blob: 201ff9ec41621814abf99f9eb418627c50ca2b85 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// <algorithm>
// template<class InputIterator1, class InputIterator2, class Cmp>
// constexpr auto
// lexicographical_compare_three_way(InputIterator1 first1, InputIterator1 last1,
// InputIterator2 first2, InputIterator2 last2,
// Cmp comp)
// -> decltype(comp(*b1, *b2));
#include <array>
#include <algorithm>
#include <cassert>
#include <compare>
#include <concepts>
#include <limits>
#include "test_macros.h"
#include "test_iterators.h"
using std::array;
constexpr auto compare_last_digit_strong = [](int a, int b) -> std::strong_ordering { return (a % 10) <=> (b % 10); };
constexpr auto compare_last_digit_weak = [](int a, int b) -> std::weak_ordering { return (a % 10) <=> (b % 10); };
constexpr auto compare_last_digit_partial = [](int a, int b) -> std::partial_ordering {
if (a == std::numeric_limits<int>::min() || b == std::numeric_limits<int>::min())
return std::partial_ordering::unordered;
return (a % 10) <=> (b % 10);
};
constexpr auto compare_int_result = [](int a, int b) -> int { return (a % 10) - (b % 10); };
struct StructWithoutCallOperator {};
template <class T>
concept has_lexicographical_compare =
requires(int* ptr, T comp) { std::lexicographical_compare_three_way(ptr, ptr, ptr, ptr, comp); };
// `std::lexicographical_compare_three_way` accepts valid types
static_assert(has_lexicographical_compare<decltype(compare_last_digit_strong)>);
static_assert(has_lexicographical_compare<decltype(compare_last_digit_weak)>);
static_assert(has_lexicographical_compare<decltype(compare_last_digit_partial)>);
// `std::lexicographical_compare_three_way` rejects non-invocable comparators
static_assert(!has_lexicographical_compare<StructWithoutCallOperator>);
// `std::lexicographical_compare_three_way` accepts invalid comparators returning a wrong type.
// This will trigger a `static_assert` only when actually invoking `has_lexicographical_compare`.
static_assert(has_lexicographical_compare<decltype(compare_int_result)>);
template <typename Iter1, typename Iter2, typename C1, typename C2, typename Order, typename Comparator>
constexpr void test_lexicographical_compare(C1 a, C2 b, Comparator comp, Order expected) {
std::same_as<Order> decltype(auto) result =
std::lexicographical_compare_three_way(Iter1{a.begin()}, Iter1{a.end()}, Iter2{b.begin()}, Iter2{b.end()}, comp);
assert(expected == result);
}
template <typename Iter1, typename Iter2>
constexpr void test_given_iterator_types() {
auto cmp = compare_last_digit_strong;
// Both inputs empty
test_lexicographical_compare<Iter1, Iter2>(
std::array<int, 0>{}, std::array<int, 0>{}, cmp, std::strong_ordering::equal);
// Left input empty
test_lexicographical_compare<Iter1, Iter2>(std::array<int, 0>{}, std::array{0, 1}, cmp, std::strong_ordering::less);
// Right input empty
test_lexicographical_compare<Iter1, Iter2>(
std::array{0, 1}, std::array<int, 0>{}, cmp, std::strong_ordering::greater);
// Identical arrays
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 1}, std::array{0, 1}, cmp, std::strong_ordering::equal);
// "Less" on 2nd element
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 1}, std::array{0, 2}, cmp, std::strong_ordering::less);
// "Greater" on 2nd element
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 2}, std::array{0, 1}, cmp, std::strong_ordering::greater);
// "Greater" on 2nd element, but "less" on first entry
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 2}, std::array{1, 1}, cmp, std::strong_ordering::less);
// Identical elements, but longer
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 1}, std::array{0, 1, 2}, cmp, std::strong_ordering::less);
// Identical elements, but shorter
test_lexicographical_compare<Iter1, Iter2>(std::array{0, 1, 2}, std::array{0, 1}, cmp, std::strong_ordering::greater);
// Identical arrays, but only if we take the comparator
// into account instead of using the default comparator
test_lexicographical_compare<Iter1, Iter2>(std::array{10, 21}, std::array{10, 31}, cmp, std::strong_ordering::equal);
}
template <typename Iter1>
constexpr void test_iterator_types1() {
test_given_iterator_types<Iter1, int*>();
test_given_iterator_types<Iter1, const int*>();
test_given_iterator_types<Iter1, cpp17_input_iterator<const int*>>();
test_given_iterator_types<Iter1, forward_iterator<const int*>>();
test_given_iterator_types<Iter1, bidirectional_iterator<const int*>>();
test_given_iterator_types<Iter1, random_access_iterator<const int*>>();
test_given_iterator_types<Iter1, contiguous_iterator<const int*>>();
}
constexpr void test_iterator_types() {
// Exhaustively test all combinations of `int*`, `const int*`, `cpp17_input_iterator`,
// `forward_iterator`, `bidirectional_iterator`, `random_access_iterator`,
// `contiguous_iterator`.
//
// `lexicographical_compare_three_way` has a fast path which triggers if both
// iterators are random access iterators.
test_iterator_types1<int*>();
test_iterator_types1<const int*>();
test_iterator_types1<cpp17_input_iterator<const int*>>();
test_iterator_types1<forward_iterator<const int*>>();
test_iterator_types1<bidirectional_iterator<const int*>>();
test_iterator_types1<random_access_iterator<const int*>>();
test_iterator_types1<contiguous_iterator<const int*>>();
}
// Check for other comparison categories
constexpr void test_comparison_categories() {
test_lexicographical_compare<const int*, const int*>(
std::array{0, 1}, std::array{10, 11}, compare_last_digit_weak, std::weak_ordering::equivalent);
test_lexicographical_compare<const int*, const int*>(
std::array{0, 1}, std::array{20, 11}, compare_last_digit_partial, std::partial_ordering::equivalent);
// Check for all comparison categories with arrays of different sizes
test_lexicographical_compare<const int*, const int*>(
std::array{0}, std::array{0, 1}, compare_last_digit_strong, std::strong_ordering::less);
test_lexicographical_compare<const int*, const int*>(
std::array{0}, std::array{0, 1}, compare_last_digit_weak, std::weak_ordering::less);
test_lexicographical_compare<const int*, const int*>(
std::array{0}, std::array{0, 1}, compare_last_digit_partial, std::partial_ordering::less);
// Check for a `partial_ordering::unordered` result
test_lexicographical_compare<const int*, const int*>(
std::array{std::numeric_limits<int>::min(), 1},
std::array{0, 1, 2},
compare_last_digit_partial,
std::partial_ordering::unordered);
}
// Test for "Complexity: At most N applications of comp."
constexpr void test_comparator_invocation_count() {
int compare_invocation_count = 0;
auto compare_last_digit_counting = [&](int a, int b) -> std::strong_ordering {
++compare_invocation_count;
return (a % 10) <=> (b % 10);
};
// If one of the ranges is empty, the comparator must not be called at all
compare_invocation_count = 0;
test_lexicographical_compare<const int*, const int*>(
std::array{0, 1, 2, 3}, std::array<int, 0>{}, compare_last_digit_counting, std::strong_ordering::greater);
assert(compare_invocation_count == 0);
// The comparator is invoked only `min(left.size(), right.size())` times
test_lexicographical_compare<const int*, const int*>(
std::array{0, 1, 2}, std::array{0, 1, 2, 3}, compare_last_digit_counting, std::strong_ordering::less);
assert(compare_invocation_count == 3);
}
constexpr bool test() {
test_iterator_types();
test_comparison_categories();
test_comparator_invocation_count();
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}