blob: fe509b60a4ba6412f374e33d6a6602693de77576 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrBezierEffect.h"
#include "gl/builders/GrGLFullProgramBuilder.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLSL.h"
#include "gl/GrGLGeometryProcessor.h"
#include "GrTBackendProcessorFactory.h"
class GrGLConicEffect : public GrGLGeometryProcessor {
public:
GrGLConicEffect(const GrBackendProcessorFactory&, const GrProcessor&);
virtual void emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {}
private:
GrPrimitiveEdgeType fEdgeType;
typedef GrGLGeometryProcessor INHERITED;
};
GrGLConicEffect::GrGLConicEffect(const GrBackendProcessorFactory& factory,
const GrProcessor& effect)
: INHERITED (factory) {
const GrConicEffect& ce = effect.cast<GrConicEffect>();
fEdgeType = ce.getEdgeType();
}
void GrGLConicEffect::emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) {
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "ConicCoeffs",
&vsName, &fsName);
const GrShaderVar& inConicCoeffs = geometryProcessor.cast<GrConicEffect>().inConicCoeffs();
GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder();
vsBuilder->codeAppendf("%s = %s;", vsName, inConicCoeffs.c_str());
GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppend("float edgeAlpha;");
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", fsName);
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", fsName);
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
fsName, fsName, fsName);
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
fsName, fsName, fsName);
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x*%s.x - %s.y*%s.z;", fsName, fsName,
fsName, fsName);
fsBuilder->codeAppend("func = abs(func);");
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", fsName);
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", fsName);
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
fsName, fsName, fsName);
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
fsName, fsName, fsName);
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x * %s.x - %s.y * %s.z;", fsName, fsName,
fsName, fsName);
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("edgeAlpha = %s.x * %s.x - %s.y * %s.z;", fsName, fsName,
fsName, fsName);
fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
break;
}
default:
SkFAIL("Shouldn't get here");
}
fsBuilder->codeAppendf("%s = %s;", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str());
}
void GrGLConicEffect::GenKey(const GrProcessor& processor, const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const GrConicEffect& ce = processor.cast<GrConicEffect>();
uint32_t key = ce.isAntiAliased() ? (ce.isFilled() ? 0x0 : 0x1) : 0x2;
b->add32(key);
}
//////////////////////////////////////////////////////////////////////////////
GrConicEffect::~GrConicEffect() {}
const GrBackendGeometryProcessorFactory& GrConicEffect::getFactory() const {
return GrTBackendGeometryProcessorFactory<GrConicEffect>::getInstance();
}
GrConicEffect::GrConicEffect(GrPrimitiveEdgeType edgeType)
: fEdgeType(edgeType)
, fInConicCoeffs(this->addVertexAttrib(GrShaderVar("inConicCoeffs",
kVec4f_GrSLType,
GrShaderVar::kAttribute_TypeModifier))) {
}
bool GrConicEffect::onIsEqual(const GrProcessor& other) const {
const GrConicEffect& ce = other.cast<GrConicEffect>();
return (ce.fEdgeType == fEdgeType);
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrConicEffect);
GrGeometryProcessor* GrConicEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
GrGeometryProcessor* gp;
do {
GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(
random->nextULessThan(kGrProcessorEdgeTypeCnt));
gp = GrConicEffect::Create(edgeType, caps);
} while (NULL == gp);
return gp;
}
//////////////////////////////////////////////////////////////////////////////
// Quad
//////////////////////////////////////////////////////////////////////////////
class GrGLQuadEffect : public GrGLGeometryProcessor {
public:
GrGLQuadEffect(const GrBackendProcessorFactory&, const GrProcessor&);
virtual void emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {}
private:
GrPrimitiveEdgeType fEdgeType;
typedef GrGLGeometryProcessor INHERITED;
};
GrGLQuadEffect::GrGLQuadEffect(const GrBackendProcessorFactory& factory,
const GrProcessor& effect)
: INHERITED (factory) {
const GrQuadEffect& ce = effect.cast<GrQuadEffect>();
fEdgeType = ce.getEdgeType();
}
void GrGLQuadEffect::emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) {
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "HairQuadEdge", &vsName, &fsName);
GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder();
const GrShaderVar& inHairQuadEdge = geometryProcessor.cast<GrQuadEffect>().inHairQuadEdge();
vsBuilder->codeAppendf("%s = %s;", vsName, inHairQuadEdge.c_str());
GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float edgeAlpha;");
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", fsName);
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", fsName);
fsBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
fsName, fsName);
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", fsName, fsName, fsName);
fsBuilder->codeAppend("edgeAlpha = sqrt(edgeAlpha * edgeAlpha / dot(gF, gF));");
fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", fsName);
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", fsName);
fsBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
fsName, fsName);
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", fsName, fsName, fsName);
fsBuilder->codeAppend("edgeAlpha = edgeAlpha / sqrt(dot(gF, gF));");
fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", fsName, fsName, fsName);
fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
break;
}
default:
SkFAIL("Shouldn't get here");
}
fsBuilder->codeAppendf("%s = %s;", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str());
}
void GrGLQuadEffect::GenKey(const GrProcessor& processor, const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const GrQuadEffect& ce = processor.cast<GrQuadEffect>();
uint32_t key = ce.isAntiAliased() ? (ce.isFilled() ? 0x0 : 0x1) : 0x2;
b->add32(key);
}
//////////////////////////////////////////////////////////////////////////////
GrQuadEffect::~GrQuadEffect() {}
const GrBackendGeometryProcessorFactory& GrQuadEffect::getFactory() const {
return GrTBackendGeometryProcessorFactory<GrQuadEffect>::getInstance();
}
GrQuadEffect::GrQuadEffect(GrPrimitiveEdgeType edgeType)
: fEdgeType(edgeType)
, fInHairQuadEdge(this->addVertexAttrib(GrShaderVar("inCubicCoeffs",
kVec4f_GrSLType,
GrShaderVar::kAttribute_TypeModifier))) {
}
bool GrQuadEffect::onIsEqual(const GrProcessor& other) const {
const GrQuadEffect& ce = other.cast<GrQuadEffect>();
return (ce.fEdgeType == fEdgeType);
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrQuadEffect);
GrGeometryProcessor* GrQuadEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
GrGeometryProcessor* gp;
do {
GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(
random->nextULessThan(kGrProcessorEdgeTypeCnt));
gp = GrQuadEffect::Create(edgeType, caps);
} while (NULL == gp);
return gp;
}
//////////////////////////////////////////////////////////////////////////////
// Cubic
//////////////////////////////////////////////////////////////////////////////
class GrGLCubicEffect : public GrGLGeometryProcessor {
public:
GrGLCubicEffect(const GrBackendProcessorFactory&, const GrProcessor&);
virtual void emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {}
private:
GrPrimitiveEdgeType fEdgeType;
typedef GrGLGeometryProcessor INHERITED;
};
GrGLCubicEffect::GrGLCubicEffect(const GrBackendProcessorFactory& factory,
const GrProcessor& processor)
: INHERITED (factory) {
const GrCubicEffect& ce = processor.cast<GrCubicEffect>();
fEdgeType = ce.getEdgeType();
}
void GrGLCubicEffect::emitCode(GrGLFullProgramBuilder* builder,
const GrGeometryProcessor& geometryProcessor,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) {
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "CubicCoeffs",
&vsName, &fsName, GrGLShaderVar::kHigh_Precision);
GrGLVertexShaderBuilder* vsBuilder = builder->getVertexShaderBuilder();
const GrShaderVar& inCubicCoeffs = geometryProcessor.cast<GrCubicEffect>().inCubicCoeffs();
vsBuilder->codeAppendf("%s = %s;", vsName, inCubicCoeffs.c_str());
GrGLProcessorFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
GrGLShaderVar edgeAlpha("edgeAlpha", kFloat_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar dklmdx("dklmdx", kVec3f_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar dklmdy("dklmdy", kVec3f_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar dfdx("dfdx", kFloat_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar dfdy("dfdy", kFloat_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar gF("gF", kVec2f_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar gFM("gFM", kFloat_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
GrGLShaderVar func("func", kFloat_GrSLType, 0, GrGLShaderVar::kHigh_Precision);
fsBuilder->declAppend(edgeAlpha);
fsBuilder->declAppend(dklmdx);
fsBuilder->declAppend(dklmdy);
fsBuilder->declAppend(dfdx);
fsBuilder->declAppend(dfdy);
fsBuilder->declAppend(gF);
fsBuilder->declAppend(gFM);
fsBuilder->declAppend(func);
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), fsName);
fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), fsName);
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), fsName, fsName, dklmdx.c_str(), fsName,
dklmdx.c_str(), fsName, dklmdx.c_str());
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), fsName, fsName, dklmdy.c_str(), fsName,
dklmdy.c_str(), fsName, dklmdy.c_str());
fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str());
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), fsName, fsName, fsName, fsName, fsName);
fsBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str());
fsBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fsBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), fsName);
fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), fsName);
fsBuilder->codeAppendf("%s ="
"3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), fsName, fsName, dklmdx.c_str(), fsName,
dklmdx.c_str(), fsName, dklmdx.c_str());
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), fsName, fsName, dklmdy.c_str(), fsName,
dklmdy.c_str(), fsName, dklmdy.c_str());
fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str());
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), fsName, fsName, fsName, fsName, fsName);
fsBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fsBuilder->codeAppendf("%s = clamp(1.0 - %s, 0.0, 1.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
edgeAlpha.c_str(), fsName, fsName, fsName, fsName, fsName);
fsBuilder->codeAppendf("%s = float(%s < 0.0);", edgeAlpha.c_str(), edgeAlpha.c_str());
break;
}
default:
SkFAIL("Shouldn't get here");
}
fsBuilder->codeAppendf("%s = %s;", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr1(edgeAlpha.c_str())).c_str());
}
void GrGLCubicEffect::GenKey(const GrProcessor& processor, const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const GrCubicEffect& ce = processor.cast<GrCubicEffect>();
uint32_t key = ce.isAntiAliased() ? (ce.isFilled() ? 0x0 : 0x1) : 0x2;
b->add32(key);
}
//////////////////////////////////////////////////////////////////////////////
GrCubicEffect::~GrCubicEffect() {}
const GrBackendGeometryProcessorFactory& GrCubicEffect::getFactory() const {
return GrTBackendGeometryProcessorFactory<GrCubicEffect>::getInstance();
}
GrCubicEffect::GrCubicEffect(GrPrimitiveEdgeType edgeType)
: fEdgeType(edgeType)
, fInCubicCoeffs(this->addVertexAttrib(GrShaderVar("inCubicCoeffs",
kVec4f_GrSLType,
GrShaderVar::kAttribute_TypeModifier))) {
}
bool GrCubicEffect::onIsEqual(const GrProcessor& other) const {
const GrCubicEffect& ce = other.cast<GrCubicEffect>();
return (ce.fEdgeType == fEdgeType);
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrCubicEffect);
GrGeometryProcessor* GrCubicEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
GrGeometryProcessor* gp;
do {
GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>(
random->nextULessThan(kGrProcessorEdgeTypeCnt));
gp = GrCubicEffect::Create(edgeType, caps);
} while (NULL == gp);
return gp;
}