blob: b82a4baf6dd74e65d4b14ce330575df6a5d9f4db [file] [log] [blame]
#ifndef MEMPROF_DATA_INC
#define MEMPROF_DATA_INC
/*===-- MemProfData.inc - MemProf profiling runtime structures -*- C++ -*-=== *\
|*
|* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|* See https://llvm.org/LICENSE.txt for license information.
|* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|*
\*===----------------------------------------------------------------------===*/
/*
* This is the main file that defines all the data structure, signature,
* constant literals that are shared across profiling runtime library,
* and host tools (reader/writer).
*
* This file has two identical copies. The primary copy lives in LLVM and
* the other one sits in compiler-rt/include/profile directory. To make changes
* in this file, first modify the primary copy and copy it over to compiler-rt.
* Testing of any change in this file can start only after the two copies are
* synced up.
*
\*===----------------------------------------------------------------------===*/
#include <string.h>
#ifdef _MSC_VER
#define PACKED(...) __pragma(pack(push,1)) __VA_ARGS__ __pragma(pack(pop))
#else
#define PACKED(...) __VA_ARGS__ __attribute__((__packed__))
#endif
// A 64-bit magic number to uniquely identify the raw binary memprof profile file.
#define MEMPROF_RAW_MAGIC_64 \
((uint64_t)255 << 56 | (uint64_t)'m' << 48 | (uint64_t)'p' << 40 | (uint64_t)'r' << 32 | \
(uint64_t)'o' << 24 | (uint64_t)'f' << 16 | (uint64_t)'r' << 8 | (uint64_t)129)
// The version number of the raw binary format.
#define MEMPROF_RAW_VERSION 3ULL
#define MEMPROF_BUILDID_MAX_SIZE 32ULL
namespace llvm {
namespace memprof {
// A struct describing the header used for the raw binary memprof profile format.
PACKED(struct Header {
uint64_t Magic;
uint64_t Version;
uint64_t TotalSize;
uint64_t SegmentOffset;
uint64_t MIBOffset;
uint64_t StackOffset;
});
// A struct describing the information necessary to describe a /proc/maps
// segment entry for a particular binary/library identified by its build id.
PACKED(struct SegmentEntry {
uint64_t Start;
uint64_t End;
uint64_t Offset;
uint64_t BuildIdSize;
uint8_t BuildId[MEMPROF_BUILDID_MAX_SIZE] = {0};
// This constructor is only used in tests so don't set the BuildId.
SegmentEntry(uint64_t S, uint64_t E, uint64_t O)
: Start(S), End(E), Offset(O), BuildIdSize(0) {}
SegmentEntry(const SegmentEntry& S) {
Start = S.Start;
End = S.End;
Offset = S.Offset;
BuildIdSize = S.BuildIdSize;
memcpy(BuildId, S.BuildId, S.BuildIdSize);
}
SegmentEntry& operator=(const SegmentEntry& S) {
Start = S.Start;
End = S.End;
Offset = S.Offset;
BuildIdSize = S.BuildIdSize;
memcpy(BuildId, S.BuildId, S.BuildIdSize);
return *this;
}
bool operator==(const SegmentEntry& S) const {
return Start == S.Start && End == S.End && Offset == S.Offset &&
BuildIdSize == S.BuildIdSize &&
memcmp(BuildId, S.BuildId, S.BuildIdSize) == 0;
}
});
// Packed struct definition for MSVC. We can't use the PACKED macro defined in
// MemProfData.inc since it would mean we are embedding a directive (the
// #include for MIBEntryDef) into the macros which is undefined behaviour.
#ifdef _MSC_VER
__pragma(pack(push,1))
#endif
// A struct representing the heap allocation characteristics of a particular
// runtime context. This struct is shared between the compiler-rt runtime and
// the raw profile reader. The indexed format uses a separate, self-describing
// backwards compatible format.
struct MemInfoBlock{
#define MIBEntryDef(NameTag, Name, Type) Type Name;
#include "MIBEntryDef.inc"
#undef MIBEntryDef
bool operator==(const MemInfoBlock& Other) const {
bool IsEqual = true;
#define MIBEntryDef(NameTag, Name, Type) \
IsEqual = (IsEqual && Name == Other.Name);
#include "MIBEntryDef.inc"
#undef MIBEntryDef
return IsEqual;
}
MemInfoBlock() {
#define MIBEntryDef(NameTag, Name, Type) Name = Type();
#include "MIBEntryDef.inc"
#undef MIBEntryDef
}
MemInfoBlock(uint32_t Size, uint64_t AccessCount, uint32_t AllocTs,
uint32_t DeallocTs, uint32_t AllocCpu, uint32_t DeallocCpu)
: MemInfoBlock() {
AllocCount = 1U;
TotalAccessCount = AccessCount;
MinAccessCount = AccessCount;
MaxAccessCount = AccessCount;
TotalSize = Size;
MinSize = Size;
MaxSize = Size;
AllocTimestamp = AllocTs;
DeallocTimestamp = DeallocTs;
TotalLifetime = DeallocTimestamp - AllocTimestamp;
MinLifetime = TotalLifetime;
MaxLifetime = TotalLifetime;
// Access density is accesses per byte. Multiply by 100 to include the
// fractional part.
TotalAccessDensity = AccessCount * 100 / Size;
MinAccessDensity = TotalAccessDensity;
MaxAccessDensity = TotalAccessDensity;
// Lifetime access density is the access density per second of lifetime.
// Multiply by 1000 to convert denominator lifetime to seconds (using a
// minimum lifetime of 1ms to avoid divide by 0. Do the multiplication first
// to reduce truncations to 0.
TotalLifetimeAccessDensity =
TotalAccessDensity * 1000 / (TotalLifetime ? TotalLifetime : 1);
MinLifetimeAccessDensity = TotalLifetimeAccessDensity;
MaxLifetimeAccessDensity = TotalLifetimeAccessDensity;
AllocCpuId = AllocCpu;
DeallocCpuId = DeallocCpu;
NumMigratedCpu = AllocCpuId != DeallocCpuId;
}
void Merge(const MemInfoBlock &newMIB) {
AllocCount += newMIB.AllocCount;
TotalAccessCount += newMIB.TotalAccessCount;
MinAccessCount = newMIB.MinAccessCount < MinAccessCount ? newMIB.MinAccessCount : MinAccessCount;
MaxAccessCount = newMIB.MaxAccessCount > MaxAccessCount ? newMIB.MaxAccessCount : MaxAccessCount;
TotalSize += newMIB.TotalSize;
MinSize = newMIB.MinSize < MinSize ? newMIB.MinSize : MinSize;
MaxSize = newMIB.MaxSize > MaxSize ? newMIB.MaxSize : MaxSize;
TotalLifetime += newMIB.TotalLifetime;
MinLifetime = newMIB.MinLifetime < MinLifetime ? newMIB.MinLifetime : MinLifetime;
MaxLifetime = newMIB.MaxLifetime > MaxLifetime ? newMIB.MaxLifetime : MaxLifetime;
TotalAccessDensity += newMIB.TotalAccessDensity;
MinAccessDensity = newMIB.MinAccessDensity < MinAccessDensity
? newMIB.MinAccessDensity
: MinAccessDensity;
MaxAccessDensity = newMIB.MaxAccessDensity > MaxAccessDensity
? newMIB.MaxAccessDensity
: MaxAccessDensity;
TotalLifetimeAccessDensity += newMIB.TotalLifetimeAccessDensity;
MinLifetimeAccessDensity =
newMIB.MinLifetimeAccessDensity < MinLifetimeAccessDensity
? newMIB.MinLifetimeAccessDensity
: MinLifetimeAccessDensity;
MaxLifetimeAccessDensity =
newMIB.MaxLifetimeAccessDensity > MaxLifetimeAccessDensity
? newMIB.MaxLifetimeAccessDensity
: MaxLifetimeAccessDensity;
// We know newMIB was deallocated later, so just need to check if it was
// allocated before last one deallocated.
NumLifetimeOverlaps += newMIB.AllocTimestamp < DeallocTimestamp;
AllocTimestamp = newMIB.AllocTimestamp;
DeallocTimestamp = newMIB.DeallocTimestamp;
NumSameAllocCpu += AllocCpuId == newMIB.AllocCpuId;
NumSameDeallocCpu += DeallocCpuId == newMIB.DeallocCpuId;
AllocCpuId = newMIB.AllocCpuId;
DeallocCpuId = newMIB.DeallocCpuId;
}
#ifdef _MSC_VER
} __pragma(pack(pop));
#else
} __attribute__((__packed__));
#endif
} // namespace memprof
} // namespace llvm
#endif