blob: 8ab3915bf5bf91c9170f3654b2dc84f26826eb79 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SRC_TRACE_PROCESSOR_CONTAINERS_ROW_MAP_H_
#define SRC_TRACE_PROCESSOR_CONTAINERS_ROW_MAP_H_
#include <stdint.h>
#include <memory>
#include <optional>
#include <vector>
#include "perfetto/base/logging.h"
#include "src/trace_processor/containers/bit_vector.h"
#include "src/trace_processor/containers/bit_vector_iterators.h"
namespace perfetto {
namespace trace_processor {
// Stores a list of row indicies in a space efficient manner. One or more
// columns can refer to the same RowMap. The RowMap defines the access pattern
// to iterate on rows.
//
// Naming convention:
//
// As both the input and output of RowMap is a uint32_t, it can be quite
// confusing to reason about what parameters/return values of the functions
// of RowMap actually means. To help with this, we define a strict convention
// of naming.
//
// row: input - that is, rows are what are passed into operator[]; named as
// such because a "row" number in a table is converted to an index to
// lookup in the backing vectors.
// index: output - that is, indices are what are returned from operator[];
// named as such because an "index" is what's used to lookup data
// from the backing vectors.
//
// Implementation details:
//
// Behind the scenes, this class is impelemented using one of three backing
// data-structures:
// 1. A start and end index (internally named 'range')
// 1. BitVector
// 2. std::vector<uint32_t> (internally named IndexVector).
//
// Generally the preference for data structures is range > BitVector >
// std::vector<uint32>; this ordering is based mainly on memory efficiency as we
// expect RowMaps to be large.
//
// However, BitVector and std::vector<uint32_t> allow things which are not
// possible with the data-structures preferred to them:
// * a range (as the name suggests) can only store a compact set of indices
// with no holes. A BitVector works around this limitation by storing a 1 at an
// index where that row is part of the RowMap and 0 otherwise.
// * as soon as ordering or duplicate rows come into play, we cannot use a
// BitVector anymore as ordering/duplicate row information cannot be captured
// by a BitVector.
//
// For small, sparse RowMaps, it is possible that a std::vector<uint32_t> is
// more efficient than a BitVector; in this case, we will make a best effort
// switch to it but the cases where this happens is not precisely defined.
class RowMap {
private:
// We need to declare these iterator classes before RowMap::Iterator as it
// depends on them. However, we don't want to make these public so keep them
// under a special private section.
// Iterator for ranged mode of RowMap.
// This class should act as a drop-in replacement for
// BitVector::SetBitsIterator.
class RangeIterator {
public:
RangeIterator(const RowMap* rm) : rm_(rm), index_(rm->start_index_) {}
void Next() { ++index_; }
operator bool() const { return index_ < rm_->end_index_; }
uint32_t index() const { return index_; }
uint32_t ordinal() const { return index_ - rm_->start_index_; }
private:
const RowMap* rm_ = nullptr;
uint32_t index_ = 0;
};
// Iterator for index vector mode of RowMap.
// This class should act as a drop-in replacement for
// BitVector::SetBitsIterator.
class IndexVectorIterator {
public:
IndexVectorIterator(const RowMap* rm) : rm_(rm) {}
void Next() { ++ordinal_; }
operator bool() const { return ordinal_ < rm_->index_vector_.size(); }
uint32_t index() const { return rm_->index_vector_[ordinal_]; }
uint32_t ordinal() const { return ordinal_; }
private:
const RowMap* rm_ = nullptr;
uint32_t ordinal_ = 0;
};
public:
// Input type.
using InputRow = uint32_t;
using OutputIndex = uint32_t;
// Allows efficient iteration over the rows of a RowMap.
//
// Note: you should usually prefer to use the methods on RowMap directly (if
// they exist for the task being attempted) to avoid the lookup for the mode
// of the RowMap on every method call.
class Iterator {
public:
Iterator(const RowMap* rm) : rm_(rm) {
switch (rm->mode_) {
case Mode::kRange:
range_it_.reset(new RangeIterator(rm));
break;
case Mode::kBitVector:
set_bits_it_.reset(
new BitVector::SetBitsIterator(rm->bit_vector_.IterateSetBits()));
break;
case Mode::kIndexVector:
iv_it_.reset(new IndexVectorIterator(rm));
break;
}
}
Iterator(Iterator&&) noexcept = default;
Iterator& operator=(Iterator&&) = default;
// Forwards the iterator to the next row of the RowMap.
void Next() {
switch (rm_->mode_) {
case Mode::kRange:
range_it_->Next();
break;
case Mode::kBitVector:
set_bits_it_->Next();
break;
case Mode::kIndexVector:
iv_it_->Next();
break;
}
}
// Returns if the iterator is still valid.
operator bool() const {
switch (rm_->mode_) {
case Mode::kRange:
return *range_it_;
case Mode::kBitVector:
return *set_bits_it_;
case Mode::kIndexVector:
return *iv_it_;
}
PERFETTO_FATAL("For GCC");
}
// Returns the index pointed to by this iterator.
OutputIndex index() const {
switch (rm_->mode_) {
case Mode::kRange:
return range_it_->index();
case Mode::kBitVector:
return set_bits_it_->index();
case Mode::kIndexVector:
return iv_it_->index();
}
PERFETTO_FATAL("For GCC");
}
// Returns the row of the index the iterator points to.
InputRow row() const {
switch (rm_->mode_) {
case Mode::kRange:
return range_it_->ordinal();
case Mode::kBitVector:
return set_bits_it_->ordinal();
case Mode::kIndexVector:
return iv_it_->ordinal();
}
PERFETTO_FATAL("For GCC");
}
private:
Iterator(const Iterator&) = delete;
Iterator& operator=(const Iterator&) = delete;
// Only one of the below will be non-null depending on the mode of the
// RowMap.
std::unique_ptr<RangeIterator> range_it_;
std::unique_ptr<BitVector::SetBitsIterator> set_bits_it_;
std::unique_ptr<IndexVectorIterator> iv_it_;
const RowMap* rm_ = nullptr;
};
// Enum to allow users of RowMap to decide whether they want to optimize for
// memory usage or for speed of lookups.
enum class OptimizeFor {
kMemory,
kLookupSpeed,
};
// Creates an empty RowMap.
// By default this will be implemented using a range.
RowMap();
// Creates a RowMap containing the range of indices between |start| and |end|
// i.e. all indices between |start| (inclusive) and |end| (exclusive).
explicit RowMap(OutputIndex start,
OutputIndex end,
OptimizeFor optimize_for = OptimizeFor::kMemory);
// Creates a RowMap backed by a BitVector.
explicit RowMap(BitVector bit_vector);
// Creates a RowMap backed by an std::vector<uint32_t>.
explicit RowMap(std::vector<OutputIndex> vec);
RowMap(const RowMap&) noexcept = delete;
RowMap& operator=(const RowMap&) = delete;
RowMap(RowMap&&) noexcept = default;
RowMap& operator=(RowMap&&) = default;
// Creates a RowMap containing just |index|.
// By default this will be implemented using a range.
static RowMap SingleRow(OutputIndex index) {
return RowMap(index, index + 1);
}
// Creates a copy of the RowMap.
// We have an explicit copy function because RowMap can hold onto large chunks
// of memory and we want to be very explicit when making a copy to avoid
// accidental leaks and copies.
RowMap Copy() const;
// Returns the size of the RowMap; that is the number of indices in the
// RowMap.
uint32_t size() const {
switch (mode_) {
case Mode::kRange:
return end_index_ - start_index_;
case Mode::kBitVector:
return bit_vector_.CountSetBits();
case Mode::kIndexVector:
return static_cast<uint32_t>(index_vector_.size());
}
PERFETTO_FATAL("For GCC");
}
// Returns whether this rowmap is empty.
bool empty() const { return size() == 0; }
// Returns the index at the given |row|.
OutputIndex Get(InputRow row) const {
PERFETTO_DCHECK(row < size());
switch (mode_) {
case Mode::kRange:
return GetRange(row);
case Mode::kBitVector:
return GetBitVector(row);
case Mode::kIndexVector:
return GetIndexVector(row);
}
PERFETTO_FATAL("For GCC");
}
// Returns whether the RowMap contains the given index.
bool Contains(OutputIndex index) const {
switch (mode_) {
case Mode::kRange: {
return index >= start_index_ && index < end_index_;
}
case Mode::kBitVector: {
return index < bit_vector_.size() && bit_vector_.IsSet(index);
}
case Mode::kIndexVector: {
auto it = std::find(index_vector_.begin(), index_vector_.end(), index);
return it != index_vector_.end();
}
}
PERFETTO_FATAL("For GCC");
}
// Returns the first row of the given |index| in the RowMap.
std::optional<InputRow> RowOf(OutputIndex index) const {
switch (mode_) {
case Mode::kRange: {
if (index < start_index_ || index >= end_index_)
return std::nullopt;
return index - start_index_;
}
case Mode::kBitVector: {
return index < bit_vector_.size() && bit_vector_.IsSet(index)
? std::make_optional(bit_vector_.CountSetBits(index))
: std::nullopt;
}
case Mode::kIndexVector: {
auto it = std::find(index_vector_.begin(), index_vector_.end(), index);
return it != index_vector_.end()
? std::make_optional(static_cast<InputRow>(
std::distance(index_vector_.begin(), it)))
: std::nullopt;
}
}
PERFETTO_FATAL("For GCC");
}
// Performs an ordered insert of the index into the current RowMap
// (precondition: this RowMap is ordered based on the indices it contains).
//
// Example:
// this = [1, 5, 10, 11, 20]
// Insert(10) // this = [1, 5, 10, 11, 20]
// Insert(12) // this = [1, 5, 10, 11, 12, 20]
// Insert(21) // this = [1, 5, 10, 11, 12, 20, 21]
// Insert(2) // this = [1, 2, 5, 10, 11, 12, 20, 21]
//
// Speecifically, this means that it is only valid to call Insert on a RowMap
// which is sorted by the indices it contains; this is automatically true when
// the RowMap is in range or BitVector mode but is a required condition for
// IndexVector mode.
void Insert(OutputIndex index) {
switch (mode_) {
case Mode::kRange:
if (index == end_index_) {
// Fast path: if we're just appending to the end of the range, we can
// stay in range mode and just bump the end index.
end_index_++;
} else {
// Slow path: the insert is somewhere else other than the end. This
// means we need to switch to using a BitVector instead.
bit_vector_.Resize(start_index_, false);
bit_vector_.Resize(end_index_, true);
*this = RowMap(std::move(bit_vector_));
InsertIntoBitVector(index);
}
break;
case Mode::kBitVector:
InsertIntoBitVector(index);
break;
case Mode::kIndexVector: {
PERFETTO_DCHECK(
std::is_sorted(index_vector_.begin(), index_vector_.end()));
auto it =
std::upper_bound(index_vector_.begin(), index_vector_.end(), index);
index_vector_.insert(it, index);
break;
}
}
}
// Updates this RowMap by 'picking' the indices given by |picker|.
// This is easiest to explain with an example; suppose we have the following
// RowMaps:
// this : [0, 1, 4, 10, 11]
// picker: [0, 3, 4, 4, 2]
//
// After calling Apply(picker), we now have the following:
// this : [0, 10, 11, 11, 4]
//
// Conceptually, we are performing the following algorithm:
// RowMap rm = Copy()
// for (p : picker)
// rm[i++] = this[p]
// return rm;
RowMap SelectRows(const RowMap& selector) const {
uint32_t size = selector.size();
// If the selector is empty, just return an empty RowMap.
if (size == 0u)
return RowMap();
// If the selector is just picking a single row, just return that row
// without any additional overhead.
if (size == 1u)
return RowMap::SingleRow(Get(selector.Get(0)));
// For all other cases, go into the slow-path.
return SelectRowsSlow(selector);
}
// Intersects the range [start_index, end_index) with |this| writing the
// result into |this|. By "intersect", we mean to keep only the indices
// present in both this RowMap and in the Range [start_index, end_index). The
// order of the preserved indices will be the same as |this|.
//
// Conceptually, we are performing the following algorithm:
// for (idx : this)
// if (start_index <= idx && idx < end_index)
// continue;
// Remove(idx)
void Intersect(uint32_t start_index, uint32_t end_index) {
if (mode_ == Mode::kRange) {
// If both RowMaps have ranges, we can just take the smallest intersection
// of them as the new RowMap.
// We have this as an explicit fast path as this is very common for
// constraints on id and sorted columns to satisfy this condition.
start_index_ = std::max(start_index_, start_index);
end_index_ = std::max(start_index_, std::min(end_index_, end_index));
return;
}
// TODO(lalitm): improve efficiency of this if we end up needing it.
Filter([start_index, end_index](OutputIndex index) {
return index >= start_index && index < end_index;
});
}
// Intersects this RowMap with |index|. If this RowMap contained |index|, then
// it will *only* contain |index|. Otherwise, it will be empty.
void IntersectExact(OutputIndex index) {
if (Contains(index)) {
*this = RowMap(index, index + 1);
} else {
Clear();
}
}
// Clears this RowMap by resetting it to a newly constructed state.
void Clear() { *this = RowMap(); }
template <typename Comparator = bool(uint32_t, uint32_t)>
void StableSort(std::vector<uint32_t>* out, Comparator c) const {
switch (mode_) {
case Mode::kRange:
std::stable_sort(out->begin(), out->end(),
[this, c](uint32_t a, uint32_t b) {
return c(GetRange(a), GetRange(b));
});
break;
case Mode::kBitVector:
std::stable_sort(out->begin(), out->end(),
[this, c](uint32_t a, uint32_t b) {
return c(GetBitVector(a), GetBitVector(b));
});
break;
case Mode::kIndexVector:
std::stable_sort(out->begin(), out->end(),
[this, c](uint32_t a, uint32_t b) {
return c(GetIndexVector(a), GetIndexVector(b));
});
break;
}
}
// Filters the indices in |out| by keeping those which meet |p|.
template <typename Predicate = bool(OutputIndex)>
void Filter(Predicate p) {
switch (mode_) {
case Mode::kRange:
FilterRange(p);
break;
case Mode::kBitVector: {
for (auto it = bit_vector_.IterateSetBits(); it; it.Next()) {
if (!p(it.index()))
it.Clear();
}
break;
}
case Mode::kIndexVector: {
auto ret = std::remove_if(index_vector_.begin(), index_vector_.end(),
[p](uint32_t i) { return !p(i); });
index_vector_.erase(ret, index_vector_.end());
break;
}
}
}
// Returns the iterator over the rows in this RowMap.
Iterator IterateRows() const { return Iterator(this); }
// Returns if the RowMap is internally represented using a range.
bool IsRange() const { return mode_ == Mode::kRange; }
private:
enum class Mode {
kRange,
kBitVector,
kIndexVector,
};
// TODO(lalitm): remove this when the coupling between RowMap and
// ColumnStorage Selector is broken (after filtering is moved out of here).
friend class ColumnStorageOverlay;
template <typename Predicate>
void FilterRange(Predicate p) {
uint32_t count = end_index_ - start_index_;
// Optimization: if we are only going to scan a few indices, it's not
// worth the haslle of working with a BitVector.
constexpr uint32_t kSmallRangeLimit = 2048;
bool is_small_range = count < kSmallRangeLimit;
// Optimization: weif the cost of a BitVector is more than the highest
// possible cost an index vector could have, use the index vector.
uint32_t bit_vector_cost = BitVector::ApproxBytesCost(end_index_);
uint32_t index_vector_cost_ub = sizeof(uint32_t) * count;
// If either of the conditions hold which make it better to use an
// index vector, use it instead. Alternatively, if we are optimizing for
// lookup speed, we also want to use an index vector.
if (is_small_range || index_vector_cost_ub <= bit_vector_cost ||
optimize_for_ == OptimizeFor::kLookupSpeed) {
// Try and strike a good balance between not making the vector too
// big and good performance.
std::vector<uint32_t> iv(std::min(kSmallRangeLimit, count));
uint32_t out_i = 0;
for (uint32_t i = 0; i < count; ++i) {
// If we reach the capacity add another small set of indices.
if (PERFETTO_UNLIKELY(out_i == iv.size()))
iv.resize(iv.size() + kSmallRangeLimit);
// We keep this branch free by always writing the index but only
// incrementing the out index if the return value is true.
bool value = p(i + start_index_);
iv[out_i] = i + start_index_;
out_i += value;
}
// Make the vector the correct size and as small as possible.
iv.resize(out_i);
iv.shrink_to_fit();
*this = RowMap(std::move(iv));
return;
}
// Otherwise, create a bitvector which spans the full range using
// |p| as the filler for the bits between start and end.
*this = RowMap(BitVector::Range(start_index_, end_index_, p));
}
void InsertIntoBitVector(uint32_t row) {
PERFETTO_DCHECK(mode_ == Mode::kBitVector);
// If we're adding a row to precisely the end of the BitVector, just append
// true instead of resizing and then setting.
if (row == bit_vector_.size()) {
bit_vector_.AppendTrue();
return;
}
if (row > bit_vector_.size()) {
bit_vector_.Resize(row + 1, false);
}
bit_vector_.Set(row);
}
PERFETTO_ALWAYS_INLINE OutputIndex GetRange(InputRow row) const {
PERFETTO_DCHECK(mode_ == Mode::kRange);
return start_index_ + row;
}
PERFETTO_ALWAYS_INLINE OutputIndex GetBitVector(uint32_t row) const {
PERFETTO_DCHECK(mode_ == Mode::kBitVector);
return bit_vector_.IndexOfNthSet(row);
}
PERFETTO_ALWAYS_INLINE OutputIndex GetIndexVector(uint32_t row) const {
PERFETTO_DCHECK(mode_ == Mode::kIndexVector);
return index_vector_[row];
}
RowMap SelectRowsSlow(const RowMap& selector) const;
Mode mode_ = Mode::kRange;
// Only valid when |mode_| == Mode::kRange.
OutputIndex start_index_ = 0; // This is an inclusive index.
OutputIndex end_index_ = 0; // This is an exclusive index.
// Only valid when |mode_| == Mode::kBitVector.
BitVector bit_vector_;
// Only valid when |mode_| == Mode::kIndexVector.
std::vector<OutputIndex> index_vector_;
OptimizeFor optimize_for_ = OptimizeFor::kMemory;
};
} // namespace trace_processor
} // namespace perfetto
#endif // SRC_TRACE_PROCESSOR_CONTAINERS_ROW_MAP_H_