| /* |
| ********************************************************************** |
| * Copyright (C) 1999-2008, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ********************************************************************** |
| * Date Name Description |
| * 11/17/99 aliu Creation. |
| ********************************************************************** |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_TRANSLITERATION |
| |
| #include "unicode/uobject.h" |
| #include "unicode/parseerr.h" |
| #include "unicode/parsepos.h" |
| #include "unicode/putil.h" |
| #include "unicode/uchar.h" |
| #include "unicode/ustring.h" |
| #include "unicode/uniset.h" |
| #include "cstring.h" |
| #include "funcrepl.h" |
| #include "hash.h" |
| #include "quant.h" |
| #include "rbt.h" |
| #include "rbt_data.h" |
| #include "rbt_pars.h" |
| #include "rbt_rule.h" |
| #include "strmatch.h" |
| #include "strrepl.h" |
| #include "unicode/symtable.h" |
| #include "tridpars.h" |
| #include "uvector.h" |
| #include "hash.h" |
| #include "util.h" |
| #include "cmemory.h" |
| #include "uprops.h" |
| #include "putilimp.h" |
| |
| // Operators |
| #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ |
| #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ |
| #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ |
| #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op |
| |
| // Other special characters |
| #define QUOTE ((UChar)0x0027) /*'*/ |
| #define ESCAPE ((UChar)0x005C) /*\*/ |
| #define END_OF_RULE ((UChar)0x003B) /*;*/ |
| #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ |
| |
| #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ |
| #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ |
| #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ |
| #define CONTEXT_POST ((UChar)0x007D) /*}*/ |
| #define CURSOR_POS ((UChar)0x007C) /*|*/ |
| #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ |
| #define ANCHOR_START ((UChar)0x005E) /*^*/ |
| #define KLEENE_STAR ((UChar)0x002A) /***/ |
| #define ONE_OR_MORE ((UChar)0x002B) /*+*/ |
| #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ |
| |
| #define DOT ((UChar)46) /*.*/ |
| |
| static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; |
| 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, |
| 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 |
| }; |
| |
| // A function is denoted &Source-Target/Variant(text) |
| #define FUNCTION ((UChar)38) /*&*/ |
| |
| // Aliases for some of the syntax characters. These are provided so |
| // transliteration rules can be expressed in XML without clashing with |
| // XML syntax characters '<', '>', and '&'. |
| #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow |
| #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow |
| #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow |
| #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) |
| |
| // Special characters disallowed at the top level |
| static const UChar ILLEGAL_TOP[] = {41,0}; // ")" |
| |
| // Special characters disallowed within a segment |
| static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" |
| |
| // Special characters disallowed within a function argument |
| static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" |
| |
| // By definition, the ANCHOR_END special character is a |
| // trailing SymbolTable.SYMBOL_REF character. |
| // private static final char ANCHOR_END = '$'; |
| |
| static const UChar gOPERATORS[] = { // "=><" |
| VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| 0 |
| }; |
| |
| static const UChar HALF_ENDERS[] = { // "=><;" |
| VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| END_OF_RULE, |
| 0 |
| }; |
| |
| // These are also used in Transliterator::toRules() |
| static const int32_t ID_TOKEN_LEN = 2; |
| static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' |
| |
| /* |
| commented out until we do real ::BEGIN/::END functionality |
| static const int32_t BEGIN_TOKEN_LEN = 5; |
| static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' |
| |
| static const int32_t END_TOKEN_LEN = 3; |
| static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' |
| */ |
| |
| U_NAMESPACE_BEGIN |
| |
| //---------------------------------------------------------------------- |
| // BEGIN ParseData |
| //---------------------------------------------------------------------- |
| |
| /** |
| * This class implements the SymbolTable interface. It is used |
| * during parsing to give UnicodeSet access to variables that |
| * have been defined so far. Note that it uses variablesVector, |
| * _not_ data.setVariables. |
| */ |
| class ParseData : public UMemory, public SymbolTable { |
| public: |
| const TransliterationRuleData* data; // alias |
| |
| const UVector* variablesVector; // alias |
| |
| const Hashtable* variableNames; // alias |
| |
| ParseData(const TransliterationRuleData* data = 0, |
| const UVector* variablesVector = 0, |
| const Hashtable* variableNames = 0); |
| |
| virtual const UnicodeString* lookup(const UnicodeString& s) const; |
| |
| virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; |
| |
| virtual UnicodeString parseReference(const UnicodeString& text, |
| ParsePosition& pos, int32_t limit) const; |
| /** |
| * Return true if the given character is a matcher standin or a plain |
| * character (non standin). |
| */ |
| UBool isMatcher(UChar32 ch); |
| |
| /** |
| * Return true if the given character is a replacer standin or a plain |
| * character (non standin). |
| */ |
| UBool isReplacer(UChar32 ch); |
| |
| private: |
| ParseData(const ParseData &other); // forbid copying of this class |
| ParseData &operator=(const ParseData &other); // forbid copying of this class |
| }; |
| |
| ParseData::ParseData(const TransliterationRuleData* d, |
| const UVector* sets, |
| const Hashtable* vNames) : |
| data(d), variablesVector(sets), variableNames(vNames) {} |
| |
| /** |
| * Implement SymbolTable API. |
| */ |
| const UnicodeString* ParseData::lookup(const UnicodeString& name) const { |
| return (const UnicodeString*) variableNames->get(name); |
| } |
| |
| /** |
| * Implement SymbolTable API. |
| */ |
| const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { |
| // Note that we cannot use data.lookupSet() because the |
| // set array has not been constructed yet. |
| const UnicodeFunctor* set = NULL; |
| int32_t i = ch - data->variablesBase; |
| if (i >= 0 && i < variablesVector->size()) { |
| int32_t i = ch - data->variablesBase; |
| set = (i < variablesVector->size()) ? |
| (UnicodeFunctor*) variablesVector->elementAt(i) : 0; |
| } |
| return set; |
| } |
| |
| /** |
| * Implement SymbolTable API. Parse out a symbol reference |
| * name. |
| */ |
| UnicodeString ParseData::parseReference(const UnicodeString& text, |
| ParsePosition& pos, int32_t limit) const { |
| int32_t start = pos.getIndex(); |
| int32_t i = start; |
| UnicodeString result; |
| while (i < limit) { |
| UChar c = text.charAt(i); |
| if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { |
| break; |
| } |
| ++i; |
| } |
| if (i == start) { // No valid name chars |
| return result; // Indicate failure with empty string |
| } |
| pos.setIndex(i); |
| text.extractBetween(start, i, result); |
| return result; |
| } |
| |
| UBool ParseData::isMatcher(UChar32 ch) { |
| // Note that we cannot use data.lookup() because the |
| // set array has not been constructed yet. |
| int32_t i = ch - data->variablesBase; |
| if (i >= 0 && i < variablesVector->size()) { |
| UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| return f != NULL && f->toMatcher() != NULL; |
| } |
| return TRUE; |
| } |
| |
| /** |
| * Return true if the given character is a replacer standin or a plain |
| * character (non standin). |
| */ |
| UBool ParseData::isReplacer(UChar32 ch) { |
| // Note that we cannot use data.lookup() because the |
| // set array has not been constructed yet. |
| int i = ch - data->variablesBase; |
| if (i >= 0 && i < variablesVector->size()) { |
| UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| return f != NULL && f->toReplacer() != NULL; |
| } |
| return TRUE; |
| } |
| |
| //---------------------------------------------------------------------- |
| // BEGIN RuleHalf |
| //---------------------------------------------------------------------- |
| |
| /** |
| * A class representing one side of a rule. This class knows how to |
| * parse half of a rule. It is tightly coupled to the method |
| * RuleBasedTransliterator.Parser.parseRule(). |
| */ |
| class RuleHalf : public UMemory { |
| |
| public: |
| |
| UnicodeString text; |
| |
| int32_t cursor; // position of cursor in text |
| int32_t ante; // position of ante context marker '{' in text |
| int32_t post; // position of post context marker '}' in text |
| |
| // Record the offset to the cursor either to the left or to the |
| // right of the key. This is indicated by characters on the output |
| // side that allow the cursor to be positioned arbitrarily within |
| // the matching text. For example, abc{def} > | @@@ xyz; changes |
| // def to xyz and moves the cursor to before abc. Offset characters |
| // must be at the start or end, and they cannot move the cursor past |
| // the ante- or postcontext text. Placeholders are only valid in |
| // output text. The length of the ante and post context is |
| // determined at runtime, because of supplementals and quantifiers. |
| int32_t cursorOffset; // only nonzero on output side |
| |
| // Position of first CURSOR_OFFSET on _right_. This will be -1 |
| // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. |
| int32_t cursorOffsetPos; |
| |
| UBool anchorStart; |
| UBool anchorEnd; |
| |
| /** |
| * The segment number from 1..n of the next '(' we see |
| * during parsing; 1-based. |
| */ |
| int32_t nextSegmentNumber; |
| |
| TransliteratorParser& parser; |
| |
| //-------------------------------------------------- |
| // Methods |
| |
| RuleHalf(TransliteratorParser& parser); |
| ~RuleHalf(); |
| |
| int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); |
| |
| int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, |
| UnicodeString& buf, |
| const UnicodeString& illegal, |
| UBool isSegment, |
| UErrorCode& status); |
| |
| /** |
| * Remove context. |
| */ |
| void removeContext(); |
| |
| /** |
| * Return true if this half looks like valid output, that is, does not |
| * contain quantifiers or other special input-only elements. |
| */ |
| UBool isValidOutput(TransliteratorParser& parser); |
| |
| /** |
| * Return true if this half looks like valid input, that is, does not |
| * contain functions or other special output-only elements. |
| */ |
| UBool isValidInput(TransliteratorParser& parser); |
| |
| int syntaxError(UErrorCode code, |
| const UnicodeString& rule, |
| int32_t start, |
| UErrorCode& status) { |
| return parser.syntaxError(code, rule, start, status); |
| } |
| |
| private: |
| // Disallowed methods; no impl. |
| RuleHalf(const RuleHalf&); |
| RuleHalf& operator=(const RuleHalf&); |
| }; |
| |
| RuleHalf::RuleHalf(TransliteratorParser& p) : |
| parser(p) |
| { |
| cursor = -1; |
| ante = -1; |
| post = -1; |
| cursorOffset = 0; |
| cursorOffsetPos = 0; |
| anchorStart = anchorEnd = FALSE; |
| nextSegmentNumber = 1; |
| } |
| |
| RuleHalf::~RuleHalf() { |
| } |
| |
| /** |
| * Parse one side of a rule, stopping at either the limit, |
| * the END_OF_RULE character, or an operator. |
| * @return the index after the terminating character, or |
| * if limit was reached, limit |
| */ |
| int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| int32_t start = pos; |
| text.truncate(0); |
| pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status); |
| |
| if (cursorOffset > 0 && cursor != cursorOffsetPos) { |
| return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| } |
| |
| return pos; |
| } |
| |
| /** |
| * Parse a section of one side of a rule, stopping at either |
| * the limit, the END_OF_RULE character, an operator, or a |
| * segment close character. This method parses both a |
| * top-level rule half and a segment within such a rule half. |
| * It calls itself recursively to parse segments and nested |
| * segments. |
| * @param buf buffer into which to accumulate the rule pattern |
| * characters, either literal characters from the rule or |
| * standins for UnicodeMatcher objects including segments. |
| * @param illegal the set of special characters that is illegal during |
| * this parse. |
| * @param isSegment if true, then we've already seen a '(' and |
| * pos on entry points right after it. Accumulate everything |
| * up to the closing ')', put it in a segment matcher object, |
| * generate a standin for it, and add the standin to buf. As |
| * a side effect, update the segments vector with a reference |
| * to the segment matcher. This works recursively for nested |
| * segments. If isSegment is false, just accumulate |
| * characters into buf. |
| * @return the index after the terminating character, or |
| * if limit was reached, limit |
| */ |
| int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, |
| UnicodeString& buf, |
| const UnicodeString& illegal, |
| UBool isSegment, UErrorCode& status) { |
| int32_t start = pos; |
| ParsePosition pp; |
| UnicodeString scratch; |
| UBool done = FALSE; |
| int32_t quoteStart = -1; // Most recent 'single quoted string' |
| int32_t quoteLimit = -1; |
| int32_t varStart = -1; // Most recent $variableReference |
| int32_t varLimit = -1; |
| int32_t bufStart = buf.length(); |
| |
| while (pos < limit && !done) { |
| // Since all syntax characters are in the BMP, fetching |
| // 16-bit code units suffices here. |
| UChar c = rule.charAt(pos++); |
| if (uprv_isRuleWhiteSpace(c)) { |
| // Ignore whitespace. Note that this is not Unicode |
| // spaces, but Java spaces -- a subset, representing |
| // whitespace likely to be seen in code. |
| continue; |
| } |
| if (u_strchr(HALF_ENDERS, c) != NULL) { |
| if (isSegment) { |
| // Unclosed segment |
| return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); |
| } |
| break; |
| } |
| if (anchorEnd) { |
| // Text after a presumed end anchor is a syntax err |
| return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); |
| } |
| if (UnicodeSet::resemblesPattern(rule, pos-1)) { |
| pp.setIndex(pos-1); // Backup to opening '[' |
| buf.append(parser.parseSet(rule, pp, status)); |
| if (U_FAILURE(status)) { |
| return syntaxError(U_MALFORMED_SET, rule, start, status); |
| } |
| pos = pp.getIndex(); |
| continue; |
| } |
| // Handle escapes |
| if (c == ESCAPE) { |
| if (pos == limit) { |
| return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); |
| } |
| UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' |
| if (escaped == (UChar32) -1) { |
| return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); |
| } |
| if (!parser.checkVariableRange(escaped)) { |
| return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| } |
| buf.append(escaped); |
| continue; |
| } |
| // Handle quoted matter |
| if (c == QUOTE) { |
| int32_t iq = rule.indexOf(QUOTE, pos); |
| if (iq == pos) { |
| buf.append(c); // Parse [''] outside quotes as ['] |
| ++pos; |
| } else { |
| /* This loop picks up a run of quoted text of the |
| * form 'aaaa' each time through. If this run |
| * hasn't really ended ('aaaa''bbbb') then it keeps |
| * looping, each time adding on a new run. When it |
| * reaches the final quote it breaks. |
| */ |
| quoteStart = buf.length(); |
| for (;;) { |
| if (iq < 0) { |
| return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); |
| } |
| scratch.truncate(0); |
| rule.extractBetween(pos, iq, scratch); |
| buf.append(scratch); |
| pos = iq+1; |
| if (pos < limit && rule.charAt(pos) == QUOTE) { |
| // Parse [''] inside quotes as ['] |
| iq = rule.indexOf(QUOTE, pos+1); |
| // Continue looping |
| } else { |
| break; |
| } |
| } |
| quoteLimit = buf.length(); |
| |
| for (iq=quoteStart; iq<quoteLimit; ++iq) { |
| if (!parser.checkVariableRange(buf.charAt(iq))) { |
| return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| } |
| } |
| } |
| continue; |
| } |
| |
| if (!parser.checkVariableRange(c)) { |
| return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| } |
| |
| if (illegal.indexOf(c) >= 0) { |
| syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); |
| } |
| |
| switch (c) { |
| |
| //------------------------------------------------------ |
| // Elements allowed within and out of segments |
| //------------------------------------------------------ |
| case ANCHOR_START: |
| if (buf.length() == 0 && !anchorStart) { |
| anchorStart = TRUE; |
| } else { |
| return syntaxError(U_MISPLACED_ANCHOR_START, |
| rule, start, status); |
| } |
| break; |
| case SEGMENT_OPEN: |
| { |
| // bufSegStart is the offset in buf to the first |
| // character of the segment we are parsing. |
| int32_t bufSegStart = buf.length(); |
| |
| // Record segment number now, since nextSegmentNumber |
| // will be incremented during the call to parseSection |
| // if there are nested segments. |
| int32_t segmentNumber = nextSegmentNumber++; // 1-based |
| |
| // Parse the segment |
| pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, status); |
| |
| // After parsing a segment, the relevant characters are |
| // in buf, starting at offset bufSegStart. Extract them |
| // into a string matcher, and replace them with a |
| // standin for that matcher. |
| StringMatcher* m = |
| new StringMatcher(buf, bufSegStart, buf.length(), |
| segmentNumber, *parser.curData); |
| if (m == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| |
| // Record and associate object and segment number |
| parser.setSegmentObject(segmentNumber, m, status); |
| buf.truncate(bufSegStart); |
| buf.append(parser.getSegmentStandin(segmentNumber, status)); |
| } |
| break; |
| case FUNCTION: |
| case ALT_FUNCTION: |
| { |
| int32_t iref = pos; |
| TransliteratorIDParser::SingleID* single = |
| TransliteratorIDParser::parseFilterID(rule, iref); |
| // The next character MUST be a segment open |
| if (single == NULL || |
| !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { |
| return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| } |
| |
| Transliterator *t = single->createInstance(); |
| delete single; |
| if (t == NULL) { |
| return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| } |
| |
| // bufSegStart is the offset in buf to the first |
| // character of the segment we are parsing. |
| int32_t bufSegStart = buf.length(); |
| |
| // Parse the segment |
| pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, status); |
| |
| // After parsing a segment, the relevant characters are |
| // in buf, starting at offset bufSegStart. |
| UnicodeString output; |
| buf.extractBetween(bufSegStart, buf.length(), output); |
| FunctionReplacer *r = |
| new FunctionReplacer(t, new StringReplacer(output, parser.curData)); |
| if (r == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| |
| // Replace the buffer contents with a stand-in |
| buf.truncate(bufSegStart); |
| buf.append(parser.generateStandInFor(r, status)); |
| } |
| break; |
| case SymbolTable::SYMBOL_REF: |
| // Handle variable references and segment references "$1" .. "$9" |
| { |
| // A variable reference must be followed immediately |
| // by a Unicode identifier start and zero or more |
| // Unicode identifier part characters, or by a digit |
| // 1..9 if it is a segment reference. |
| if (pos == limit) { |
| // A variable ref character at the end acts as |
| // an anchor to the context limit, as in perl. |
| anchorEnd = TRUE; |
| break; |
| } |
| // Parse "$1" "$2" .. "$9" .. (no upper limit) |
| c = rule.charAt(pos); |
| int32_t r = u_digit(c, 10); |
| if (r >= 1 && r <= 9) { |
| r = ICU_Utility::parseNumber(rule, pos, 10); |
| if (r < 0) { |
| return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, |
| rule, start, status); |
| } |
| buf.append(parser.getSegmentStandin(r, status)); |
| } else { |
| pp.setIndex(pos); |
| UnicodeString name = parser.parseData-> |
| parseReference(rule, pp, limit); |
| if (name.length() == 0) { |
| // This means the '$' was not followed by a |
| // valid name. Try to interpret it as an |
| // end anchor then. If this also doesn't work |
| // (if we see a following character) then signal |
| // an error. |
| anchorEnd = TRUE; |
| break; |
| } |
| pos = pp.getIndex(); |
| // If this is a variable definition statement, |
| // then the LHS variable will be undefined. In |
| // that case appendVariableDef() will append the |
| // special placeholder char variableLimit-1. |
| varStart = buf.length(); |
| parser.appendVariableDef(name, buf, status); |
| varLimit = buf.length(); |
| } |
| } |
| break; |
| case DOT: |
| buf.append(parser.getDotStandIn(status)); |
| break; |
| case KLEENE_STAR: |
| case ONE_OR_MORE: |
| case ZERO_OR_ONE: |
| // Quantifiers. We handle single characters, quoted strings, |
| // variable references, and segments. |
| // a+ matches aaa |
| // 'foo'+ matches foofoofoo |
| // $v+ matches xyxyxy if $v == xy |
| // (seg)+ matches segsegseg |
| { |
| if (isSegment && buf.length() == bufStart) { |
| // The */+ immediately follows '(' |
| return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); |
| } |
| |
| int32_t qstart, qlimit; |
| // The */+ follows an isolated character or quote |
| // or variable reference |
| if (buf.length() == quoteLimit) { |
| // The */+ follows a 'quoted string' |
| qstart = quoteStart; |
| qlimit = quoteLimit; |
| } else if (buf.length() == varLimit) { |
| // The */+ follows a $variableReference |
| qstart = varStart; |
| qlimit = varLimit; |
| } else { |
| // The */+ follows a single character, possibly |
| // a segment standin |
| qstart = buf.length() - 1; |
| qlimit = qstart + 1; |
| } |
| |
| UnicodeFunctor *m = |
| new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); |
| if (m == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| int32_t min = 0; |
| int32_t max = Quantifier::MAX; |
| switch (c) { |
| case ONE_OR_MORE: |
| min = 1; |
| break; |
| case ZERO_OR_ONE: |
| min = 0; |
| max = 1; |
| break; |
| // case KLEENE_STAR: |
| // do nothing -- min, max already set |
| } |
| m = new Quantifier(m, min, max); |
| if (m == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| buf.truncate(qstart); |
| buf.append(parser.generateStandInFor(m, status)); |
| } |
| break; |
| |
| //------------------------------------------------------ |
| // Elements allowed ONLY WITHIN segments |
| //------------------------------------------------------ |
| case SEGMENT_CLOSE: |
| // assert(isSegment); |
| // We're done parsing a segment. |
| done = TRUE; |
| break; |
| |
| //------------------------------------------------------ |
| // Elements allowed ONLY OUTSIDE segments |
| //------------------------------------------------------ |
| case CONTEXT_ANTE: |
| if (ante >= 0) { |
| return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); |
| } |
| ante = buf.length(); |
| break; |
| case CONTEXT_POST: |
| if (post >= 0) { |
| return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); |
| } |
| post = buf.length(); |
| break; |
| case CURSOR_POS: |
| if (cursor >= 0) { |
| return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); |
| } |
| cursor = buf.length(); |
| break; |
| case CURSOR_OFFSET: |
| if (cursorOffset < 0) { |
| if (buf.length() > 0) { |
| return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| } |
| --cursorOffset; |
| } else if (cursorOffset > 0) { |
| if (buf.length() != cursorOffsetPos || cursor >= 0) { |
| return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| } |
| ++cursorOffset; |
| } else { |
| if (cursor == 0 && buf.length() == 0) { |
| cursorOffset = -1; |
| } else if (cursor < 0) { |
| cursorOffsetPos = buf.length(); |
| cursorOffset = 1; |
| } else { |
| return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| } |
| } |
| break; |
| |
| |
| //------------------------------------------------------ |
| // Non-special characters |
| //------------------------------------------------------ |
| default: |
| // Disallow unquoted characters other than [0-9A-Za-z] |
| // in the printable ASCII range. These characters are |
| // reserved for possible future use. |
| if (c >= 0x0021 && c <= 0x007E && |
| !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || |
| (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || |
| (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { |
| return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| } |
| buf.append(c); |
| break; |
| } |
| } |
| |
| return pos; |
| } |
| |
| /** |
| * Remove context. |
| */ |
| void RuleHalf::removeContext() { |
| //text = text.substring(ante < 0 ? 0 : ante, |
| // post < 0 ? text.length() : post); |
| if (post >= 0) { |
| text.remove(post); |
| } |
| if (ante >= 0) { |
| text.removeBetween(0, ante); |
| } |
| ante = post = -1; |
| anchorStart = anchorEnd = FALSE; |
| } |
| |
| /** |
| * Return true if this half looks like valid output, that is, does not |
| * contain quantifiers or other special input-only elements. |
| */ |
| UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { |
| for (int32_t i=0; i<text.length(); ) { |
| UChar32 c = text.char32At(i); |
| i += UTF_CHAR_LENGTH(c); |
| if (!transParser.parseData->isReplacer(c)) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /** |
| * Return true if this half looks like valid input, that is, does not |
| * contain functions or other special output-only elements. |
| */ |
| UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { |
| for (int32_t i=0; i<text.length(); ) { |
| UChar32 c = text.char32At(i); |
| i += UTF_CHAR_LENGTH(c); |
| if (!transParser.parseData->isMatcher(c)) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| //---------------------------------------------------------------------- |
| // PUBLIC API |
| //---------------------------------------------------------------------- |
| |
| /** |
| * Constructor. |
| */ |
| TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : |
| dataVector(statusReturn), |
| idBlockVector(statusReturn), |
| variablesVector(statusReturn), |
| segmentObjects(statusReturn) |
| { |
| idBlockVector.setDeleter(uhash_deleteUnicodeString); |
| curData = NULL; |
| compoundFilter = NULL; |
| parseData = NULL; |
| variableNames.setValueDeleter(uhash_deleteUnicodeString); |
| } |
| |
| /** |
| * Destructor. |
| */ |
| TransliteratorParser::~TransliteratorParser() { |
| while (!dataVector.isEmpty()) |
| delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| delete compoundFilter; |
| delete parseData; |
| while (!variablesVector.isEmpty()) |
| delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| } |
| |
| void |
| TransliteratorParser::parse(const UnicodeString& rules, |
| UTransDirection transDirection, |
| UParseError& pe, |
| UErrorCode& ec) { |
| if (U_SUCCESS(ec)) { |
| parseRules(rules, transDirection, ec); |
| pe = parseError; |
| } |
| } |
| |
| /** |
| * Return the compound filter parsed by parse(). Caller owns result. |
| */ |
| UnicodeSet* TransliteratorParser::orphanCompoundFilter() { |
| UnicodeSet* f = compoundFilter; |
| compoundFilter = NULL; |
| return f; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Private implementation |
| //---------------------------------------------------------------------- |
| |
| /** |
| * Parse the given string as a sequence of rules, separated by newline |
| * characters ('\n'), and cause this object to implement those rules. Any |
| * previous rules are discarded. Typically this method is called exactly |
| * once, during construction. |
| * @exception IllegalArgumentException if there is a syntax error in the |
| * rules |
| */ |
| void TransliteratorParser::parseRules(const UnicodeString& rule, |
| UTransDirection theDirection, |
| UErrorCode& status) |
| { |
| // Clear error struct |
| uprv_memset(&parseError, 0, sizeof(parseError)); |
| parseError.line = parseError.offset = -1; |
| |
| UBool parsingIDs = TRUE; |
| int32_t ruleCount = 0; |
| |
| while (!dataVector.isEmpty()) { |
| delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| } |
| if (U_FAILURE(status)) { |
| return; |
| } |
| |
| idBlockVector.removeAllElements(); |
| curData = NULL; |
| direction = theDirection; |
| ruleCount = 0; |
| |
| delete compoundFilter; |
| compoundFilter = NULL; |
| |
| while (!variablesVector.isEmpty()) { |
| delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| } |
| variableNames.removeAll(); |
| parseData = new ParseData(0, &variablesVector, &variableNames); |
| if (parseData == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| dotStandIn = (UChar) -1; |
| |
| UnicodeString *tempstr = NULL; // used for memory allocation error checking |
| UnicodeString str; // scratch |
| UnicodeString idBlockResult; |
| int32_t pos = 0; |
| int32_t limit = rule.length(); |
| |
| // The compound filter offset is an index into idBlockResult. |
| // If it is 0, then the compound filter occurred at the start, |
| // and it is the offset to the _start_ of the compound filter |
| // pattern. Otherwise it is the offset to the _limit_ of the |
| // compound filter pattern within idBlockResult. |
| compoundFilter = NULL; |
| int32_t compoundFilterOffset = -1; |
| |
| while (pos < limit && U_SUCCESS(status)) { |
| UChar c = rule.charAt(pos++); |
| if (uprv_isRuleWhiteSpace(c)) { |
| // Ignore leading whitespace. |
| continue; |
| } |
| // Skip lines starting with the comment character |
| if (c == RULE_COMMENT_CHAR) { |
| pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; |
| if (pos == 0) { |
| break; // No "\n" found; rest of rule is a commnet |
| } |
| continue; // Either fall out or restart with next line |
| } |
| |
| // skip empty rules |
| if (c == END_OF_RULE) |
| continue; |
| |
| // keep track of how many rules we've seen |
| ++ruleCount; |
| |
| // We've found the start of a rule or ID. c is its first |
| // character, and pos points past c. |
| --pos; |
| // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 |
| // chars left. |
| if ((pos + ID_TOKEN_LEN + 1) <= limit && |
| rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { |
| pos += ID_TOKEN_LEN; |
| c = rule.charAt(pos); |
| while (uprv_isRuleWhiteSpace(c) && pos < limit) { |
| ++pos; |
| c = rule.charAt(pos); |
| } |
| |
| int32_t p = pos; |
| |
| if (!parsingIDs) { |
| if (curData != NULL) { |
| if (direction == UTRANS_FORWARD) |
| dataVector.addElement(curData, status); |
| else |
| dataVector.insertElementAt(curData, 0, status); |
| curData = NULL; |
| } |
| parsingIDs = TRUE; |
| } |
| |
| TransliteratorIDParser::SingleID* id = |
| TransliteratorIDParser::parseSingleID(rule, p, direction, status); |
| if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { |
| // Successful ::ID parse. |
| |
| if (direction == UTRANS_FORWARD) { |
| idBlockResult.append(id->canonID).append(END_OF_RULE); |
| } else { |
| idBlockResult.insert(0, END_OF_RULE); |
| idBlockResult.insert(0, id->canonID); |
| } |
| |
| } else { |
| // Couldn't parse an ID. Try to parse a global filter |
| int32_t withParens = -1; |
| UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); |
| if (f != NULL) { |
| if (ICU_Utility::parseChar(rule, p, END_OF_RULE) |
| && (direction == UTRANS_FORWARD) == (withParens == 0)) |
| { |
| if (compoundFilter != NULL) { |
| // Multiple compound filters |
| syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); |
| delete f; |
| } else { |
| compoundFilter = f; |
| compoundFilterOffset = ruleCount; |
| } |
| } else { |
| delete f; |
| } |
| } else { |
| // Invalid ::id |
| // Can be parsed as neither an ID nor a global filter |
| syntaxError(U_INVALID_ID, rule, pos, status); |
| } |
| } |
| delete id; |
| pos = p; |
| } else { |
| if (parsingIDs) { |
| tempstr = new UnicodeString(idBlockResult); |
| // NULL pointer check |
| if (tempstr == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| if (direction == UTRANS_FORWARD) |
| idBlockVector.addElement(tempstr, status); |
| else |
| idBlockVector.insertElementAt(tempstr, 0, status); |
| idBlockResult.remove(); |
| parsingIDs = FALSE; |
| curData = new TransliterationRuleData(status); |
| // NULL pointer check |
| if (curData == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| parseData->data = curData; |
| |
| // By default, rules use part of the private use area |
| // E000..F8FF for variables and other stand-ins. Currently |
| // the range F000..F8FF is typically sufficient. The 'use |
| // variable range' pragma allows rule sets to modify this. |
| setVariableRange(0xF000, 0xF8FF, status); |
| } |
| |
| if (resemblesPragma(rule, pos, limit)) { |
| int32_t ppp = parsePragma(rule, pos, limit, status); |
| if (ppp < 0) { |
| syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); |
| } |
| pos = ppp; |
| // Parse a rule |
| } else { |
| pos = parseRule(rule, pos, limit, status); |
| } |
| } |
| } |
| |
| if (parsingIDs && idBlockResult.length() > 0) { |
| tempstr = new UnicodeString(idBlockResult); |
| // NULL pointer check |
| if (tempstr == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| if (direction == UTRANS_FORWARD) |
| idBlockVector.addElement(tempstr, status); |
| else |
| idBlockVector.insertElementAt(tempstr, 0, status); |
| } |
| else if (!parsingIDs && curData != NULL) { |
| if (direction == UTRANS_FORWARD) |
| dataVector.addElement(curData, status); |
| else |
| dataVector.insertElementAt(curData, 0, status); |
| } |
| |
| if (U_SUCCESS(status)) { |
| // Convert the set vector to an array |
| int32_t i, dataVectorSize = dataVector.size(); |
| for (i = 0; i < dataVectorSize; i++) { |
| TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); |
| data->variablesLength = variablesVector.size(); |
| if (data->variablesLength == 0) { |
| data->variables = 0; |
| } else { |
| data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); |
| // NULL pointer check |
| if (data->variables == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| data->variablesAreOwned = (i == 0); |
| } |
| |
| for (int32_t j = 0; j < data->variablesLength; j++) { |
| data->variables[j] = |
| ((UnicodeSet*)variablesVector.elementAt(j)); |
| } |
| |
| data->variableNames.removeAll(); |
| int32_t pos = -1; |
| const UHashElement* he = variableNames.nextElement(pos); |
| while (he != NULL) { |
| UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone()); |
| if (tempus == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| data->variableNames.put(*((UnicodeString*)(he->key.pointer)), |
| tempus, status); |
| he = variableNames.nextElement(pos); |
| } |
| } |
| variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed |
| |
| // Index the rules |
| if (compoundFilter != NULL) { |
| if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || |
| (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { |
| status = U_MISPLACED_COMPOUND_FILTER; |
| } |
| } |
| |
| for (i = 0; i < dataVectorSize; i++) { |
| TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); |
| data->ruleSet.freeze(parseError, status); |
| } |
| if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { |
| idBlockVector.removeElementAt(0); |
| } |
| } |
| } |
| |
| /** |
| * Set the variable range to [start, end] (inclusive). |
| */ |
| void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { |
| if (start > end || start < 0 || end > 0xFFFF) { |
| status = U_MALFORMED_PRAGMA; |
| return; |
| } |
| |
| curData->variablesBase = (UChar) start; |
| if (dataVector.size() == 0) { |
| variableNext = (UChar) start; |
| variableLimit = (UChar) (end + 1); |
| } |
| } |
| |
| /** |
| * Assert that the given character is NOT within the variable range. |
| * If it is, return FALSE. This is neccesary to ensure that the |
| * variable range does not overlap characters used in a rule. |
| */ |
| UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { |
| return !(ch >= curData->variablesBase && ch < variableLimit); |
| } |
| |
| /** |
| * Set the maximum backup to 'backup', in response to a pragma |
| * statement. |
| */ |
| void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { |
| //TODO Finish |
| } |
| |
| /** |
| * Begin normalizing all rules using the given mode, in response |
| * to a pragma statement. |
| */ |
| void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { |
| //TODO Finish |
| } |
| |
| static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " |
| |
| static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" |
| |
| static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" |
| |
| static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" |
| |
| static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" |
| |
| /** |
| * Return true if the given rule looks like a pragma. |
| * @param pos offset to the first non-whitespace character |
| * of the rule. |
| * @param limit pointer past the last character of the rule. |
| */ |
| UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { |
| // Must start with /use\s/i |
| return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0; |
| } |
| |
| /** |
| * Parse a pragma. This method assumes resemblesPragma() has |
| * already returned true. |
| * @param pos offset to the first non-whitespace character |
| * of the rule. |
| * @param limit pointer past the last character of the rule. |
| * @return the position index after the final ';' of the pragma, |
| * or -1 on failure. |
| */ |
| int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| int32_t array[2]; |
| |
| // resemblesPragma() has already returned true, so we |
| // know that pos points to /use\s/i; we can skip 4 characters |
| // immediately |
| pos += 4; |
| |
| // Here are the pragmas we recognize: |
| // use variable range 0xE000 0xEFFF; |
| // use maximum backup 16; |
| // use nfd rules; |
| // use nfc rules; |
| int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, array); |
| if (p >= 0) { |
| setVariableRange(array[0], array[1], status); |
| return p; |
| } |
| |
| p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array); |
| if (p >= 0) { |
| pragmaMaximumBackup(array[0]); |
| return p; |
| } |
| |
| p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL); |
| if (p >= 0) { |
| pragmaNormalizeRules(UNORM_NFD); |
| return p; |
| } |
| |
| p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL); |
| if (p >= 0) { |
| pragmaNormalizeRules(UNORM_NFC); |
| return p; |
| } |
| |
| // Syntax error: unable to parse pragma |
| return -1; |
| } |
| |
| /** |
| * MAIN PARSER. Parse the next rule in the given rule string, starting |
| * at pos. Return the index after the last character parsed. Do not |
| * parse characters at or after limit. |
| * |
| * Important: The character at pos must be a non-whitespace character |
| * that is not the comment character. |
| * |
| * This method handles quoting, escaping, and whitespace removal. It |
| * parses the end-of-rule character. It recognizes context and cursor |
| * indicators. Once it does a lexical breakdown of the rule at pos, it |
| * creates a rule object and adds it to our rule list. |
| */ |
| int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { |
| // Locate the left side, operator, and right side |
| int32_t start = pos; |
| UChar op = 0; |
| int32_t i; |
| |
| // Set up segments data |
| segmentStandins.truncate(0); |
| segmentObjects.removeAllElements(); |
| |
| // Use pointers to automatics to make swapping possible. |
| RuleHalf _left(*this), _right(*this); |
| RuleHalf* left = &_left; |
| RuleHalf* right = &_right; |
| |
| undefinedVariableName.remove(); |
| pos = left->parse(rule, pos, limit, status); |
| if (U_FAILURE(status)) { |
| return start; |
| } |
| |
| if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { |
| return syntaxError(U_MISSING_OPERATOR, rule, start, status); |
| } |
| ++pos; |
| |
| // Found an operator char. Check for forward-reverse operator. |
| if (op == REVERSE_RULE_OP && |
| (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { |
| ++pos; |
| op = FWDREV_RULE_OP; |
| } |
| |
| // Translate alternate op characters. |
| switch (op) { |
| case ALT_FORWARD_RULE_OP: |
| op = FORWARD_RULE_OP; |
| break; |
| case ALT_REVERSE_RULE_OP: |
| op = REVERSE_RULE_OP; |
| break; |
| case ALT_FWDREV_RULE_OP: |
| op = FWDREV_RULE_OP; |
| break; |
| } |
| |
| pos = right->parse(rule, pos, limit, status); |
| if (U_FAILURE(status)) { |
| return start; |
| } |
| |
| if (pos < limit) { |
| if (rule.charAt(--pos) == END_OF_RULE) { |
| ++pos; |
| } else { |
| // RuleHalf parser must have terminated at an operator |
| return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| } |
| } |
| |
| if (op == VARIABLE_DEF_OP) { |
| // LHS is the name. RHS is a single character, either a literal |
| // or a set (already parsed). If RHS is longer than one |
| // character, it is either a multi-character string, or multiple |
| // sets, or a mixture of chars and sets -- syntax error. |
| |
| // We expect to see a single undefined variable (the one being |
| // defined). |
| if (undefinedVariableName.length() == 0) { |
| // "Missing '$' or duplicate definition" |
| return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); |
| } |
| if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { |
| // "Malformed LHS" |
| return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); |
| } |
| if (left->anchorStart || left->anchorEnd || |
| right->anchorStart || right->anchorEnd) { |
| return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); |
| } |
| // We allow anything on the right, including an empty string. |
| UnicodeString* value = new UnicodeString(right->text); |
| // NULL pointer check |
| if (value == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| variableNames.put(undefinedVariableName, value, status); |
| ++variableLimit; |
| return pos; |
| } |
| |
| // If this is not a variable definition rule, we shouldn't have |
| // any undefined variable names. |
| if (undefinedVariableName.length() != 0) { |
| return syntaxError(// "Undefined variable $" + undefinedVariableName, |
| U_UNDEFINED_VARIABLE, |
| rule, start, status); |
| } |
| |
| // Verify segments |
| if (segmentStandins.length() > segmentObjects.size()) { |
| syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); |
| } |
| for (i=0; i<segmentStandins.length(); ++i) { |
| if (segmentStandins.charAt(i) == 0) { |
| syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen |
| } |
| } |
| for (i=0; i<segmentObjects.size(); ++i) { |
| if (segmentObjects.elementAt(i) == NULL) { |
| syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen |
| } |
| } |
| |
| // If the direction we want doesn't match the rule |
| // direction, do nothing. |
| if (op != FWDREV_RULE_OP && |
| ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { |
| return pos; |
| } |
| |
| // Transform the rule into a forward rule by swapping the |
| // sides if necessary. |
| if (direction == UTRANS_REVERSE) { |
| left = &_right; |
| right = &_left; |
| } |
| |
| // Remove non-applicable elements in forward-reverse |
| // rules. Bidirectional rules ignore elements that do not |
| // apply. |
| if (op == FWDREV_RULE_OP) { |
| right->removeContext(); |
| left->cursor = -1; |
| left->cursorOffset = 0; |
| } |
| |
| // Normalize context |
| if (left->ante < 0) { |
| left->ante = 0; |
| } |
| if (left->post < 0) { |
| left->post = left->text.length(); |
| } |
| |
| // Context is only allowed on the input side. Cursors are only |
| // allowed on the output side. Segment delimiters can only appear |
| // on the left, and references on the right. Cursor offset |
| // cannot appear without an explicit cursor. Cursor offset |
| // cannot place the cursor outside the limits of the context. |
| // Anchors are only allowed on the input side. |
| if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || |
| (right->cursorOffset != 0 && right->cursor < 0) || |
| // - The following two checks were used to ensure that the |
| // - the cursor offset stayed within the ante- or postcontext. |
| // - However, with the addition of quantifiers, we have to |
| // - allow arbitrary cursor offsets and do runtime checking. |
| //(right->cursorOffset > (left->text.length() - left->post)) || |
| //(-right->cursorOffset > left->ante) || |
| right->anchorStart || right->anchorEnd || |
| !left->isValidInput(*this) || !right->isValidOutput(*this) || |
| left->ante > left->post) { |
| |
| return syntaxError(U_MALFORMED_RULE, rule, start, status); |
| } |
| |
| // Flatten segment objects vector to an array |
| UnicodeFunctor** segmentsArray = NULL; |
| if (segmentObjects.size() > 0) { |
| segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); |
| // Null pointer check |
| if (segmentsArray == NULL) { |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| segmentObjects.toArray((void**) segmentsArray); |
| } |
| TransliterationRule* temptr = new TransliterationRule( |
| left->text, left->ante, left->post, |
| right->text, right->cursor, right->cursorOffset, |
| segmentsArray, |
| segmentObjects.size(), |
| left->anchorStart, left->anchorEnd, |
| curData, |
| status); |
| //Null pointer check |
| if (temptr == NULL) { |
| uprv_free(segmentsArray); |
| return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| } |
| |
| curData->ruleSet.addRule(temptr, status); |
| |
| return pos; |
| } |
| |
| /** |
| * Called by main parser upon syntax error. Search the rule string |
| * for the probable end of the rule. Of course, if the error is that |
| * the end of rule marker is missing, then the rule end will not be found. |
| * In any case the rule start will be correctly reported. |
| * @param msg error description |
| * @param rule pattern string |
| * @param start position of first character of current rule |
| */ |
| int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, |
| const UnicodeString& rule, |
| int32_t pos, |
| UErrorCode& status) |
| { |
| parseError.offset = pos; |
| parseError.line = 0 ; /* we are not using line numbers */ |
| |
| // for pre-context |
| const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; |
| int32_t start = uprv_max(pos - LEN, 0); |
| int32_t stop = pos; |
| |
| rule.extract(start,stop-start,parseError.preContext); |
| //null terminate the buffer |
| parseError.preContext[stop-start] = 0; |
| |
| //for post-context |
| start = pos; |
| stop = uprv_min(pos + LEN, rule.length()); |
| |
| rule.extract(start,stop-start,parseError.postContext); |
| //null terminate the buffer |
| parseError.postContext[stop-start]= 0; |
| |
| status = (UErrorCode)parseErrorCode; |
| return pos; |
| |
| } |
| |
| /** |
| * Parse a UnicodeSet out, store it, and return the stand-in character |
| * used to represent it. |
| */ |
| UChar TransliteratorParser::parseSet(const UnicodeString& rule, |
| ParsePosition& pos, |
| UErrorCode& status) { |
| UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); |
| // Null pointer check |
| if (set == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return (UChar)0x0000; // Return empty character with error. |
| } |
| set->compact(); |
| return generateStandInFor(set, status); |
| } |
| |
| /** |
| * Generate and return a stand-in for a new UnicodeFunctor. Store |
| * the matcher (adopt it). |
| */ |
| UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { |
| // assert(obj != null); |
| |
| // Look up previous stand-in, if any. This is a short list |
| // (typical n is 0, 1, or 2); linear search is optimal. |
| for (int32_t i=0; i<variablesVector.size(); ++i) { |
| if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison |
| return (UChar) (curData->variablesBase + i); |
| } |
| } |
| |
| if (variableNext >= variableLimit) { |
| delete adopted; |
| status = U_VARIABLE_RANGE_EXHAUSTED; |
| return 0; |
| } |
| variablesVector.addElement(adopted, status); |
| return variableNext++; |
| } |
| |
| /** |
| * Return the standin for segment seg (1-based). |
| */ |
| UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { |
| // Special character used to indicate an empty spot |
| UChar empty = curData->variablesBase - 1; |
| while (segmentStandins.length() < seg) { |
| segmentStandins.append(empty); |
| } |
| UChar c = segmentStandins.charAt(seg-1); |
| if (c == empty) { |
| if (variableNext >= variableLimit) { |
| status = U_VARIABLE_RANGE_EXHAUSTED; |
| return 0; |
| } |
| c = variableNext++; |
| // Set a placeholder in the master variables vector that will be |
| // filled in later by setSegmentObject(). We know that we will get |
| // called first because setSegmentObject() will call us. |
| variablesVector.addElement((void*) NULL, status); |
| segmentStandins.setCharAt(seg-1, c); |
| } |
| return c; |
| } |
| |
| /** |
| * Set the object for segment seg (1-based). |
| */ |
| void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { |
| // Since we call parseSection() recursively, nested |
| // segments will result in segment i+1 getting parsed |
| // and stored before segment i; be careful with the |
| // vector handling here. |
| if (segmentObjects.size() < seg) { |
| segmentObjects.setSize(seg, status); |
| } |
| int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; |
| if (segmentObjects.elementAt(seg-1) != NULL || |
| variablesVector.elementAt(index) != NULL) { |
| // should never happen |
| status = U_INTERNAL_TRANSLITERATOR_ERROR; |
| return; |
| } |
| segmentObjects.setElementAt(adopted, seg-1); |
| variablesVector.setElementAt(adopted, index); |
| } |
| |
| /** |
| * Return the stand-in for the dot set. It is allocated the first |
| * time and reused thereafter. |
| */ |
| UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { |
| if (dotStandIn == (UChar) -1) { |
| UnicodeSet* tempus = new UnicodeSet(DOT_SET, status); |
| // Null pointer check. |
| if (tempus == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return (UChar)0x0000; |
| } |
| dotStandIn = generateStandInFor(tempus, status); |
| } |
| return dotStandIn; |
| } |
| |
| /** |
| * Append the value of the given variable name to the given |
| * UnicodeString. |
| */ |
| void TransliteratorParser::appendVariableDef(const UnicodeString& name, |
| UnicodeString& buf, |
| UErrorCode& status) { |
| const UnicodeString* s = (const UnicodeString*) variableNames.get(name); |
| if (s == NULL) { |
| // We allow one undefined variable so that variable definition |
| // statements work. For the first undefined variable we return |
| // the special placeholder variableLimit-1, and save the variable |
| // name. |
| if (undefinedVariableName.length() == 0) { |
| undefinedVariableName = name; |
| if (variableNext >= variableLimit) { |
| // throw new RuntimeException("Private use variables exhausted"); |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| buf.append((UChar) --variableLimit); |
| } else { |
| //throw new IllegalArgumentException("Undefined variable $" |
| // + name); |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| } else { |
| buf.append(*s); |
| } |
| } |
| |
| /** |
| * Glue method to get around access restrictions in C++. |
| */ |
| /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { |
| return Transliterator::createBasicInstance(id, canonID); |
| }*/ |
| |
| U_NAMESPACE_END |
| |
| U_CAPI int32_t |
| utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { |
| U_NAMESPACE_USE |
| |
| //const UChar *sourceStart = source; |
| const UChar *targetStart = target; |
| const UChar *sourceLimit = source+sourceLen; |
| UChar *targetLimit = target+sourceLen; |
| UChar32 c = 0; |
| UBool quoted = FALSE; |
| int32_t index; |
| |
| uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); |
| |
| /* read the rules into the buffer */ |
| while (source < sourceLimit) |
| { |
| index=0; |
| U16_NEXT_UNSAFE(source, index, c); |
| source+=index; |
| if(c == QUOTE) { |
| quoted = (UBool)!quoted; |
| } |
| else if (!quoted) { |
| if (c == RULE_COMMENT_CHAR) { |
| /* skip comments and all preceding spaces */ |
| while (targetStart < target && *(target - 1) == 0x0020) { |
| target--; |
| } |
| do { |
| c = *(source++); |
| } |
| while (c != CR && c != LF); |
| } |
| else if (c == ESCAPE) { |
| UChar32 c2 = *source; |
| if (c2 == CR || c2 == LF) { |
| /* A backslash at the end of a line. */ |
| /* Since we're stripping lines, ignore the backslash. */ |
| source++; |
| continue; |
| } |
| if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ |
| int32_t escapeOffset = 0; |
| UnicodeString escapedStr(source, 5); |
| c2 = escapedStr.unescapeAt(escapeOffset); |
| |
| if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) |
| { |
| *status = U_PARSE_ERROR; |
| return 0; |
| } |
| if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { |
| /* It was escaped for a reason. Write what it was suppose to be. */ |
| source+=5; |
| c = c2; |
| } |
| } |
| else if (c2 == QUOTE) { |
| /* \' seen. Make sure we don't do anything when we see it again. */ |
| quoted = (UBool)!quoted; |
| } |
| } |
| } |
| if (c == CR || c == LF) |
| { |
| /* ignore spaces carriage returns, and all leading spaces on the next line. |
| * and line feed unless in the form \uXXXX |
| */ |
| quoted = FALSE; |
| while (source < sourceLimit) { |
| c = *(source); |
| if (c != CR && c != LF && c != 0x0020) { |
| break; |
| } |
| source++; |
| } |
| continue; |
| } |
| |
| /* Append UChar * after dissembling if c > 0xffff*/ |
| index=0; |
| U16_APPEND_UNSAFE(target, index, c); |
| target+=index; |
| } |
| if (target < targetLimit) { |
| *target = 0; |
| } |
| return (int32_t)(target-targetStart); |
| } |
| |
| #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |