blob: 01bab46aebac730f51884e180cffd81cb62b32ba [file] [log] [blame]
//===-- cpu_model.c - Support for __cpu_model builtin ------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is based on LLVM's lib/Support/Host.cpp.
// It implements the operating system Host concept and builtin
// __cpu_model for the compiler_rt library for x86 and
// __aarch64_have_lse_atomics, __aarch64_cpu_features for AArch64.
//
//===----------------------------------------------------------------------===//
#ifndef __has_attribute
#define __has_attribute(attr) 0
#endif
#if __has_attribute(constructor)
#if __GNUC__ >= 9
// Ordinarily init priorities below 101 are disallowed as they are reserved for the
// implementation. However, we are the implementation, so silence the diagnostic,
// since it doesn't apply to us.
#pragma GCC diagnostic ignored "-Wprio-ctor-dtor"
#endif
// We're choosing init priority 90 to force our constructors to run before any
// constructors in the end user application (starting at priority 101). This value
// matches the libgcc choice for the same functions.
#define CONSTRUCTOR_ATTRIBUTE __attribute__((constructor(90)))
#else
// FIXME: For MSVC, we should make a function pointer global in .CRT$X?? so that
// this runs during initialization.
#define CONSTRUCTOR_ATTRIBUTE
#endif
#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64)) && \
(defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER))
#include <assert.h>
#define bool int
#define true 1
#define false 0
#ifdef _MSC_VER
#include <intrin.h>
#endif
enum VendorSignatures {
SIG_INTEL = 0x756e6547, // Genu
SIG_AMD = 0x68747541, // Auth
};
enum ProcessorVendors {
VENDOR_INTEL = 1,
VENDOR_AMD,
VENDOR_OTHER,
VENDOR_MAX
};
enum ProcessorTypes {
INTEL_BONNELL = 1,
INTEL_CORE2,
INTEL_COREI7,
AMDFAM10H,
AMDFAM15H,
INTEL_SILVERMONT,
INTEL_KNL,
AMD_BTVER1,
AMD_BTVER2,
AMDFAM17H,
INTEL_KNM,
INTEL_GOLDMONT,
INTEL_GOLDMONT_PLUS,
INTEL_TREMONT,
AMDFAM19H,
ZHAOXIN_FAM7H,
INTEL_SIERRAFOREST,
INTEL_GRANDRIDGE,
CPU_TYPE_MAX
};
enum ProcessorSubtypes {
INTEL_COREI7_NEHALEM = 1,
INTEL_COREI7_WESTMERE,
INTEL_COREI7_SANDYBRIDGE,
AMDFAM10H_BARCELONA,
AMDFAM10H_SHANGHAI,
AMDFAM10H_ISTANBUL,
AMDFAM15H_BDVER1,
AMDFAM15H_BDVER2,
AMDFAM15H_BDVER3,
AMDFAM15H_BDVER4,
AMDFAM17H_ZNVER1,
INTEL_COREI7_IVYBRIDGE,
INTEL_COREI7_HASWELL,
INTEL_COREI7_BROADWELL,
INTEL_COREI7_SKYLAKE,
INTEL_COREI7_SKYLAKE_AVX512,
INTEL_COREI7_CANNONLAKE,
INTEL_COREI7_ICELAKE_CLIENT,
INTEL_COREI7_ICELAKE_SERVER,
AMDFAM17H_ZNVER2,
INTEL_COREI7_CASCADELAKE,
INTEL_COREI7_TIGERLAKE,
INTEL_COREI7_COOPERLAKE,
INTEL_COREI7_SAPPHIRERAPIDS,
INTEL_COREI7_ALDERLAKE,
AMDFAM19H_ZNVER3,
INTEL_COREI7_ROCKETLAKE,
ZHAOXIN_FAM7H_LUJIAZUI,
AMDFAM19H_ZNVER4,
INTEL_COREI7_GRANITERAPIDS,
CPU_SUBTYPE_MAX
};
enum ProcessorFeatures {
FEATURE_CMOV = 0,
FEATURE_MMX,
FEATURE_POPCNT,
FEATURE_SSE,
FEATURE_SSE2,
FEATURE_SSE3,
FEATURE_SSSE3,
FEATURE_SSE4_1,
FEATURE_SSE4_2,
FEATURE_AVX,
FEATURE_AVX2,
FEATURE_SSE4_A,
FEATURE_FMA4,
FEATURE_XOP,
FEATURE_FMA,
FEATURE_AVX512F,
FEATURE_BMI,
FEATURE_BMI2,
FEATURE_AES,
FEATURE_PCLMUL,
FEATURE_AVX512VL,
FEATURE_AVX512BW,
FEATURE_AVX512DQ,
FEATURE_AVX512CD,
FEATURE_AVX512ER,
FEATURE_AVX512PF,
FEATURE_AVX512VBMI,
FEATURE_AVX512IFMA,
FEATURE_AVX5124VNNIW,
FEATURE_AVX5124FMAPS,
FEATURE_AVX512VPOPCNTDQ,
FEATURE_AVX512VBMI2,
FEATURE_GFNI,
FEATURE_VPCLMULQDQ,
FEATURE_AVX512VNNI,
FEATURE_AVX512BITALG,
FEATURE_AVX512BF16,
FEATURE_AVX512VP2INTERSECT,
CPU_FEATURE_MAX
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
static bool isCpuIdSupported(void) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
// This code is copied from lib/Support/Host.cpp.
// Changes to either file should be mirrored in the other.
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static const char *
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
#define testFeature(F) \
(Features[F / 32] & (1 << (F % 32))) != 0
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 6:
switch (Model) {
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
CPU = "core2";
*Type = INTEL_CORE2;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
CPU = "penryn";
*Type = INTEL_CORE2;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
CPU = "nehalem";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
CPU = "westmere";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
CPU = "sandybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
CPU = "ivybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
CPU = "haswell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
CPU = "broadwell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
case 0xa5: // Comet Lake-H/S
case 0xa6: // Comet Lake-U
CPU = "skylake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SKYLAKE;
break;
// Rocketlake:
case 0xa7:
CPU = "rocketlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ROCKETLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = INTEL_COREI7;
if (testFeature(FEATURE_AVX512BF16)) {
CPU = "cooperlake";
*Subtype = INTEL_COREI7_COOPERLAKE;
} else if (testFeature(FEATURE_AVX512VNNI)) {
CPU = "cascadelake";
*Subtype = INTEL_COREI7_CASCADELAKE;
} else {
CPU = "skylake-avx512";
*Subtype = INTEL_COREI7_SKYLAKE_AVX512;
}
break;
// Cannonlake:
case 0x66:
CPU = "cannonlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_CANNONLAKE;
break;
// Icelake:
case 0x7d:
case 0x7e:
CPU = "icelake-client";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_CLIENT;
break;
// Tigerlake:
case 0x8c:
case 0x8d:
CPU = "tigerlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_TIGERLAKE;
break;
// Alderlake:
case 0x97:
case 0x9a:
// Raptorlake:
case 0xb7:
// Meteorlake:
case 0xaa:
case 0xac:
CPU = "alderlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ALDERLAKE;
break;
// Icelake Xeon:
case 0x6a:
case 0x6c:
CPU = "icelake-server";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_SERVER;
break;
// Emerald Rapids:
case 0xcf:
// Sapphire Rapids:
case 0x8f:
CPU = "sapphirerapids";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SAPPHIRERAPIDS;
break;
// Granite Rapids:
case 0xae:
case 0xad:
CPU = "graniterapids";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_GRANITERAPIDS;
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
CPU = "bonnell";
*Type = INTEL_BONNELL;
break;
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
CPU = "silvermont";
*Type = INTEL_SILVERMONT;
break;
// Goldmont:
case 0x5c: // Apollo Lake
case 0x5f: // Denverton
CPU = "goldmont";
*Type = INTEL_GOLDMONT;
break; // "goldmont"
case 0x7a:
CPU = "goldmont-plus";
*Type = INTEL_GOLDMONT_PLUS;
break;
case 0x86:
CPU = "tremont";
*Type = INTEL_TREMONT;
break;
// Sierraforest:
case 0xaf:
CPU = "sierraforest";
*Type = INTEL_SIERRAFOREST;
break;
// Grandridge:
case 0xb6:
CPU = "grandridge";
*Type = INTEL_GRANDRIDGE;
break;
case 0x57:
CPU = "knl";
*Type = INTEL_KNL;
break;
case 0x85:
CPU = "knm";
*Type = INTEL_KNM;
break;
default: // Unknown family 6 CPU.
break;
}
break;
default:
break; // Unknown.
}
return CPU;
}
static const char *
getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 16:
CPU = "amdfam10";
*Type = AMDFAM10H;
switch (Model) {
case 2:
*Subtype = AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
CPU = "btver1";
*Type = AMD_BTVER1;
break;
case 21:
CPU = "bdver1";
*Type = AMDFAM15H;
if (Model >= 0x60 && Model <= 0x7f) {
CPU = "bdver4";
*Subtype = AMDFAM15H_BDVER4;
break; // 60h-7Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
CPU = "bdver3";
*Subtype = AMDFAM15H_BDVER3;
break; // 30h-3Fh: Steamroller
}
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
CPU = "bdver2";
*Subtype = AMDFAM15H_BDVER2;
break; // 02h, 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = AMDFAM15H_BDVER1;
break; // 00h-0Fh: Bulldozer
}
break;
case 22:
CPU = "btver2";
*Type = AMD_BTVER2;
break;
case 23:
CPU = "znver1";
*Type = AMDFAM17H;
if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
CPU = "znver2";
*Subtype = AMDFAM17H_ZNVER2;
break; // 30h-3fh, 71h: Zen2
}
if (Model <= 0x0f) {
*Subtype = AMDFAM17H_ZNVER1;
break; // 00h-0Fh: Zen1
}
break;
case 25:
CPU = "znver3";
*Type = AMDFAM19H;
if (Model <= 0x0f || (Model >= 0x20 && Model <= 0x5f)) {
// Family 19h Models 00h-0Fh - Zen3
// Family 19h Models 20h-2Fh - Zen3
// Family 19h Models 30h-3Fh - Zen3
// Family 19h Models 40h-4Fh - Zen3+
// Family 19h Models 50h-5Fh - Zen3+
*Subtype = AMDFAM19H_ZNVER3;
break;
}
if ((Model >= 0x10 && Model <= 0x1f) ||
(Model >= 0x60 && Model <= 0x74) ||
(Model >= 0x78 && Model <= 0x7b) ||
(Model >= 0xA0 && Model <= 0xAf)) {
CPU = "znver4";
*Subtype = AMDFAM19H_ZNVER4;
break; // "znver4"
}
break;
default:
break; // Unknown AMD CPU.
}
return CPU;
}
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned *Features) {
unsigned EAX = 0, EBX = 0;
#define setFeature(F) \
Features[F / 32] |= 1U << (F % 32)
if ((EDX >> 15) & 1)
setFeature(FEATURE_CMOV);
if ((EDX >> 23) & 1)
setFeature(FEATURE_MMX);
if ((EDX >> 25) & 1)
setFeature(FEATURE_SSE);
if ((EDX >> 26) & 1)
setFeature(FEATURE_SSE2);
if ((ECX >> 0) & 1)
setFeature(FEATURE_SSE3);
if ((ECX >> 1) & 1)
setFeature(FEATURE_PCLMUL);
if ((ECX >> 9) & 1)
setFeature(FEATURE_SSSE3);
if ((ECX >> 12) & 1)
setFeature(FEATURE_FMA);
if ((ECX >> 19) & 1)
setFeature(FEATURE_SSE4_1);
if ((ECX >> 20) & 1)
setFeature(FEATURE_SSE4_2);
if ((ECX >> 23) & 1)
setFeature(FEATURE_POPCNT);
if ((ECX >> 25) & 1)
setFeature(FEATURE_AES);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
bool HasAVX512Save = true;
#else
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
#endif
if (HasAVX)
setFeature(FEATURE_AVX);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7 && ((EBX >> 3) & 1))
setFeature(FEATURE_BMI);
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
setFeature(FEATURE_AVX2);
if (HasLeaf7 && ((EBX >> 8) & 1))
setFeature(FEATURE_BMI2);
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512F);
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512DQ);
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512IFMA);
if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512PF);
if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512ER);
if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512CD);
if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BW);
if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VL);
if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI);
if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI2);
if (HasLeaf7 && ((ECX >> 8) & 1))
setFeature(FEATURE_GFNI);
if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
setFeature(FEATURE_VPCLMULQDQ);
if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VNNI);
if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BITALG);
if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VPOPCNTDQ);
if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124VNNIW);
if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124FMAPS);
if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VP2INTERSECT);
bool HasLeaf7Subleaf1 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BF16);
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if (HasExtLeaf1 && ((ECX >> 6) & 1))
setFeature(FEATURE_SSE4_A);
if (HasExtLeaf1 && ((ECX >> 11) & 1))
setFeature(FEATURE_XOP);
if (HasExtLeaf1 && ((ECX >> 16) & 1))
setFeature(FEATURE_FMA4);
#undef setFeature
}
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
int __cpu_indicator_init(void) CONSTRUCTOR_ATTRIBUTE;
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
struct __processor_model {
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
} __cpu_model = {0, 0, 0, {0}};
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
unsigned int __cpu_features2 = 0;
// A constructor function that is sets __cpu_model and __cpu_features2 with
// the right values. This needs to run only once. This constructor is
// given the highest priority and it should run before constructors without
// the priority set. However, it still runs after ifunc initializers and
// needs to be called explicitly there.
int CONSTRUCTOR_ATTRIBUTE __cpu_indicator_init(void) {
unsigned EAX, EBX, ECX, EDX;
unsigned MaxLeaf = 5;
unsigned Vendor;
unsigned Model, Family;
unsigned Features[(CPU_FEATURE_MAX + 31) / 32] = {0};
// This function needs to run just once.
if (__cpu_model.__cpu_vendor)
return 0;
if (!isCpuIdSupported() ||
getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) {
__cpu_model.__cpu_vendor = VENDOR_OTHER;
return -1;
}
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
detectX86FamilyModel(EAX, &Family, &Model);
// Find available features.
getAvailableFeatures(ECX, EDX, MaxLeaf, &Features[0]);
assert((sizeof(Features)/sizeof(Features[0])) == 2);
__cpu_model.__cpu_features[0] = Features[0];
__cpu_features2 = Features[1];
if (Vendor == SIG_INTEL) {
// Get CPU type.
getIntelProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_INTEL;
} else if (Vendor == SIG_AMD) {
// Get CPU type.
getAMDProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_AMD;
} else
__cpu_model.__cpu_vendor = VENDOR_OTHER;
assert(__cpu_model.__cpu_vendor < VENDOR_MAX);
assert(__cpu_model.__cpu_type < CPU_TYPE_MAX);
assert(__cpu_model.__cpu_subtype < CPU_SUBTYPE_MAX);
return 0;
}
#elif defined(__aarch64__)
#ifndef AT_HWCAP
#define AT_HWCAP 16
#endif
#ifndef HWCAP_CPUID
#define HWCAP_CPUID (1 << 11)
#endif
#ifndef HWCAP_FP
#define HWCAP_FP (1 << 0)
#endif
#ifndef HWCAP_ASIMD
#define HWCAP_ASIMD (1 << 1)
#endif
#ifndef HWCAP_AES
#define HWCAP_AES (1 << 3)
#endif
#ifndef HWCAP_PMULL
#define HWCAP_PMULL (1 << 4)
#endif
#ifndef HWCAP_SHA1
#define HWCAP_SHA1 (1 << 5)
#endif
#ifndef HWCAP_SHA2
#define HWCAP_SHA2 (1 << 6)
#endif
#ifndef HWCAP_ATOMICS
#define HWCAP_ATOMICS (1 << 8)
#endif
#ifndef HWCAP_FPHP
#define HWCAP_FPHP (1 << 9)
#endif
#ifndef HWCAP_ASIMDHP
#define HWCAP_ASIMDHP (1 << 10)
#endif
#ifndef HWCAP_ASIMDRDM
#define HWCAP_ASIMDRDM (1 << 12)
#endif
#ifndef HWCAP_JSCVT
#define HWCAP_JSCVT (1 << 13)
#endif
#ifndef HWCAP_FCMA
#define HWCAP_FCMA (1 << 14)
#endif
#ifndef HWCAP_LRCPC
#define HWCAP_LRCPC (1 << 15)
#endif
#ifndef HWCAP_DCPOP
#define HWCAP_DCPOP (1 << 16)
#endif
#ifndef HWCAP_SHA3
#define HWCAP_SHA3 (1 << 17)
#endif
#ifndef HWCAP_SM3
#define HWCAP_SM3 (1 << 18)
#endif
#ifndef HWCAP_SM4
#define HWCAP_SM4 (1 << 19)
#endif
#ifndef HWCAP_ASIMDDP
#define HWCAP_ASIMDDP (1 << 20)
#endif
#ifndef HWCAP_SHA512
#define HWCAP_SHA512 (1 << 21)
#endif
#ifndef HWCAP_SVE
#define HWCAP_SVE (1 << 22)
#endif
#ifndef HWCAP_ASIMDFHM
#define HWCAP_ASIMDFHM (1 << 23)
#endif
#ifndef HWCAP_DIT
#define HWCAP_DIT (1 << 24)
#endif
#ifndef HWCAP_ILRCPC
#define HWCAP_ILRCPC (1 << 26)
#endif
#ifndef HWCAP_FLAGM
#define HWCAP_FLAGM (1 << 27)
#endif
#ifndef HWCAP_SSBS
#define HWCAP_SSBS (1 << 28)
#endif
#ifndef HWCAP_SB
#define HWCAP_SB (1 << 29)
#endif
#ifndef AT_HWCAP2
#define AT_HWCAP2 26
#endif
#ifndef HWCAP2_DCPODP
#define HWCAP2_DCPODP (1 << 0)
#endif
#ifndef HWCAP2_SVE2
#define HWCAP2_SVE2 (1 << 1)
#endif
#ifndef HWCAP2_SVEAES
#define HWCAP2_SVEAES (1 << 2)
#endif
#ifndef HWCAP2_SVEPMULL
#define HWCAP2_SVEPMULL (1 << 3)
#endif
#ifndef HWCAP2_SVEBITPERM
#define HWCAP2_SVEBITPERM (1 << 4)
#endif
#ifndef HWCAP2_SVESHA3
#define HWCAP2_SVESHA3 (1 << 5)
#endif
#ifndef HWCAP2_SVESM4
#define HWCAP2_SVESM4 (1 << 6)
#endif
#ifndef HWCAP2_FLAGM2
#define HWCAP2_FLAGM2 (1 << 7)
#endif
#ifndef HWCAP2_FRINT
#define HWCAP2_FRINT (1 << 8)
#endif
#ifndef HWCAP2_SVEI8MM
#define HWCAP2_SVEI8MM (1 << 9)
#endif
#ifndef HWCAP2_SVEF32MM
#define HWCAP2_SVEF32MM (1 << 10)
#endif
#ifndef HWCAP2_SVEF64MM
#define HWCAP2_SVEF64MM (1 << 11)
#endif
#ifndef HWCAP2_SVEBF16
#define HWCAP2_SVEBF16 (1 << 12)
#endif
#ifndef HWCAP2_I8MM
#define HWCAP2_I8MM (1 << 13)
#endif
#ifndef HWCAP2_BF16
#define HWCAP2_BF16 (1 << 14)
#endif
#ifndef HWCAP2_DGH
#define HWCAP2_DGH (1 << 15)
#endif
#ifndef HWCAP2_RNG
#define HWCAP2_RNG (1 << 16)
#endif
#ifndef HWCAP2_BTI
#define HWCAP2_BTI (1 << 17)
#endif
#ifndef HWCAP2_MTE
#define HWCAP2_MTE (1 << 18)
#endif
#ifndef HWCAP2_RPRES
#define HWCAP2_RPRES (1 << 21)
#endif
#ifndef HWCAP2_MTE3
#define HWCAP2_MTE3 (1 << 22)
#endif
#ifndef HWCAP2_SME
#define HWCAP2_SME (1 << 23)
#endif
#ifndef HWCAP2_SME_I16I64
#define HWCAP2_SME_I16I64 (1 << 24)
#endif
#ifndef HWCAP2_SME_F64F64
#define HWCAP2_SME_F64F64 (1 << 25)
#endif
#ifndef HWCAP2_WFXT
#define HWCAP2_WFXT (1UL << 31)
#endif
#ifndef HWCAP2_EBF16
#define HWCAP2_EBF16 (1UL << 32)
#endif
#ifndef HWCAP2_SVE_EBF16
#define HWCAP2_SVE_EBF16 (1UL << 33)
#endif
// LSE support detection for out-of-line atomics
// using HWCAP and Auxiliary vector
_Bool __aarch64_have_lse_atomics
__attribute__((visibility("hidden"), nocommon));
#if defined(__has_include)
#if __has_include(<sys/auxv.h>)
#include <sys/auxv.h>
#if __has_include(<asm/hwcap.h>)
#include <asm/hwcap.h>
#if defined(__ANDROID__)
#include <string.h>
#include <sys/system_properties.h>
#elif defined(__Fuchsia__)
#include <zircon/features.h>
#include <zircon/syscalls.h>
#endif
// Detect Exynos 9810 CPU
#define IF_EXYNOS9810 \
char arch[PROP_VALUE_MAX]; \
if (__system_property_get("ro.arch", arch) > 0 && \
strncmp(arch, "exynos9810", sizeof("exynos9810") - 1) == 0)
static void CONSTRUCTOR_ATTRIBUTE init_have_lse_atomics(void) {
#if defined(__FreeBSD__)
unsigned long hwcap;
int result = elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
__aarch64_have_lse_atomics = result == 0 && (hwcap & HWCAP_ATOMICS) != 0;
#elif defined(__Fuchsia__)
// This ensures the vDSO is a direct link-time dependency of anything that
// needs this initializer code.
#pragma comment(lib, "zircon")
uint32_t features;
zx_status_t status = _zx_system_get_features(ZX_FEATURE_KIND_CPU, &features);
__aarch64_have_lse_atomics =
status == ZX_OK && (features & ZX_ARM64_FEATURE_ISA_ATOMICS) != 0;
#else
unsigned long hwcap = getauxval(AT_HWCAP);
_Bool result = (hwcap & HWCAP_ATOMICS) != 0;
#if defined(__ANDROID__)
if (result) {
// Some cores in the Exynos 9810 CPU are ARMv8.2 and others are ARMv8.0;
// only the former support LSE atomics. However, the kernel in the
// initial Android 8.0 release of Galaxy S9/S9+ devices incorrectly
// reported the feature as being supported.
//
// The kernel appears to have been corrected to mark it unsupported as of
// the Android 9.0 release on those devices, and this issue has not been
// observed anywhere else. Thus, this workaround may be removed if
// compiler-rt ever drops support for Android 8.0.
IF_EXYNOS9810 result = false;
}
#endif // defined(__ANDROID__)
__aarch64_have_lse_atomics = result;
#endif // defined(__FreeBSD__)
}
#if !defined(DISABLE_AARCH64_FMV)
// CPUFeatures must correspond to the same AArch64 features in
// AArch64TargetParser.h
enum CPUFeatures {
FEAT_RNG,
FEAT_FLAGM,
FEAT_FLAGM2,
FEAT_FP16FML,
FEAT_DOTPROD,
FEAT_SM4,
FEAT_RDM,
FEAT_LSE,
FEAT_FP,
FEAT_SIMD,
FEAT_CRC,
FEAT_SHA1,
FEAT_SHA2,
FEAT_SHA3,
FEAT_AES,
FEAT_PMULL,
FEAT_FP16,
FEAT_DIT,
FEAT_DPB,
FEAT_DPB2,
FEAT_JSCVT,
FEAT_FCMA,
FEAT_RCPC,
FEAT_RCPC2,
FEAT_FRINTTS,
FEAT_DGH,
FEAT_I8MM,
FEAT_BF16,
FEAT_EBF16,
FEAT_RPRES,
FEAT_SVE,
FEAT_SVE_BF16,
FEAT_SVE_EBF16,
FEAT_SVE_I8MM,
FEAT_SVE_F32MM,
FEAT_SVE_F64MM,
FEAT_SVE2,
FEAT_SVE_AES,
FEAT_SVE_PMULL128,
FEAT_SVE_BITPERM,
FEAT_SVE_SHA3,
FEAT_SVE_SM4,
FEAT_SME,
FEAT_MEMTAG,
FEAT_MEMTAG2,
FEAT_MEMTAG3,
FEAT_SB,
FEAT_PREDRES,
FEAT_SSBS,
FEAT_SSBS2,
FEAT_BTI,
FEAT_LS64,
FEAT_LS64_V,
FEAT_LS64_ACCDATA,
FEAT_WFXT,
FEAT_SME_F64,
FEAT_SME_I64,
FEAT_SME2,
FEAT_MAX
};
// Architecture features used
// in Function Multi Versioning
struct {
unsigned long long features;
// As features grows new fields could be added
} __aarch64_cpu_features __attribute__((visibility("hidden"), nocommon));
void init_cpu_features_resolver(unsigned long hwcap, unsigned long hwcap2) {
#define setCPUFeature(F) __aarch64_cpu_features.features |= 1ULL << F
#define getCPUFeature(id, ftr) __asm__("mrs %0, " #id : "=r"(ftr))
#define extractBits(val, start, number) \
(val & ((1ULL << number) - 1ULL) << start) >> start
if (hwcap & HWCAP_CRC32)
setCPUFeature(FEAT_CRC);
if (hwcap & HWCAP_PMULL)
setCPUFeature(FEAT_PMULL);
if (hwcap & HWCAP_FLAGM)
setCPUFeature(FEAT_FLAGM);
if (hwcap2 & HWCAP2_FLAGM2) {
setCPUFeature(FEAT_FLAGM);
setCPUFeature(FEAT_FLAGM2);
}
if (hwcap & HWCAP_SM3 && hwcap & HWCAP_SM4)
setCPUFeature(FEAT_SM4);
if (hwcap & HWCAP_ASIMDDP)
setCPUFeature(FEAT_DOTPROD);
if (hwcap & HWCAP_ASIMDFHM)
setCPUFeature(FEAT_FP16FML);
if (hwcap & HWCAP_FPHP) {
setCPUFeature(FEAT_FP16);
setCPUFeature(FEAT_FP);
}
if (hwcap & HWCAP_DIT)
setCPUFeature(FEAT_DIT);
if (hwcap & HWCAP_ASIMDRDM)
setCPUFeature(FEAT_RDM);
if (hwcap & HWCAP_ILRCPC)
setCPUFeature(FEAT_RCPC2);
if (hwcap & HWCAP_AES)
setCPUFeature(FEAT_AES);
if (hwcap & HWCAP_SHA1)
setCPUFeature(FEAT_SHA1);
if (hwcap & HWCAP_SHA2)
setCPUFeature(FEAT_SHA2);
if (hwcap & HWCAP_JSCVT)
setCPUFeature(FEAT_JSCVT);
if (hwcap & HWCAP_FCMA)
setCPUFeature(FEAT_FCMA);
if (hwcap & HWCAP_SB)
setCPUFeature(FEAT_SB);
if (hwcap & HWCAP_SSBS)
setCPUFeature(FEAT_SSBS2);
if (hwcap2 & HWCAP2_MTE) {
setCPUFeature(FEAT_MEMTAG);
setCPUFeature(FEAT_MEMTAG2);
}
if (hwcap2 & HWCAP2_MTE3) {
setCPUFeature(FEAT_MEMTAG);
setCPUFeature(FEAT_MEMTAG2);
setCPUFeature(FEAT_MEMTAG3);
}
if (hwcap2 & HWCAP2_SVEAES)
setCPUFeature(FEAT_SVE_AES);
if (hwcap2 & HWCAP2_SVEPMULL) {
setCPUFeature(FEAT_SVE_AES);
setCPUFeature(FEAT_SVE_PMULL128);
}
if (hwcap2 & HWCAP2_SVEBITPERM)
setCPUFeature(FEAT_SVE_BITPERM);
if (hwcap2 & HWCAP2_SVESHA3)
setCPUFeature(FEAT_SVE_SHA3);
if (hwcap2 & HWCAP2_SVESM4)
setCPUFeature(FEAT_SVE_SM4);
if (hwcap2 & HWCAP2_DCPODP)
setCPUFeature(FEAT_DPB2);
if (hwcap & HWCAP_ATOMICS)
setCPUFeature(FEAT_LSE);
if (hwcap2 & HWCAP2_RNG)
setCPUFeature(FEAT_RNG);
if (hwcap2 & HWCAP2_I8MM)
setCPUFeature(FEAT_I8MM);
if (hwcap2 & HWCAP2_EBF16)
setCPUFeature(FEAT_EBF16);
if (hwcap2 & HWCAP2_SVE_EBF16)
setCPUFeature(FEAT_SVE_EBF16);
if (hwcap2 & HWCAP2_DGH)
setCPUFeature(FEAT_DGH);
if (hwcap2 & HWCAP2_FRINT)
setCPUFeature(FEAT_FRINTTS);
if (hwcap2 & HWCAP2_SVEI8MM)
setCPUFeature(FEAT_SVE_I8MM);
if (hwcap2 & HWCAP2_SVEF32MM)
setCPUFeature(FEAT_SVE_F32MM);
if (hwcap2 & HWCAP2_SVEF64MM)
setCPUFeature(FEAT_SVE_F64MM);
if (hwcap2 & HWCAP2_BTI)
setCPUFeature(FEAT_BTI);
if (hwcap2 & HWCAP2_RPRES)
setCPUFeature(FEAT_RPRES);
if (hwcap2 & HWCAP2_WFXT)
setCPUFeature(FEAT_WFXT);
if (hwcap2 & HWCAP2_SME)
setCPUFeature(FEAT_SME);
if (hwcap2 & HWCAP2_SME_I16I64)
setCPUFeature(FEAT_SME_I64);
if (hwcap2 & HWCAP2_SME_F64F64)
setCPUFeature(FEAT_SME_F64);
if (hwcap & HWCAP_CPUID) {
unsigned long ftr;
getCPUFeature(ID_AA64PFR1_EL1, ftr);
// ID_AA64PFR1_EL1.MTE >= 0b0001
if (extractBits(ftr, 8, 4) >= 0x1)
setCPUFeature(FEAT_MEMTAG);
// ID_AA64PFR1_EL1.SSBS == 0b0001
if (extractBits(ftr, 4, 4) == 0x1)
setCPUFeature(FEAT_SSBS);
// ID_AA64PFR1_EL1.SME == 0b0010
if (extractBits(ftr, 24, 4) == 0x2)
setCPUFeature(FEAT_SME2);
getCPUFeature(ID_AA64PFR0_EL1, ftr);
// ID_AA64PFR0_EL1.FP != 0b1111
if (extractBits(ftr, 16, 4) != 0xF) {
setCPUFeature(FEAT_FP);
// ID_AA64PFR0_EL1.AdvSIMD has the same value as ID_AA64PFR0_EL1.FP
setCPUFeature(FEAT_SIMD);
}
// ID_AA64PFR0_EL1.SVE != 0b0000
if (extractBits(ftr, 32, 4) != 0x0) {
// get ID_AA64ZFR0_EL1, that name supported
// if sve enabled only
getCPUFeature(S3_0_C0_C4_4, ftr);
// ID_AA64ZFR0_EL1.SVEver == 0b0000
if (extractBits(ftr, 0, 4) == 0x0)
setCPUFeature(FEAT_SVE);
// ID_AA64ZFR0_EL1.SVEver == 0b0001
if (extractBits(ftr, 0, 4) == 0x1)
setCPUFeature(FEAT_SVE2);
// ID_AA64ZFR0_EL1.BF16 != 0b0000
if (extractBits(ftr, 20, 4) != 0x0)
setCPUFeature(FEAT_SVE_BF16);
}
getCPUFeature(ID_AA64ISAR0_EL1, ftr);
// ID_AA64ISAR0_EL1.SHA3 != 0b0000
if (extractBits(ftr, 32, 4) != 0x0)
setCPUFeature(FEAT_SHA3);
getCPUFeature(ID_AA64ISAR1_EL1, ftr);
// ID_AA64ISAR1_EL1.DPB >= 0b0001
if (extractBits(ftr, 0, 4) >= 0x1)
setCPUFeature(FEAT_DPB);
// ID_AA64ISAR1_EL1.LRCPC != 0b0000
if (extractBits(ftr, 20, 4) != 0x0)
setCPUFeature(FEAT_RCPC);
// ID_AA64ISAR1_EL1.SPECRES == 0b0001
if (extractBits(ftr, 40, 4) == 0x2)
setCPUFeature(FEAT_PREDRES);
// ID_AA64ISAR1_EL1.BF16 != 0b0000
if (extractBits(ftr, 44, 4) != 0x0)
setCPUFeature(FEAT_BF16);
// ID_AA64ISAR1_EL1.LS64 >= 0b0001
if (extractBits(ftr, 60, 4) >= 0x1)
setCPUFeature(FEAT_LS64);
// ID_AA64ISAR1_EL1.LS64 >= 0b0010
if (extractBits(ftr, 60, 4) >= 0x2)
setCPUFeature(FEAT_LS64_V);
// ID_AA64ISAR1_EL1.LS64 >= 0b0011
if (extractBits(ftr, 60, 4) >= 0x3)
setCPUFeature(FEAT_LS64_ACCDATA);
} else {
// Set some features in case of no CPUID support
if (hwcap & (HWCAP_FP | HWCAP_FPHP)) {
setCPUFeature(FEAT_FP);
// FP and AdvSIMD fields have the same value
setCPUFeature(FEAT_SIMD);
}
if (hwcap & HWCAP_DCPOP || hwcap2 & HWCAP2_DCPODP)
setCPUFeature(FEAT_DPB);
if (hwcap & HWCAP_LRCPC || hwcap & HWCAP_ILRCPC)
setCPUFeature(FEAT_RCPC);
if (hwcap2 & HWCAP2_BF16 || hwcap2 & HWCAP2_EBF16)
setCPUFeature(FEAT_BF16);
if (hwcap2 & HWCAP2_SVEBF16)
setCPUFeature(FEAT_SVE_BF16);
if (hwcap2 & HWCAP2_SVE2 && hwcap & HWCAP_SVE)
setCPUFeature(FEAT_SVE2);
if (hwcap & HWCAP_SHA3)
setCPUFeature(FEAT_SHA3);
}
}
void CONSTRUCTOR_ATTRIBUTE init_cpu_features(void) {
unsigned long hwcap;
unsigned long hwcap2;
// CPU features already initialized.
if (__aarch64_cpu_features.features)
return;
setCPUFeature(FEAT_MAX);
#if defined(__FreeBSD__)
int res = 0;
res = elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
res |= elf_aux_info(AT_HWCAP2, &hwcap2, sizeof hwcap2);
if (res)
return;
#else
#if defined(__ANDROID__)
// Don't set any CPU features,
// detection could be wrong on Exynos 9810.
IF_EXYNOS9810 return;
#endif // defined(__ANDROID__)
hwcap = getauxval(AT_HWCAP);
hwcap2 = getauxval(AT_HWCAP2);
#endif // defined(__FreeBSD__)
init_cpu_features_resolver(hwcap, hwcap2);
#undef extractBits
#undef getCPUFeature
#undef setCPUFeature
#undef IF_EXYNOS9810
}
#endif // !defined(DISABLE_AARCH64_FMV)
#endif // defined(__has_include)
#endif // __has_include(<sys/auxv.h>)
#endif // __has_include(<asm/hwcap.h>)
#endif // defined(__aarch64__)