blob: acfd7aa024c5547ebd86cde271185aa6b882b54d [file] [log] [blame]
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "starboard/shared/x11/application_x11.h"
#include <stdlib.h>
#include <unistd.h>
#define XK_3270 // for XK_3270_BackTab
#include <X11/keysym.h>
#include <X11/XF86keysym.h>
#include <X11/XKBlib.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <algorithm>
#include <iomanip>
#include "starboard/event.h"
#include "starboard/input.h"
#include "starboard/key.h"
#include "starboard/log.h"
#include "starboard/memory.h"
#include "starboard/shared/posix/time_internal.h"
#include "starboard/shared/starboard/audio_sink/audio_sink_internal.h"
#include "starboard/shared/x11/window_internal.h"
#include "starboard/time.h"
namespace starboard {
namespace shared {
namespace x11 {
namespace {
const int kKeyboardDeviceId = 1;
// Key translation taken from cobalt/system_window/linux/keycode_conversion.cc
// Eventually, that code should be removed in favor of this code.
uint32_t HardwareKeycodeToDefaultXKeysym(uint32_t hardware_code) {
static const uint32_t kHardwareKeycodeMap[] = {
0, // 0x00:
0, // 0x01:
0, // 0x02:
0, // 0x03:
0, // 0x04:
0, // 0x05:
0, // 0x06:
0, // 0x07:
0, // 0x08:
XK_Escape, // 0x09: XK_Escape
XK_1, // 0x0A: XK_1
XK_2, // 0x0B: XK_2
XK_3, // 0x0C: XK_3
XK_4, // 0x0D: XK_4
XK_5, // 0x0E: XK_5
XK_6, // 0x0F: XK_6
XK_7, // 0x10: XK_7
XK_8, // 0x11: XK_8
XK_9, // 0x12: XK_9
XK_0, // 0x13: XK_0
XK_minus, // 0x14: XK_minus
XK_equal, // 0x15: XK_equal
XK_BackSpace, // 0x16: XK_BackSpace
XK_Tab, // 0x17: XK_Tab
XK_q, // 0x18: XK_q
XK_w, // 0x19: XK_w
XK_e, // 0x1A: XK_e
XK_r, // 0x1B: XK_r
XK_t, // 0x1C: XK_t
XK_y, // 0x1D: XK_y
XK_u, // 0x1E: XK_u
XK_i, // 0x1F: XK_i
XK_o, // 0x20: XK_o
XK_p, // 0x21: XK_p
XK_bracketleft, // 0x22: XK_bracketleft
XK_bracketright, // 0x23: XK_bracketright
XK_Return, // 0x24: XK_Return
XK_Control_L, // 0x25: XK_Control_L
XK_a, // 0x26: XK_a
XK_s, // 0x27: XK_s
XK_d, // 0x28: XK_d
XK_f, // 0x29: XK_f
XK_g, // 0x2A: XK_g
XK_h, // 0x2B: XK_h
XK_j, // 0x2C: XK_j
XK_k, // 0x2D: XK_k
XK_l, // 0x2E: XK_l
XK_semicolon, // 0x2F: XK_semicolon
XK_apostrophe, // 0x30: XK_apostrophe
XK_grave, // 0x31: XK_grave
XK_Shift_L, // 0x32: XK_Shift_L
XK_backslash, // 0x33: XK_backslash
XK_z, // 0x34: XK_z
XK_x, // 0x35: XK_x
XK_c, // 0x36: XK_c
XK_v, // 0x37: XK_v
XK_b, // 0x38: XK_b
XK_n, // 0x39: XK_n
XK_m, // 0x3A: XK_m
XK_comma, // 0x3B: XK_comma
XK_period, // 0x3C: XK_period
XK_slash, // 0x3D: XK_slash
XK_Shift_R, // 0x3E: XK_Shift_R
0, // 0x3F: XK_KP_Multiply
XK_Alt_L, // 0x40: XK_Alt_L
XK_space, // 0x41: XK_space
XK_Caps_Lock, // 0x42: XK_Caps_Lock
XK_F1, // 0x43: XK_F1
XK_F2, // 0x44: XK_F2
XK_F3, // 0x45: XK_F3
XK_F4, // 0x46: XK_F4
XK_F5, // 0x47: XK_F5
XK_F6, // 0x48: XK_F6
XK_F7, // 0x49: XK_F7
XK_F8, // 0x4A: XK_F8
XK_F9, // 0x4B: XK_F9
XK_F10, // 0x4C: XK_F10
XK_Num_Lock, // 0x4D: XK_Num_Lock
XK_Scroll_Lock, // 0x4E: XK_Scroll_Lock
};
return hardware_code < SB_ARRAY_SIZE(kHardwareKeycodeMap)
? kHardwareKeycodeMap[hardware_code]
: 0;
}
SbKey KeysymToSbKey(KeySym keysym) {
switch (keysym) {
case XK_BackSpace:
return kSbKeyBack;
case XK_Delete:
case XK_KP_Delete:
return kSbKeyDelete;
case XK_Tab:
case XK_KP_Tab:
case XK_ISO_Left_Tab:
case XK_3270_BackTab:
return kSbKeyTab;
case XK_Linefeed:
case XK_Return:
case XK_KP_Enter:
case XK_ISO_Enter:
return kSbKeyReturn;
case XK_Clear:
case XK_KP_Begin: // NumPad 5 without Num Lock, for crosbug.com/29169.
return kSbKeyClear;
case XK_KP_Space:
case XK_space:
return kSbKeySpace;
case XK_Home:
case XK_KP_Home:
return kSbKeyHome;
case XK_End:
case XK_KP_End:
return kSbKeyEnd;
case XK_Page_Up:
case XK_KP_Page_Up: // aka XK_KP_Prior
return kSbKeyPrior;
case XK_Page_Down:
case XK_KP_Page_Down: // aka XK_KP_Next
return kSbKeyNext;
case XK_Left:
case XK_KP_Left:
return kSbKeyLeft;
case XK_Right:
case XK_KP_Right:
return kSbKeyRight;
case XK_Down:
case XK_KP_Down:
return kSbKeyDown;
case XK_Up:
case XK_KP_Up:
return kSbKeyUp;
case XK_Escape:
return kSbKeyEscape;
case XK_Kana_Lock:
case XK_Kana_Shift:
return kSbKeyKana;
case XK_Hangul:
return kSbKeyHangul;
case XK_Hangul_Hanja:
return kSbKeyHanja;
case XK_Kanji:
return kSbKeyKanji;
case XK_Henkan:
return kSbKeyConvert;
case XK_Muhenkan:
return kSbKeyNonconvert;
case XK_Zenkaku_Hankaku:
return kSbKeyDbeDbcschar;
case XK_A:
case XK_a:
return kSbKeyA;
case XK_B:
case XK_b:
return kSbKeyB;
case XK_C:
case XK_c:
return kSbKeyC;
case XK_D:
case XK_d:
return kSbKeyD;
case XK_E:
case XK_e:
return kSbKeyE;
case XK_F:
case XK_f:
return kSbKeyF;
case XK_G:
case XK_g:
return kSbKeyG;
case XK_H:
case XK_h:
return kSbKeyH;
case XK_I:
case XK_i:
return kSbKeyI;
case XK_J:
case XK_j:
return kSbKeyJ;
case XK_K:
case XK_k:
return kSbKeyK;
case XK_L:
case XK_l:
return kSbKeyL;
case XK_M:
case XK_m:
return kSbKeyM;
case XK_N:
case XK_n:
return kSbKeyN;
case XK_O:
case XK_o:
return kSbKeyO;
case XK_P:
case XK_p:
return kSbKeyP;
case XK_Q:
case XK_q:
return kSbKeyQ;
case XK_R:
case XK_r:
return kSbKeyR;
case XK_S:
case XK_s:
return kSbKeyS;
case XK_T:
case XK_t:
return kSbKeyT;
case XK_U:
case XK_u:
return kSbKeyU;
case XK_V:
case XK_v:
return kSbKeyV;
case XK_W:
case XK_w:
return kSbKeyW;
case XK_X:
case XK_x:
return kSbKeyX;
case XK_Y:
case XK_y:
return kSbKeyY;
case XK_Z:
case XK_z:
return kSbKeyZ;
case XK_0:
case XK_1:
case XK_2:
case XK_3:
case XK_4:
case XK_5:
case XK_6:
case XK_7:
case XK_8:
case XK_9:
return static_cast<SbKey>(kSbKey0 + (keysym - XK_0));
case XK_parenright:
return kSbKey0;
case XK_exclam:
return kSbKey1;
case XK_at:
return kSbKey2;
case XK_numbersign:
return kSbKey3;
case XK_dollar:
return kSbKey4;
case XK_percent:
return kSbKey5;
case XK_asciicircum:
return kSbKey6;
case XK_ampersand:
return kSbKey7;
case XK_asterisk:
return kSbKey8;
case XK_parenleft:
return kSbKey9;
case XK_KP_0:
case XK_KP_1:
case XK_KP_2:
case XK_KP_3:
case XK_KP_4:
case XK_KP_5:
case XK_KP_6:
case XK_KP_7:
case XK_KP_8:
case XK_KP_9:
return static_cast<SbKey>(kSbKeyNumpad0 + (keysym - XK_KP_0));
case XK_multiply:
case XK_KP_Multiply:
return kSbKeyMultiply;
case XK_KP_Add:
return kSbKeyAdd;
case XK_KP_Separator:
return kSbKeySeparator;
case XK_KP_Subtract:
return kSbKeySubtract;
case XK_KP_Decimal:
return kSbKeyDecimal;
case XK_KP_Divide:
return kSbKeyDivide;
case XK_KP_Equal:
case XK_equal:
case XK_plus:
return kSbKeyOemPlus;
case XK_comma:
case XK_less:
return kSbKeyOemComma;
case XK_minus:
case XK_underscore:
return kSbKeyOemMinus;
case XK_greater:
case XK_period:
return kSbKeyOemPeriod;
case XK_colon:
case XK_semicolon:
return kSbKeyOem1;
case XK_question:
case XK_slash:
return kSbKeyOem2;
case XK_asciitilde:
case XK_quoteleft:
return kSbKeyOem3;
case XK_bracketleft:
case XK_braceleft:
return kSbKeyOem4;
case XK_backslash:
case XK_bar:
return kSbKeyOem5;
case XK_bracketright:
case XK_braceright:
return kSbKeyOem6;
case XK_quoteright:
case XK_quotedbl:
return kSbKeyOem7;
case XK_Shift_L:
case XK_Shift_R:
return kSbKeyShift;
case XK_Control_L:
case XK_Control_R:
return kSbKeyControl;
case XK_Meta_L:
case XK_Meta_R:
case XK_Alt_L:
case XK_Alt_R:
return kSbKeyMenu;
case XK_Pause:
return kSbKeyPause;
case XK_Caps_Lock:
return kSbKeyCapital;
case XK_Num_Lock:
return kSbKeyNumlock;
case XK_Scroll_Lock:
return kSbKeyScroll;
case XK_Select:
return kSbKeySelect;
case XK_Print:
return kSbKeyPrint;
case XK_Execute:
return kSbKeyExecute;
case XK_Insert:
case XK_KP_Insert:
return kSbKeyInsert;
case XK_Help:
return kSbKeyHelp;
case XK_Super_L:
return kSbKeyLwin;
case XK_Super_R:
return kSbKeyRwin;
case XK_Menu:
return kSbKeyApps;
case XK_F1:
case XK_F2:
case XK_F3:
case XK_F4:
case XK_F5:
case XK_F6:
case XK_F7:
case XK_F8:
case XK_F9:
case XK_F10:
case XK_F11:
case XK_F12:
case XK_F13:
case XK_F14:
case XK_F15:
case XK_F16:
case XK_F17:
case XK_F18:
case XK_F19:
case XK_F20:
case XK_F21:
case XK_F22:
case XK_F23:
case XK_F24:
return static_cast<SbKey>(kSbKeyF1 + (keysym - XK_F1));
case XK_KP_F1:
case XK_KP_F2:
case XK_KP_F3:
case XK_KP_F4:
return static_cast<SbKey>(kSbKeyF1 + (keysym - XK_KP_F1));
// When evdev is in use, /usr/share/X11/xkb/symbols/inet maps F13-18 keys
// to the special XF86XK symbols to support Microsoft Ergonomic keyboards:
// https://bugs.freedesktop.org/show_bug.cgi?id=5783
// In Chrome, we map these X key symbols back to F13-18 since we don't have
// VKEYs for these XF86XK symbols.
case XF86XK_Tools:
return kSbKeyF13;
case XF86XK_Launch5:
return kSbKeyF14;
case XF86XK_Launch6:
return kSbKeyF15;
case XF86XK_Launch7:
return kSbKeyF16;
case XF86XK_Launch8:
return kSbKeyF17;
case XF86XK_Launch9:
return kSbKeyF18;
// For supporting multimedia buttons on a USB keyboard.
case XF86XK_Back:
return kSbKeyBrowserBack;
case XF86XK_Forward:
return kSbKeyBrowserForward;
case XF86XK_Reload:
return kSbKeyBrowserRefresh;
case XF86XK_Stop:
return kSbKeyBrowserStop;
case XF86XK_Search:
return kSbKeyBrowserSearch;
case XF86XK_Favorites:
return kSbKeyBrowserFavorites;
case XF86XK_HomePage:
return kSbKeyBrowserHome;
case XF86XK_AudioMute:
return kSbKeyVolumeMute;
case XF86XK_AudioLowerVolume:
return kSbKeyVolumeDown;
case XF86XK_AudioRaiseVolume:
return kSbKeyVolumeUp;
case XF86XK_AudioNext:
return kSbKeyMediaNextTrack;
case XF86XK_AudioPrev:
return kSbKeyMediaPrevTrack;
case XF86XK_AudioStop:
return kSbKeyMediaStop;
case XF86XK_AudioPlay:
return kSbKeyMediaPlayPause;
case XF86XK_Mail:
return kSbKeyMediaLaunchMail;
case XF86XK_LaunchA: // F3 on an Apple keyboard.
return kSbKeyMediaLaunchApp1;
case XF86XK_LaunchB: // F4 on an Apple keyboard.
case XF86XK_Calculator:
return kSbKeyMediaLaunchApp2;
case XF86XK_WLAN:
return kSbKeyWlan;
case XF86XK_PowerOff:
return kSbKeyPower;
case XF86XK_MonBrightnessDown:
return kSbKeyBrightnessDown;
case XF86XK_MonBrightnessUp:
return kSbKeyBrightnessUp;
case XF86XK_KbdBrightnessDown:
return kSbKeyKbdBrightnessDown;
case XF86XK_KbdBrightnessUp:
return kSbKeyKbdBrightnessUp;
}
SB_DLOG(WARNING) << "Unknown keysym: 0x" << std::hex << keysym;
return kSbKeyUnknown;
} // NOLINT(readability/fn_size)
// Get a SbKey from an XKeyEvent.
SbKey XKeyEventToSbKey(XKeyEvent* event) {
// XLookupKeysym does not take into consideration the state of the lock/shift
// etc. keys. So it is necessary to use XLookupString instead.
KeySym keysym = XK_VoidSymbol;
XLookupString(event, NULL, 0, &keysym, NULL);
SbKey key = KeysymToSbKey(keysym);
if (key == kSbKeyUnknown) {
keysym = HardwareKeycodeToDefaultXKeysym(event->keycode);
key = KeysymToSbKey(keysym);
}
return key;
}
// Get a SbKeyLocation from an XKeyEvent.
SbKeyLocation XKeyEventToSbKeyLocation(XKeyEvent* event) {
KeySym keysym = XK_VoidSymbol;
XLookupString(event, NULL, 0, &keysym, NULL);
switch (keysym) {
case XK_Shift_L:
case XK_Control_L:
case XK_Meta_L:
case XK_Alt_L:
return kSbKeyLocationLeft;
case XK_Shift_R:
case XK_Control_R:
case XK_Meta_R:
case XK_Alt_R:
return kSbKeyLocationRight;
}
return kSbKeyLocationUnspecified;
}
// Get an SbKeyModifiers from an XKeyEvent.
unsigned int XKeyEventToSbKeyModifiers(XKeyEvent* event) {
unsigned int key_modifiers = kSbKeyModifiersNone;
if (event->state & Mod1Mask) {
key_modifiers |= kSbKeyModifiersAlt;
}
if (event->state & ControlMask) {
key_modifiers |= kSbKeyModifiersCtrl;
}
if (event->state & ShiftMask) {
key_modifiers |= kSbKeyModifiersShift;
}
return key_modifiers;
}
bool XNextEventTimed(Display* display, XEvent* out_event, SbTime duration) {
if (XPending(display) == 0) {
if (duration <= SbTime()) {
return false;
}
int fd = ConnectionNumber(display);
fd_set read_set;
FD_ZERO(&read_set);
FD_SET(fd, &read_set);
struct timeval tv;
SbTime clamped_duration = std::max(duration, SbTime());
ToTimevalDuration(clamped_duration, &tv);
if (select(fd + 1, &read_set, NULL, NULL, &tv) == 0) {
return false;
}
}
XNextEvent(display, out_event);
return true;
}
void XSendAtom(Window window, Atom atom) {
// XLib is not thread-safe. Since we may be coming from another thread, we
// have to open another connection to the display to inject the wake-up event.
Display* display = XOpenDisplay(NULL);
XClientMessageEvent event = {0};
event.type = ClientMessage;
event.message_type = atom;
event.window = window;
event.format = 32;
XSendEvent(display, event.window, 0, 0, reinterpret_cast<XEvent*>(&event));
XFlush(display);
XCloseDisplay(display);
}
// X IO error handler. Called if we lose our connection to the X server.
int IOErrorHandler(Display* display) {
// Not much we can do here except immediately exit.
SB_DSTACK(ERROR);
quick_exit(0);
return 0;
}
int ErrorHandler(Display* display, XErrorEvent* event) {
char error_text[256] = {0};
XGetErrorText(event->display, event->error_code, error_text,
SB_ARRAY_SIZE_INT(error_text));
SB_DLOG(ERROR) << "X11 Error: " << error_text;
SB_DLOG(ERROR) << "display=" << XDisplayString(event->display);
SB_DLOG(ERROR) << "serial=" << event->serial;
SB_DLOG(ERROR) << "request=" << static_cast<int>(event->request_code);
SB_DLOG(ERROR) << "minor=" << static_cast<int>(event->minor_code);
SB_DLOG(ERROR) << "resourceid=" << event->resourceid;
SbSystemBreakIntoDebugger();
return 0;
}
} // namespace
using shared::starboard::player::VideoFrame;
ApplicationX11::ApplicationX11()
: wake_up_atom_(None),
wm_delete_atom_(None),
#if SB_IS(PLAYER_PUNCHED_OUT)
composite_event_id_(kSbEventIdInvalid),
frame_read_index_(0),
frame_written_(false),
#endif // SB_IS(PLAYER_PUNCHED_OUT)
display_(NULL) {
SbAudioSinkPrivate::Initialize();
}
ApplicationX11::~ApplicationX11() {
SbAudioSinkPrivate::TearDown();
}
SbWindow ApplicationX11::CreateWindow(const SbWindowOptions* options) {
EnsureX();
SbWindow window = new SbWindowPrivate(display_, options);
windows_.push_back(window);
return window;
}
bool ApplicationX11::DestroyWindow(SbWindow window) {
if (!SbWindowIsValid(window)) {
return false;
}
SB_DCHECK(display_);
SbWindowVector::iterator iterator =
std::find(windows_.begin(), windows_.end(), window);
SB_DCHECK(iterator != windows_.end());
windows_.erase(iterator);
delete window;
if (windows_.empty()) {
StopX();
}
return true;
}
#if SB_IS(PLAYER_PUNCHED_OUT)
namespace {
void CompositeCallback(void* context) {
ApplicationX11* application = reinterpret_cast<ApplicationX11*>(context);
application->Composite();
}
} // namespace
void ApplicationX11::Composite() {
if (!windows_.empty()) {
SbWindow window = windows_[0];
if (SbWindowIsValid(window)) {
int index = -1;
{
ScopedLock lock(frame_mutex_);
if (frame_written_) {
// Clear the old frame, now that we are done with it.
frame_infos_[frame_read_index_].frame = VideoFrame();
// Increment the index to the next frame, which has been written.
frame_read_index_ = (frame_read_index_ + 1) % kNumFrames;
// Clear the frame written flag, so we will not advance frames until
// the next frame is written.
frame_written_ = false;
}
index = frame_read_index_;
}
FrameInfo& frame_info = frame_infos_[frame_read_index_];
if (!frame_info.frame.IsEndOfStream() &&
frame_info.frame.format() != VideoFrame::kBGRA32) {
frame_info.frame = frame_info.frame.ConvertTo(VideoFrame::kBGRA32);
}
window->Composite(frame_info.x, frame_info.y, frame_info.width,
frame_info.height, &frame_info.frame);
}
}
composite_event_id_ =
SbEventSchedule(&CompositeCallback, this, kSbTimeSecond / 60);
}
void ApplicationX11::AcceptFrame(SbPlayer player,
const VideoFrame& frame,
int x,
int y,
int width,
int height) {
int write_index = -1;
{
ScopedLock lock(frame_mutex_);
// Always write ahead 1 frame of the current read frame.
write_index = (frame_read_index_ + 1) % kNumFrames;
// Since we are about to modify the next frame, we need to ensure that the
// reader will not try to advance frames concurrently, so we clear the flag
// stating the frame has been written.
frame_written_ = false;
}
// Copy the frame.
frame_infos_[write_index].frame = frame;
frame_infos_[write_index].x = x;
frame_infos_[write_index].y = y;
frame_infos_[write_index].width = width;
frame_infos_[write_index].height = height;
{
ScopedLock lock(frame_mutex_);
// The next frame is now ready to be read.
frame_written_ = true;
}
}
#endif // SB_IS(PLAYER_PUNCHED_OUT)
void ApplicationX11::Initialize() {
// Mesa is installed on Ubuntu machines and will be selected as the default
// EGL implementation. This Mesa environment variable ensures that Mesa
// internally uses its Gallium drivers for its EGL implementation.
if (getenv("EGL_DRIVER") == NULL) {
// putenv takes a non-const char *, and holds onto it indefinitely, so we
// first create global writable memory and then copy the literal into it.
static char to_put[] = "EGL_DRIVER=egl_gallium";
SB_CHECK(!putenv(to_put));
}
}
void ApplicationX11::Teardown() {
StopX();
}
bool ApplicationX11::MayHaveSystemEvents() {
return display_;
}
shared::starboard::Application::Event*
ApplicationX11::WaitForSystemEventWithTimeout(SbTime time) {
SB_DCHECK(display_);
XEvent x_event;
if (XNextEventTimed(display_, &x_event, time)) {
return XEventToEvent(&x_event);
} else {
return NULL;
}
}
void ApplicationX11::WakeSystemEventWait() {
SB_DCHECK(!windows_.empty());
XSendAtom((*windows_.begin())->window, wake_up_atom_);
}
void ApplicationX11::EnsureX() {
// TODO: Consider thread-safety.
if (display_) {
return;
}
XInitThreads();
XSetIOErrorHandler(IOErrorHandler);
XSetErrorHandler(ErrorHandler);
display_ = XOpenDisplay(NULL);
SB_DCHECK(display_);
// Disable keyup events on auto-repeat to match Windows.
// Otherwise when holding down a key, we get a keyup event before
// each keydown event.
int supported = false;
XkbSetDetectableAutoRepeat(display_, True, &supported);
SB_DCHECK(supported);
wake_up_atom_ = XInternAtom(display_, "WakeUpAtom", 0);
wm_delete_atom_ = XInternAtom(display_, "WM_DELETE_WINDOW", True);
#if SB_IS(PLAYER_PUNCHED_OUT)
Composite();
#endif // SB_IS(PLAYER_PUNCHED_OUT)
}
void ApplicationX11::StopX() {
if (!display_) {
return;
}
#if SB_IS(PLAYER_PUNCHED_OUT)
SbEventCancel(composite_event_id_);
composite_event_id_ = kSbEventIdInvalid;
#endif // SB_IS(PLAYER_PUNCHED_OUT)
XCloseDisplay(display_);
display_ = NULL;
wake_up_atom_ = None;
wm_delete_atom_ = None;
}
shared::starboard::Application::Event* ApplicationX11::XEventToEvent(
XEvent* x_event) {
if (x_event->type == ClientMessage) {
const XClientMessageEvent* client_message =
reinterpret_cast<const XClientMessageEvent*>(x_event);
if (client_message->message_type == wake_up_atom_) {
// We've woken up, so our job is done.
return NULL;
}
if (x_event->xclient.data.l[0] == wm_delete_atom_) {
SB_DLOG(INFO) << "Received WM_DELETE_WINDOW message.";
// TODO: Expose this as an event to clients.
Stop(0);
return NULL;
}
// Unknown event, ignore.
return NULL;
}
if (x_event->type == KeyPress || x_event->type == KeyRelease) {
// User pressed key.
XKeyEvent* x_key_event = reinterpret_cast<XKeyEvent*>(x_event);
SbInputData* data = new SbInputData();
SbMemorySet(data, 0, sizeof(*data));
data->window = FindWindow(x_key_event->window);
SB_DCHECK(SbWindowIsValid(data->window));
data->type = (x_event->type == KeyPress ? kSbInputEventTypePress
: kSbInputEventTypeUnpress);
data->device_type = kSbInputDeviceTypeKeyboard;
data->device_id = kKeyboardDeviceId;
data->key = XKeyEventToSbKey(x_key_event);
data->key_location = XKeyEventToSbKeyLocation(x_key_event);
data->key_modifiers = XKeyEventToSbKeyModifiers(x_key_event);
return new Event(kSbEventTypeInput, data, &DeleteDestructor<SbInputData>);
} else if (x_event->type == FocusIn) {
Unpause(NULL, NULL);
return NULL;
} else if (x_event->type == FocusOut) {
Pause(NULL, NULL);
return NULL;
} else if (x_event->type == MapNotify) {
Resume(NULL, NULL);
return NULL;
} else if (x_event->type == UnmapNotify) {
Suspend(NULL, NULL);
return NULL;
}
SB_DLOG(INFO) << "Unrecognized event type = " << x_event->type;
return NULL;
}
SbWindow ApplicationX11::FindWindow(Window window) {
for (SbWindowVector::iterator i = windows_.begin(); i != windows_.end();
++i) {
if ((*i)->window == window) {
return *i;
}
}
return kSbWindowInvalid;
}
} // namespace x11
} // namespace shared
} // namespace starboard