| /* |
| ***************************************************************************** |
| * Copyright (C) 1996-2011, International Business Machines Corporation and * |
| * others. All Rights Reserved. * |
| ***************************************************************************** |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_NORMALIZATION |
| |
| #include "unicode/caniter.h" |
| #include "unicode/normalizer2.h" |
| #include "unicode/uchar.h" |
| #include "unicode/uniset.h" |
| #include "unicode/usetiter.h" |
| #include "unicode/ustring.h" |
| #include "unicode/utf16.h" |
| #include "cmemory.h" |
| #include "hash.h" |
| #include "normalizer2impl.h" |
| |
| /** |
| * This class allows one to iterate through all the strings that are canonically equivalent to a given |
| * string. For example, here are some sample results: |
| Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
| 1: \u0041\u030A\u0064\u0307\u0327 |
| = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
| 2: \u0041\u030A\u0064\u0327\u0307 |
| = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
| 3: \u0041\u030A\u1E0B\u0327 |
| = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
| 4: \u0041\u030A\u1E11\u0307 |
| = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
| 5: \u00C5\u0064\u0307\u0327 |
| = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
| 6: \u00C5\u0064\u0327\u0307 |
| = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
| 7: \u00C5\u1E0B\u0327 |
| = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
| 8: \u00C5\u1E11\u0307 |
| = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
| 9: \u212B\u0064\u0307\u0327 |
| = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
| 10: \u212B\u0064\u0327\u0307 |
| = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
| 11: \u212B\u1E0B\u0327 |
| = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
| 12: \u212B\u1E11\u0307 |
| = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
| *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, |
| * since it has not been optimized for that situation. |
| *@author M. Davis |
| *@draft |
| */ |
| |
| // public |
| |
| U_NAMESPACE_BEGIN |
| |
| // TODO: add boilerplate methods. |
| |
| UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
| |
| /** |
| *@param source string to get results for |
| */ |
| CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : |
| pieces(NULL), |
| pieces_length(0), |
| pieces_lengths(NULL), |
| current(NULL), |
| current_length(0), |
| nfd(*Normalizer2Factory::getNFDInstance(status)), |
| nfcImpl(*Normalizer2Factory::getNFCImpl(status)) |
| { |
| if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { |
| setSource(sourceStr, status); |
| } |
| } |
| |
| CanonicalIterator::~CanonicalIterator() { |
| cleanPieces(); |
| } |
| |
| void CanonicalIterator::cleanPieces() { |
| int32_t i = 0; |
| if(pieces != NULL) { |
| for(i = 0; i < pieces_length; i++) { |
| if(pieces[i] != NULL) { |
| delete[] pieces[i]; |
| } |
| } |
| uprv_free(pieces); |
| pieces = NULL; |
| pieces_length = 0; |
| } |
| if(pieces_lengths != NULL) { |
| uprv_free(pieces_lengths); |
| pieces_lengths = NULL; |
| } |
| if(current != NULL) { |
| uprv_free(current); |
| current = NULL; |
| current_length = 0; |
| } |
| } |
| |
| /** |
| *@return gets the source: NOTE: it is the NFD form of source |
| */ |
| UnicodeString CanonicalIterator::getSource() { |
| return source; |
| } |
| |
| /** |
| * Resets the iterator so that one can start again from the beginning. |
| */ |
| void CanonicalIterator::reset() { |
| done = FALSE; |
| for (int i = 0; i < current_length; ++i) { |
| current[i] = 0; |
| } |
| } |
| |
| /** |
| *@return the next string that is canonically equivalent. The value null is returned when |
| * the iteration is done. |
| */ |
| UnicodeString CanonicalIterator::next() { |
| int32_t i = 0; |
| |
| if (done) { |
| buffer.setToBogus(); |
| return buffer; |
| } |
| |
| // delete old contents |
| buffer.remove(); |
| |
| // construct return value |
| |
| for (i = 0; i < pieces_length; ++i) { |
| buffer.append(pieces[i][current[i]]); |
| } |
| //String result = buffer.toString(); // not needed |
| |
| // find next value for next time |
| |
| for (i = current_length - 1; ; --i) { |
| if (i < 0) { |
| done = TRUE; |
| break; |
| } |
| current[i]++; |
| if (current[i] < pieces_lengths[i]) break; // got sequence |
| current[i] = 0; |
| } |
| return buffer; |
| } |
| |
| /** |
| *@param set the source string to iterate against. This allows the same iterator to be used |
| * while changing the source string, saving object creation. |
| */ |
| void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { |
| int32_t list_length = 0; |
| UChar32 cp = 0; |
| int32_t start = 0; |
| int32_t i = 0; |
| UnicodeString *list = NULL; |
| |
| nfd.normalize(newSource, source, status); |
| if(U_FAILURE(status)) { |
| return; |
| } |
| done = FALSE; |
| |
| cleanPieces(); |
| |
| // catch degenerate case |
| if (newSource.length() == 0) { |
| pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
| pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
| pieces_length = 1; |
| current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
| current_length = 1; |
| if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| goto CleanPartialInitialization; |
| } |
| current[0] = 0; |
| pieces[0] = new UnicodeString[1]; |
| pieces_lengths[0] = 1; |
| if (pieces[0] == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| goto CleanPartialInitialization; |
| } |
| return; |
| } |
| |
| |
| list = new UnicodeString[source.length()]; |
| if (list == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| goto CleanPartialInitialization; |
| } |
| |
| // i should initialy be the number of code units at the |
| // start of the string |
| i = U16_LENGTH(source.char32At(0)); |
| //int32_t i = 1; |
| // find the segments |
| // This code iterates through the source string and |
| // extracts segments that end up on a codepoint that |
| // doesn't start any decompositions. (Analysis is done |
| // on the NFD form - see above). |
| for (; i < source.length(); i += U16_LENGTH(cp)) { |
| cp = source.char32At(i); |
| if (nfcImpl.isCanonSegmentStarter(cp)) { |
| source.extract(start, i-start, list[list_length++]); // add up to i |
| start = i; |
| } |
| } |
| source.extract(start, i-start, list[list_length++]); // add last one |
| |
| |
| // allocate the arrays, and find the strings that are CE to each segment |
| pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); |
| pieces_length = list_length; |
| pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
| current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
| current_length = list_length; |
| if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| goto CleanPartialInitialization; |
| } |
| |
| for (i = 0; i < current_length; i++) { |
| current[i] = 0; |
| } |
| // for each segment, get all the combinations that can produce |
| // it after NFD normalization |
| for (i = 0; i < pieces_length; ++i) { |
| //if (PROGRESS) printf("SEGMENT\n"); |
| pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); |
| } |
| |
| delete[] list; |
| return; |
| // Common section to cleanup all local variables and reset object variables. |
| CleanPartialInitialization: |
| if (list != NULL) { |
| delete[] list; |
| } |
| cleanPieces(); |
| } |
| |
| /** |
| * Dumb recursive implementation of permutation. |
| * TODO: optimize |
| * @param source the string to find permutations for |
| * @return the results in a set. |
| */ |
| void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
| if(U_FAILURE(status)) { |
| return; |
| } |
| //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); |
| int32_t i = 0; |
| |
| // optimization: |
| // if zero or one character, just return a set with it |
| // we check for length < 2 to keep from counting code points all the time |
| if (source.length() <= 2 && source.countChar32() <= 1) { |
| UnicodeString *toPut = new UnicodeString(source); |
| /* test for NULL */ |
| if (toPut == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| result->put(source, toPut, status); |
| return; |
| } |
| |
| // otherwise iterate through the string, and recursively permute all the other characters |
| UChar32 cp; |
| Hashtable subpermute(status); |
| if(U_FAILURE(status)) { |
| return; |
| } |
| subpermute.setValueDeleter(uprv_deleteUObject); |
| |
| for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { |
| cp = source.char32At(i); |
| const UHashElement *ne = NULL; |
| int32_t el = -1; |
| UnicodeString subPermuteString = source; |
| |
| // optimization: |
| // if the character is canonical combining class zero, |
| // don't permute it |
| if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { |
| //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); |
| continue; |
| } |
| |
| subpermute.removeAll(); |
| |
| // see what the permutations of the characters before and after this one are |
| //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); |
| permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); |
| /* Test for buffer overflows */ |
| if(U_FAILURE(status)) { |
| return; |
| } |
| // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents |
| // of source at this point. |
| |
| // prefix this character to all of them |
| ne = subpermute.nextElement(el); |
| while (ne != NULL) { |
| UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
| UnicodeString *chStr = new UnicodeString(cp); |
| //test for NULL |
| if (chStr == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
| //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); |
| result->put(*chStr, chStr, status); |
| ne = subpermute.nextElement(el); |
| } |
| } |
| //return result; |
| } |
| |
| // privates |
| |
| // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. |
| UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { |
| Hashtable result(status); |
| Hashtable permutations(status); |
| Hashtable basic(status); |
| if (U_FAILURE(status)) { |
| return 0; |
| } |
| result.setValueDeleter(uprv_deleteUObject); |
| permutations.setValueDeleter(uprv_deleteUObject); |
| basic.setValueDeleter(uprv_deleteUObject); |
| |
| UChar USeg[256]; |
| int32_t segLen = segment.extract(USeg, 256, status); |
| getEquivalents2(&basic, USeg, segLen, status); |
| |
| // now get all the permutations |
| // add only the ones that are canonically equivalent |
| // TODO: optimize by not permuting any class zero. |
| |
| const UHashElement *ne = NULL; |
| int32_t el = -1; |
| //Iterator it = basic.iterator(); |
| ne = basic.nextElement(el); |
| //while (it.hasNext()) |
| while (ne != NULL) { |
| //String item = (String) it.next(); |
| UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
| |
| permutations.removeAll(); |
| permute(item, CANITER_SKIP_ZEROES, &permutations, status); |
| const UHashElement *ne2 = NULL; |
| int32_t el2 = -1; |
| //Iterator it2 = permutations.iterator(); |
| ne2 = permutations.nextElement(el2); |
| //while (it2.hasNext()) |
| while (ne2 != NULL) { |
| //String possible = (String) it2.next(); |
| //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); |
| UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); |
| UnicodeString attempt; |
| nfd.normalize(possible, attempt, status); |
| |
| // TODO: check if operator == is semanticaly the same as attempt.equals(segment) |
| if (attempt==segment) { |
| //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); |
| // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). |
| result.put(possible, new UnicodeString(possible), status); //add(possible); |
| } else { |
| //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); |
| } |
| |
| ne2 = permutations.nextElement(el2); |
| } |
| ne = basic.nextElement(el); |
| } |
| |
| /* Test for buffer overflows */ |
| if(U_FAILURE(status)) { |
| return 0; |
| } |
| // convert into a String[] to clean up storage |
| //String[] finalResult = new String[result.size()]; |
| UnicodeString *finalResult = NULL; |
| int32_t resultCount; |
| if((resultCount = result.count())) { |
| finalResult = new UnicodeString[resultCount]; |
| if (finalResult == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| } |
| else { |
| status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| //result.toArray(finalResult); |
| result_len = 0; |
| el = -1; |
| ne = result.nextElement(el); |
| while(ne != NULL) { |
| finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
| ne = result.nextElement(el); |
| } |
| |
| |
| return finalResult; |
| } |
| |
| Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { |
| |
| if (U_FAILURE(status)) { |
| return NULL; |
| } |
| |
| //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); |
| |
| UnicodeString toPut(segment, segLen); |
| |
| fillinResult->put(toPut, new UnicodeString(toPut), status); |
| |
| UnicodeSet starts; |
| |
| // cycle through all the characters |
| UChar32 cp; |
| for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { |
| // see if any character is at the start of some decomposition |
| U16_GET(segment, 0, i, segLen, cp); |
| if (!nfcImpl.getCanonStartSet(cp, starts)) { |
| continue; |
| } |
| // if so, see which decompositions match |
| UnicodeSetIterator iter(starts); |
| while (iter.next()) { |
| UChar32 cp2 = iter.getCodepoint(); |
| Hashtable remainder(status); |
| remainder.setValueDeleter(uprv_deleteUObject); |
| if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { |
| continue; |
| } |
| |
| // there were some matches, so add all the possibilities to the set. |
| UnicodeString prefix(segment, i); |
| prefix += cp2; |
| |
| int32_t el = -1; |
| const UHashElement *ne = remainder.nextElement(el); |
| while (ne != NULL) { |
| UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
| UnicodeString *toAdd = new UnicodeString(prefix); |
| /* test for NULL */ |
| if (toAdd == 0) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| *toAdd += item; |
| fillinResult->put(*toAdd, toAdd, status); |
| |
| //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); |
| |
| ne = remainder.nextElement(el); |
| } |
| } |
| } |
| |
| /* Test for buffer overflows */ |
| if(U_FAILURE(status)) { |
| return NULL; |
| } |
| return fillinResult; |
| } |
| |
| /** |
| * See if the decomposition of cp2 is at segment starting at segmentPos |
| * (with canonical rearrangment!) |
| * If so, take the remainder, and return the equivalents |
| */ |
| Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
| //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
| //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); |
| //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); |
| |
| if (U_FAILURE(status)) { |
| return NULL; |
| } |
| |
| UnicodeString temp(comp); |
| int32_t inputLen=temp.length(); |
| UnicodeString decompString; |
| nfd.normalize(temp, decompString, status); |
| const UChar *decomp=decompString.getBuffer(); |
| int32_t decompLen=decompString.length(); |
| |
| // See if it matches the start of segment (at segmentPos) |
| UBool ok = FALSE; |
| UChar32 cp; |
| int32_t decompPos = 0; |
| UChar32 decompCp; |
| U16_NEXT(decomp, decompPos, decompLen, decompCp); |
| |
| int32_t i = segmentPos; |
| while(i < segLen) { |
| U16_NEXT(segment, i, segLen, cp); |
| |
| if (cp == decompCp) { // if equal, eat another cp from decomp |
| |
| //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); |
| |
| if (decompPos == decompLen) { // done, have all decomp characters! |
| temp.append(segment+i, segLen-i); |
| ok = TRUE; |
| break; |
| } |
| U16_NEXT(decomp, decompPos, decompLen, decompCp); |
| } else { |
| //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); |
| |
| // brute force approach |
| temp.append(cp); |
| |
| /* TODO: optimize |
| // since we know that the classes are monotonically increasing, after zero |
| // e.g. 0 5 7 9 0 3 |
| // we can do an optimization |
| // there are only a few cases that work: zero, less, same, greater |
| // if both classes are the same, we fail |
| // if the decomp class < the segment class, we fail |
| |
| segClass = getClass(cp); |
| if (decompClass <= segClass) return null; |
| */ |
| } |
| } |
| if (!ok) |
| return NULL; // we failed, characters left over |
| |
| //if (PROGRESS) printf("Matches\n"); |
| |
| if (inputLen == temp.length()) { |
| fillinResult->put(UnicodeString(), new UnicodeString(), status); |
| return fillinResult; // succeed, but no remainder |
| } |
| |
| // brute force approach |
| // check to make sure result is canonically equivalent |
| UnicodeString trial; |
| nfd.normalize(temp, trial, status); |
| if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { |
| return NULL; |
| } |
| |
| return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif /* #if !UCONFIG_NO_NORMALIZATION */ |