blob: 19a26c9b08c887f69438174a9da8a88684613833 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gl/builders/GrGLProgramBuilder.h"
#include "GrGLProgramDesc.h"
#include "GrBackendProcessorFactory.h"
#include "GrProcessor.h"
#include "GrGpuGL.h"
#include "GrOptDrawState.h"
#include "SkChecksum.h"
/**
* The key for an individual coord transform is made up of a matrix type and a bit that
* indicates the source of the input coords.
*/
enum {
kMatrixTypeKeyBits = 1,
kMatrixTypeKeyMask = (1 << kMatrixTypeKeyBits) - 1,
kPositionCoords_Flag = (1 << kMatrixTypeKeyBits),
kTransformKeyBits = kMatrixTypeKeyBits + 1,
};
/**
* We specialize the vertex code for each of these matrix types.
*/
enum MatrixType {
kNoPersp_MatrixType = 0,
kGeneral_MatrixType = 1,
};
/**
* Do we need to either map r,g,b->a or a->r. configComponentMask indicates which channels are
* present in the texture's config. swizzleComponentMask indicates the channels present in the
* shader swizzle.
*/
static bool swizzle_requires_alpha_remapping(const GrGLCaps& caps,
uint32_t configComponentMask,
uint32_t swizzleComponentMask) {
if (caps.textureSwizzleSupport()) {
// Any remapping is handled using texture swizzling not shader modifications.
return false;
}
// check if the texture is alpha-only
if (kA_GrColorComponentFlag == configComponentMask) {
if (caps.textureRedSupport() && (kA_GrColorComponentFlag & swizzleComponentMask)) {
// we must map the swizzle 'a's to 'r'.
return true;
}
if (kRGB_GrColorComponentFlags & swizzleComponentMask) {
// The 'r', 'g', and/or 'b's must be mapped to 'a' according to our semantics that
// alpha-only textures smear alpha across all four channels when read.
return true;
}
}
return false;
}
static uint32_t gen_attrib_key(const GrGeometryProcessor* effect) {
uint32_t key = 0;
const GrGeometryProcessor::VertexAttribArray& vars = effect->getVertexAttribs();
int numAttributes = vars.count();
SkASSERT(numAttributes <= 2);
for (int a = 0; a < numAttributes; ++a) {
uint32_t value = 1 << a;
key |= value;
}
return key;
}
static uint32_t gen_transform_key(const GrProcessorStage& effectStage,
bool useExplicitLocalCoords) {
uint32_t totalKey = 0;
int numTransforms = effectStage.getProcessor()->numTransforms();
for (int t = 0; t < numTransforms; ++t) {
uint32_t key = 0;
if (effectStage.isPerspectiveCoordTransform(t, useExplicitLocalCoords)) {
key |= kGeneral_MatrixType;
} else {
key |= kNoPersp_MatrixType;
}
const GrCoordTransform& coordTransform = effectStage.getProcessor()->coordTransform(t);
if (kLocal_GrCoordSet != coordTransform.sourceCoords() && useExplicitLocalCoords) {
key |= kPositionCoords_Flag;
}
key <<= kTransformKeyBits * t;
SkASSERT(0 == (totalKey & key)); // keys for each transform ought not to overlap
totalKey |= key;
}
return totalKey;
}
static uint32_t gen_texture_key(const GrProcessor* effect, const GrGLCaps& caps) {
uint32_t key = 0;
int numTextures = effect->numTextures();
for (int t = 0; t < numTextures; ++t) {
const GrTextureAccess& access = effect->textureAccess(t);
uint32_t configComponentMask = GrPixelConfigComponentMask(access.getTexture()->config());
if (swizzle_requires_alpha_remapping(caps, configComponentMask, access.swizzleMask())) {
key |= 1 << t;
}
}
return key;
}
/**
* A function which emits a meta key into the key builder. This is required because shader code may
* be dependent on properties of the effect that the effect itself doesn't use
* in its key (e.g. the pixel format of textures used). So we create a meta-key for
* every effect using this function. It is also responsible for inserting the effect's class ID
* which must be different for every GrProcessor subclass. It can fail if an effect uses too many
* textures, transforms, etc, for the space allotted in the meta-key.
*/
static uint32_t* get_processor_meta_key(const GrProcessorStage& processorStage,
bool useExplicitLocalCoords,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) {
uint32_t textureKey = gen_texture_key(processorStage.getProcessor(), caps);
uint32_t transformKey = gen_transform_key(processorStage,useExplicitLocalCoords);
uint32_t classID = processorStage.getProcessor()->getFactory().effectClassID();
// Currently we allow 16 bits for each of the above portions of the meta-key. Fail if they
// don't fit.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16);
if ((textureKey | transformKey | classID) & kMetaKeyInvalidMask) {
return NULL;
}
uint32_t* key = b->add32n(2);
key[0] = (textureKey << 16 | transformKey);
key[1] = (classID << 16);
return key;
}
bool GrGLProgramDesc::GetProcessorKey(const GrProcessorStage& stage,
const GrGLCaps& caps,
bool useExplicitLocalCoords,
GrProcessorKeyBuilder* b,
uint16_t* processorKeySize) {
const GrProcessor& effect = *stage.getProcessor();
const GrBackendProcessorFactory& factory = effect.getFactory();
factory.getGLProcessorKey(effect, caps, b);
size_t size = b->size();
if (size > SK_MaxU16) {
*processorKeySize = 0; // suppresses a warning.
return false;
}
*processorKeySize = SkToU16(size);
if (NULL == get_processor_meta_key(stage, useExplicitLocalCoords, caps, b)) {
return false;
}
return true;
}
bool GrGLProgramDesc::GetGeometryProcessorKey(const GrGeometryStage& stage,
const GrGLCaps& caps,
bool useExplicitLocalCoords,
GrProcessorKeyBuilder* b,
uint16_t* processorKeySize) {
const GrProcessor& effect = *stage.getProcessor();
const GrBackendProcessorFactory& factory = effect.getFactory();
factory.getGLProcessorKey(effect, caps, b);
size_t size = b->size();
if (size > SK_MaxU16) {
*processorKeySize = 0; // suppresses a warning.
return false;
}
*processorKeySize = SkToU16(size);
uint32_t* key = get_processor_meta_key(stage, useExplicitLocalCoords, caps, b);
if (NULL == key) {
return false;
}
uint32_t attribKey = gen_attrib_key(stage.getGeometryProcessor());
// Currently we allow 16 bits for each of the above portions of the meta-key. Fail if they
// don't fit.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16);
if ((attribKey) & kMetaKeyInvalidMask) {
return false;
}
key[1] |= attribKey;
return true;
}
bool GrGLProgramDesc::Build(const GrOptDrawState& optState,
GrGpu::DrawType drawType,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff,
GrGpuGL* gpu,
const GrDeviceCoordTexture* dstCopy,
const GrGeometryStage** geometryProcessor,
SkTArray<const GrFragmentStage*, true>* colorStages,
SkTArray<const GrFragmentStage*, true>* coverageStages,
GrGLProgramDesc* desc) {
colorStages->reset();
coverageStages->reset();
bool inputColorIsUsed = optState.inputColorIsUsed();
bool inputCoverageIsUsed = optState.inputCoverageIsUsed();
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the attribute
// bindings in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
bool requiresLocalCoordAttrib = optState.requiresLocalCoordAttrib();
int numStages = optState.numTotalStages();
GR_STATIC_ASSERT(0 == kEffectKeyOffsetsAndLengthOffset % sizeof(uint32_t));
// Make room for everything up to and including the array of offsets to effect keys.
desc->fKey.reset();
desc->fKey.push_back_n(kEffectKeyOffsetsAndLengthOffset + 2 * sizeof(uint16_t) * numStages);
int offsetAndSizeIndex = 0;
KeyHeader* header = desc->header();
// make sure any padding in the header is zeroed.
memset(desc->header(), 0, kHeaderSize);
// We can only have one effect which touches the vertex shader
if (optState.hasGeometryProcessor()) {
uint16_t* offsetAndSize =
reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
offsetAndSizeIndex * 2 * sizeof(uint16_t));
GrProcessorKeyBuilder b(&desc->fKey);
uint16_t processorKeySize;
uint32_t processorOffset = desc->fKey.count();
const GrGeometryStage& gpStage = *optState.getGeometryProcessor();
if (processorOffset > SK_MaxU16 ||
!GetGeometryProcessorKey(gpStage, gpu->glCaps(), requiresLocalCoordAttrib, &b,
&processorKeySize)) {
desc->fKey.reset();
return false;
}
offsetAndSize[0] = SkToU16(processorOffset);
offsetAndSize[1] = processorKeySize;
++offsetAndSizeIndex;
*geometryProcessor = &gpStage;
header->fHasGeometryProcessor = true;
}
for (int s = 0; s < optState.numColorStages(); ++s) {
uint16_t* offsetAndSize =
reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
offsetAndSizeIndex * 2 * sizeof(uint16_t));
GrProcessorKeyBuilder b(&desc->fKey);
uint16_t processorKeySize;
uint32_t processorOffset = desc->fKey.count();
if (processorOffset > SK_MaxU16 ||
!GetProcessorKey(optState.getColorStage(s), gpu->glCaps(),
requiresLocalCoordAttrib, &b, &processorKeySize)) {
desc->fKey.reset();
return false;
}
offsetAndSize[0] = SkToU16(processorOffset);
offsetAndSize[1] = processorKeySize;
++offsetAndSizeIndex;
}
for (int s = 0; s < optState.numCoverageStages(); ++s) {
uint16_t* offsetAndSize =
reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
offsetAndSizeIndex * 2 * sizeof(uint16_t));
GrProcessorKeyBuilder b(&desc->fKey);
uint16_t processorKeySize;
uint32_t processorOffset = desc->fKey.count();
if (processorOffset > SK_MaxU16 ||
!GetProcessorKey(optState.getCoverageStage(s), gpu->glCaps(),
requiresLocalCoordAttrib, &b, &processorKeySize)) {
desc->fKey.reset();
return false;
}
offsetAndSize[0] = SkToU16(processorOffset);
offsetAndSize[1] = processorKeySize;
++offsetAndSizeIndex;
}
// Because header is a pointer into the dynamic array, we can't push any new data into the key
// below here.
header->fEmitsPointSize = GrGpu::kDrawPoints_DrawType == drawType;
// Currently the experimental GS will only work with triangle prims (and it doesn't do anything
// other than pass through values from the VS to the FS anyway).
#if GR_GL_EXPERIMENTAL_GS
#if 0
header->fExperimentalGS = gpu->caps().geometryShaderSupport();
#else
header->fExperimentalGS = false;
#endif
#endif
if (gpu->caps()->pathRenderingSupport() &&
GrGpu::IsPathRenderingDrawType(drawType) &&
gpu->glPathRendering()->texturingMode() == GrGLPathRendering::FixedFunction_TexturingMode) {
header->fUseFragShaderOnly = true;
SkASSERT(!optState.hasGeometryProcessor());
} else {
header->fUseFragShaderOnly = false;
}
bool defaultToUniformInputs = GrGpu::IsPathRenderingDrawType(drawType) ||
GR_GL_NO_CONSTANT_ATTRIBUTES;
if (!inputColorIsUsed) {
header->fColorInput = kAllOnes_ColorInput;
} else if (defaultToUniformInputs && !optState.hasColorVertexAttribute()) {
header->fColorInput = kUniform_ColorInput;
} else {
header->fColorInput = kAttribute_ColorInput;
SkASSERT(!header->fUseFragShaderOnly);
}
bool covIsSolidWhite = !optState.hasCoverageVertexAttribute() &&
0xffffffff == optState.getCoverageColor();
if (covIsSolidWhite || !inputCoverageIsUsed) {
header->fCoverageInput = kAllOnes_ColorInput;
} else if (defaultToUniformInputs && !optState.hasCoverageVertexAttribute()) {
header->fCoverageInput = kUniform_ColorInput;
} else {
header->fCoverageInput = kAttribute_ColorInput;
SkASSERT(!header->fUseFragShaderOnly);
}
if (optState.readsDst()) {
SkASSERT(dstCopy || gpu->caps()->dstReadInShaderSupport());
const GrTexture* dstCopyTexture = NULL;
if (dstCopy) {
dstCopyTexture = dstCopy->texture();
}
header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture,
gpu->glCaps());
SkASSERT(0 != header->fDstReadKey);
} else {
header->fDstReadKey = 0;
}
if (optState.readsFragPosition()) {
header->fFragPosKey = GrGLFragmentShaderBuilder::KeyForFragmentPosition(
optState.getRenderTarget(), gpu->glCaps());
} else {
header->fFragPosKey = 0;
}
// Record attribute indices
header->fPositionAttributeIndex = optState.positionAttributeIndex();
header->fLocalCoordAttributeIndex = optState.localCoordAttributeIndex();
// For constant color and coverage we need an attribute with an index beyond those already set
int availableAttributeIndex = optState.getVertexAttribCount();
if (optState.hasColorVertexAttribute()) {
header->fColorAttributeIndex = optState.colorVertexAttributeIndex();
} else if (GrGLProgramDesc::kAttribute_ColorInput == header->fColorInput) {
SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
header->fColorAttributeIndex = availableAttributeIndex;
availableAttributeIndex++;
} else {
header->fColorAttributeIndex = -1;
}
if (optState.hasCoverageVertexAttribute()) {
header->fCoverageAttributeIndex = optState.coverageVertexAttributeIndex();
} else if (GrGLProgramDesc::kAttribute_ColorInput == header->fCoverageInput) {
SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
header->fCoverageAttributeIndex = availableAttributeIndex;
} else {
header->fCoverageAttributeIndex = -1;
}
header->fPrimaryOutputType = optState.getPrimaryOutputType();
header->fSecondaryOutputType = optState.getSecondaryOutputType();
for (int s = 0; s < optState.numColorStages(); ++s) {
colorStages->push_back(&optState.getColorStage(s));
}
for (int s = 0; s < optState.numCoverageStages(); ++s) {
coverageStages->push_back(&optState.getCoverageStage(s));
}
header->fColorEffectCnt = colorStages->count();
header->fCoverageEffectCnt = coverageStages->count();
desc->finalize();
return true;
}
void GrGLProgramDesc::finalize() {
int keyLength = fKey.count();
SkASSERT(0 == (keyLength % 4));
*this->atOffset<uint32_t, kLengthOffset>() = SkToU32(keyLength);
uint32_t* checksum = this->atOffset<uint32_t, kChecksumOffset>();
*checksum = 0;
*checksum = SkChecksum::Compute(reinterpret_cast<uint32_t*>(fKey.begin()), keyLength);
}
GrGLProgramDesc& GrGLProgramDesc::operator= (const GrGLProgramDesc& other) {
size_t keyLength = other.keyLength();
fKey.reset(keyLength);
memcpy(fKey.begin(), other.fKey.begin(), keyLength);
return *this;
}