK); |
| |
| // Record the event that this thread is blocking upon (for hang diagnosis). |
| base::debug::ScopedEventWaitActivity event_activity(this); |
| #endif |
| |
| const bool finite_time = !end_time.is_max(); |
| |
| kernel_->lock_.Acquire(); |
| if (kernel_->signaled_) { |
| if (!kernel_->manual_reset_) { |
| // In this case we were signaled when we had no waiters. Now that |
| // someone has waited upon us, we can automatically reset. |
| kernel_->signaled_ = false; |
| } |
| |
| kernel_->lock_.Release(); |
| return true; |
| } |
| |
| SyncWaiter sw; |
| sw.lock()->Acquire(); |
| |
| Enqueue(&sw); |
| kernel_->lock_.Release(); |
| // We are violating locking order here by holding the SyncWaiter lock but not |
| // the WaitableEvent lock. However, this is safe because we don't lock @lock_ |
| // again before unlocking it. |
| |
| for (;;) { |
| const TimeTicks current_time(TimeTicks::Now()); |
| |
| if (sw.fired() || (finite_time && current_time >= end_time)) { |
| const bool return_value = sw.fired(); |
| |
| // We can't acquire @lock_ before releasing the SyncWaiter lock (because |
| // of locking order), however, in between the two a signal could be fired |
| // and @sw would accept it, however we will still return false, so the |
| // signal would be lost on an auto-reset WaitableEvent. Thus we call |
| // Disable which makes sw::Fire return false. |
| sw.Disable(); |
| sw.lock()->Release(); |
| |
| // This is a bug that has been enshrined in the interface of |
| // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true, |
| // even though it'll always return false in that case. However, taking |
| // the lock ensures that |Signal| has completed before we return and |
| // means that a WaitableEvent can synchronise its own destruction. |
| kernel_->lock_.Acquire(); |
| kernel_->Dequeue(&sw, &sw); |
| kernel_->lock_.Release(); |
| |
| return return_value; |
| } |
| |
| if (finite_time) { |
| const TimeDelta max_wait(end_time - current_time); |
| sw.cv()->TimedWait(max_wait); |
| } else { |
| sw.cv()->Wait(); |
| } |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Synchronous waiting on multiple objects. |
| |
| #if defined(STARBOARD) |
| struct EventComparator |
| { |
| bool operator()(const std::pair<WaitableEvent*, size_t> &a, |
| const std::pair<WaitableEvent*, size_t> &b) { |
| return a.first < b.first; |
| } |
| }; |
| #else |
| static bool // StrictWeakOrdering |
| cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a, |
| const std::pair<WaitableEvent*, unsigned> &b) { |
| return a.first < b.first; |
| } |
| #endif |
| |
| // static |
| size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, |
| size_t count) { |
| DCHECK(count) << "Cannot wait on no events"; |
| #if !defined(STARBOARD) |
| internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call( |
| BlockingType::MAY_BLOCK); |
| |
| // Record an event (the first) that this thread is blocking upon. |
| base::debug::ScopedEventWaitActivity event_activity(raw_waitables[0]); |
| #endif // !defined(STARBOARD) |
| |
| // We need to acquire the locks in a globally consistent order. Thus we sort |
| // the array of waitables by address. We actually sort a pairs so that we can |
| // map back to the original index values later. |
| std::vector<std::pair<WaitableEvent*, size_t> > waitables; |
| waitables.reserve(count); |
| for (size_t i = 0; i < count; ++i) |
| waitables.push_back(std::make_pair(raw_waitables[i], i)); |
| |
| DCHECK_EQ(count, waitables.size()); |
| |
| #if defined(STARBOARD) |
| sort(waitables.begin(), waitables.end(), EventComparator()); |
| #else |
| sort(waitables.begin(), waitables.end(), cmp_fst_addr); |
| #endif |
| |
| // The set of waitables must be distinct. Since we have just sorted by |
| // address, we can check this cheaply by comparing pairs of consecutive |
| // elements. |
| for (size_t i = 0; i < waitables.size() - 1; ++i) { |
| DCHECK(waitables[i].first != waitables[i+1].first); |
| } |
| |
| SyncWaiter sw; |
| |
| const size_t r = EnqueueMany(&waitables[0], count, &sw); |
| if (r < count) { |
| // One of the events is already signaled. The SyncWaiter has not been |
| // enqueued anywhere. |
| return waitables[r].second; |
| } |
| |
| // At this point, we hold the locks on all the WaitableEvents and we have |
| // enqueued our waiter in them all. |
| sw.lock()->Acquire(); |
| // Release the WaitableEvent locks in the reverse order |
| for (size_t i = 0; i < count; ++i) { |
| waitables[count - (1 + i)].first->kernel_->lock_.Release(); |
| } |
| |
| for (;;) { |
| if (sw.fired()) |
| break; |
| |
| sw.cv()->Wait(); |
| } |
| sw.lock()->Release(); |
| |
| // The address of the WaitableEvent which fired is stored in the SyncWaiter. |
| WaitableEvent *const signaled_event = sw.signaling_event(); |
| // This will store the index of the raw_waitables which fired. |
| size_t signaled_index = 0; |
| |
| // Take the locks of each WaitableEvent in turn (except the signaled one) and |
| // remove our SyncWaiter from the wait-list |
| for (size_t i = 0; i < count; ++i) { |
| if (raw_waitables[i] != signaled_event) { |
| raw_waitables[i]->kernel_->lock_.Acquire(); |
| // There's no possible ABA issue with the address of the SyncWaiter here |
| // because it lives on the stack. Thus the tag value is just the pointer |
| // value again. |
| raw_waitables[i]->kernel_->Dequeue(&sw, &sw); |
| raw_waitables[i]->kernel_->lock_.Release(); |
| } else { |
| // By taking this lock here we ensure that |Signal| has completed by the |
| // time we return, because |Signal| holds this lock. This matches the |
| // behaviour of |Wait| and |TimedWait|. |
| raw_waitables[i]->kernel_->lock_.Acquire(); |
| raw_waitables[i]->kernel_->lock_.Release(); |
| signaled_index = i; |
| } |
| } |
| |
| return signaled_index; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // If return value == count: |
| // The locks of the WaitableEvents have been taken in order and the Waiter has |
| // been enqueued in the wait-list of each. None of the WaitableEvents are |
| // currently signaled |
| // else: |
| // None of the WaitableEvent locks are held. The Waiter has not been enqueued |
| // in any of them and the return value is the index of the WaitableEvent which |
| // was signaled with the lowest input index from the original WaitMany call. |
| // ----------------------------------------------------------------------------- |
| // static |
| size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables, |
| size_t count, |
| Waiter* waiter) { |
| size_t winner = count; |
| size_t winner_index = count; |
| for (size_t i = 0; i < count; ++i) { |
| auto& kernel = waitables[i].first->kernel_; |
| kernel->lock_.Acquire(); |
| if (kernel->signaled_ && waitables[i].second < winner) { |
| winner = waitables[i].second; |
| winner_index = i; |
| } |
| } |
| |
| // No events signaled. All locks acquired. Enqueue the Waiter on all of them |
| // and return. |
| if (winner == count) { |
| for (size_t i = 0; i < count; ++i) |
| waitables[i].first->Enqueue(waiter); |
| return count; |
| } |
| |
| // Unlock in reverse order and possibly clear the chosen winner's signal |
| // before returning its index. |
| for (auto* w = waitables + count - 1; w >= waitables; --w) { |
| auto& kernel = w->first->kernel_; |
| if (w->second == winner) { |
| if (!kernel->manual_reset_) |
| kernel->signaled_ = false; |
| } |
| kernel->lock_.Release(); |
| } |
| |
| return winner_index; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Private functions... |
| |
| WaitableEvent::WaitableEventKernel::WaitableEventKernel( |
| ResetPolicy reset_policy, |
| InitialState initial_state) |
| : manual_reset_(reset_policy == ResetPolicy::MANUAL), |
| signaled_(initial_state == InitialState::SIGNALED) {} |
| |
| WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default; |
| |
| // ----------------------------------------------------------------------------- |
| // Wake all waiting waiters. Called with lock held. |
| // ----------------------------------------------------------------------------- |
| bool WaitableEvent::SignalAll() { |
| bool signaled_at_least_one = false; |
| |
| for (auto i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) { |
| if ((*i)->Fire(this)) |
| signaled_at_least_one = true; |
| } |
| |
| kernel_->waiters_.clear(); |
| return signaled_at_least_one; |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Try to wake a single waiter. Return true if one was woken. Called with lock |
| // held. |
| // --------------------------------------------------------------------------- |
| bool WaitableEvent::SignalOne() { |
| for (;;) { |
| if (kernel_->waiters_.empty()) |
| return false; |
| |
| const bool r = (*kernel_->waiters_.begin())->Fire(this); |
| kernel_->waiters_.pop_front(); |
| if (r) |
| return true; |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Add a waiter to the list of those waiting. Called with lock held. |
| // ----------------------------------------------------------------------------- |
| void WaitableEvent::Enqueue(Waiter* waiter) { |
| kernel_->waiters_.push_back(waiter); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Remove a waiter from the list of those waiting. Return true if the waiter was |
| // actually removed. Called with lock held. |
| // ----------------------------------------------------------------------------- |
| bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) { |
| for (auto i = waiters_.begin(); i != waiters_.end(); ++i) { |
| if (*i == waiter && (*i)->Compare(tag)) { |
| waiters_.erase(i); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| } // namespace base |