blob: 9b57c7629e83d8602997130079caa5885ecaa7b5 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// UNSUPPORTED: no-threads
// UNSUPPORTED: c++03, c++11
// ALLOW_RETRIES: 2
// UNSUPPORTED: availability-shared_mutex-missing
// <shared_mutex>
// class shared_timed_mutex;
// template <class Clock, class Duration>
// bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);
#include <thread>
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <shared_mutex>
#include <vector>
#include "make_test_thread.h"
#include "test_macros.h"
std::shared_timed_mutex m;
typedef std::chrono::steady_clock Clock;
typedef Clock::time_point time_point;
typedef Clock::duration duration;
typedef std::chrono::milliseconds ms;
typedef std::chrono::nanoseconds ns;
ms SuccessWaitTime = ms(5000); // Some machines are busy or slow or both
ms FailureWaitTime = ms(50);
// On busy or slow machines, there can be a significant delay between thread
// creation and thread start, so we use an atomic variable to signal that the
// thread is actually executing.
static std::atomic<unsigned> countDown;
void f1()
{
--countDown;
time_point t0 = Clock::now();
assert(m.try_lock_shared_until(Clock::now() + SuccessWaitTime) == true);
time_point t1 = Clock::now();
m.unlock_shared();
assert(t1 - t0 <= SuccessWaitTime);
}
void f2()
{
time_point t0 = Clock::now();
assert(m.try_lock_shared_until(Clock::now() + FailureWaitTime) == false);
assert(Clock::now() - t0 >= FailureWaitTime);
}
int main(int, char**)
{
int threads = 5;
{
countDown.store(threads);
m.lock();
std::vector<std::thread> v;
for (int i = 0; i < threads; ++i)
v.push_back(support::make_test_thread(f1));
while (countDown > 0)
std::this_thread::yield();
m.unlock();
for (auto& t : v)
t.join();
}
{
m.lock();
std::vector<std::thread> v;
for (int i = 0; i < threads; ++i)
v.push_back(support::make_test_thread(f2));
for (auto& t : v)
t.join();
m.unlock();
}
return 0;
}